Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2024, Vol. 44 Issue (2/3): 25-38    DOI: 10.13523/j.cb.2306028
研究报告     
多年宿根甘蔗的转录组分析及差异基因挖掘*
程琴,李佳慧,谭秦亮,宋奇琦,朱鹏锦**(),欧克纬,农泽梅,卢业飞,吕平,周全光,庞新华,彭欣怡**()
广西壮族自治区亚热带作物研究所 南宁 530001
Transcriptome Analysis and Differential Gene Mining of Perennial-root Sugarcane
CHENG Qin,LI Jiahui,TAN Qinliang,SONG Qiqi,ZHU Pengjin**(),OU Kewei,NONG Zemei,LU Yefei,LV Ping,ZHOU Quanguang,PANG Xinhua,PENG Xinyi**()
Guangxi Institute of Subtropical Crops, Nanning 530001, China
 全文: PDF(3564 KB)   HTML
摘要:

甘蔗(Saccharum hybirds)宿根性直接关系到甘蔗生产成本和种植效益,品种、环境和栽培措施均会影响甘蔗宿根能力,但品种的种性是影响宿根性最关键因素。国内外从分子生物学层面解释甘蔗宿根性差异的文献鲜见报道,从转录水平分析不同宿根年限GR2号和ROC22号基因表达的差异。结果表明:转录组测序共得到100 558 条转录本和25 582 条Unigene。获得53 790 条Unigene的注释结果,分别在NR、Swiss-Prot、KEGG、COG、KOG、GO和Pfam数据库进行比对。GO功能注释共分成三大类,51小类,6 年宿根蔗注释到1 029 个差异基因,3 年宿根蔗注释到3 391 个差异基因。主要KEGG代谢通路有8 条,分别涉及植物激素信号转导,淀粉和蔗糖代谢,甘氨酸、丝氨酸和苏氨酸代谢,苯丙素生物合成,同源重组,DNA复制,错配修复及植物病原体相互作用。筛选出脱落酸(ABA)相关差异基因6 个,分别为脱落酸不敏感蛋白2基因(ABI2)、bZIP转录因子超家族蛋白、碱性亮氨酸拉链型转录因子基因(ABI5)、aba响应元件结合因子1基因(ABF1)、G-box结合因子基因(GBFs)、aba响应元件结合因子基因(ABF)。以上差异基因将作为后期进行基因表达和功能分析的参考基因,并联合蛋白质组学深入分析影响甘蔗宿根性的分子机制。

关键词: 甘蔗宿根性转录组脱落酸    
Abstract:

Sugarcane ratooning ability is directly related to its production cost and cultivation efficiency. Sugarcane ratooning productivity is influenced by variety, environment and cultivation measures, but variety is the most critical factor. There are few reports explaining the differences in sugarcane ratooning ability at the molecular biological level both domestically and internationally. In this paper, transcriptome sequencing was used to analyze the differences in gene expression between sugarcane GR2 and ROC22 of different root years. The results showed that 100 558 transcripts and 25 582 unigenes were obtained by transcriptome sequencing. By functional annotation of unigenes, including comparison with NR, Swiss-Prot, KEGG, COG, KOG, GO and Pfam databases, a total of 53 790 unigene annotation results were obtained. The GO functional annotation was divided into three categories and 51 subcategories. A total of 1 029 differential genes were annotated in six-year-old sugarcane, and 3 391 differential genes were annotated in three-year-old sugarcane. There are eight major KEGG metabolic pathways, which are mainly involved in plant hormone signal transduction, starch and sucrose metabolism, glycine, serine and threonine metabolism, phenylpropanoid biosynthesis, homologous recombination, DNA replication, mismatch repair and plant pathogen interaction. Six abscisic acid-related differentially identified genes are: abscisic acid-insensitive 5-like protein 2 (ABI2), putative bZIP transcription factor superfamily protein, protein abscisic acid-insensitive 5 (ABI5), aba responsive element-binding factor 1 (partial ABF1), G-box binding factor 4 (GBFs), and aba responsive element-binding factor 1 (ABF). The above differential genes will serve as reference genes for our later gene expression and function analysis, and further analyze the molecular mechanism affecting sugarcane ratooning ability by combining proteomics.

Key words: Saccharum hybirds    Perennial root    Transcriptome    Abscisic acid
收稿日期: 2023-06-21 出版日期: 2024-04-03
ZTFLH:  Q78  
基金资助: *广西科技计划(桂科AB23026083);广西科技计划(桂科AA22117002-6);广西农业科学院基本科研业务专项(桂农科2021YT151)
通讯作者: **电子信箱:329669037@qq.com; 271147736@qq.com   
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
程琴
李佳慧
谭秦亮
宋奇琦
朱鹏锦
欧克纬
农泽梅
卢业飞
吕平
周全光
庞新华
彭欣怡

引用本文:

程琴, 李佳慧, 谭秦亮, 宋奇琦, 朱鹏锦, 欧克纬, 农泽梅, 卢业飞, 吕平, 周全光, 庞新华, 彭欣怡. 多年宿根甘蔗的转录组分析及差异基因挖掘*[J]. 中国生物工程杂志, 2024, 44(2/3): 25-38.

CHENG Qin, LI Jiahui, TAN Qinliang, SONG Qiqi, ZHU Pengjin, OU Kewei, NONG Zemei, LU Yefei, LV Ping, ZHOU Quanguang, PANG Xinhua, PENG Xinyi. Transcriptome Analysis and Differential Gene Mining of Perennial-root Sugarcane. China Biotechnology, 2024, 44(2/3): 25-38.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.2306028        https://manu60.magtech.com.cn/biotech/CN/Y2024/V44/I2/3/25

样品 Clean Reads数 比对上的读长 碱基和 GC含量/% Q20含量/% Q30含量/%
S-GR-T-1 24 679 239 (100%) 18 270 708 (74.03%) 7 382 461 956 55.17 97.74 93.83
S-GR-T-2 24 356 811 (100%) 18 081 214 (74.23%) 7 289 302 138 54.83 97.74 93.81
S-GR-T-3 32 105 941 (100%) 23 800 101 (74.13%) 9 597 818 186 55.30 97.75 93.92
S-ROC-T-1 26 523 983 (100%) 19 655 684 (74.11%) 7 932 528 412 55.34 97.96 94.27
S-ROC-T-2 26 636 115 (100%) 19 895 642 (74.69%) 7 972 651 934 55.57 97.81 93.94
S-ROC-T-3 28 279 985 (100%) 21 002 557 (74.27%) 8 456 504 582 55.47 97.78 93.92
T-GR-T-1 21 281 893 (100%) 15 965 989 (75.02%) 6 368 694 450 54.20 98.27 95.31
T-GR-T-2 23 747 346 (100%) 17 465 407 (73.55%) 7 099 029 056 54.60 98.00 94.84
T-GR-T-3 24 833 434 (100%) 18 411 800 (74.14%) 7 424 914 922 55.17 98.19 95.04
T-ROC-T-1 25 923 473 (100%) 19 361 506 (74.69%) 7 750 471 616 54.36 98.32 95.42
T-ROC-T-2 22 033 766 (100%) 16 049 898 (72.84%) 6 574 468 010 55.26 98.09 95.07
T-ROC-T-3 27 024 567 (100%) 20 102 036 (74.38%) 8 078 974 654 54.66 98.22 95.25
表1  甘蔗幼根转录组分析结果
长度范围/bp 转录本 独立基因
数量/个 百分比/% 数量/个 百分比/%
200~300 40 151 15.94 32 617 32.44
300~500 42 015 16.68 23 909 23.78
500~1 000 58 540 23.23 18 450 18.35
1 000~2 000 65 068 25.83 13 774 13.70
2 000+ 46 177 18.33 11 808 11.74
总数/个 251 951 100 558
总长度/bp 301 843 833 86 622 242
N50长度/bp 1 871 1 663
平均长度/bp 1 198.03 861.42
表2  组装结果统计表
注释数据库 注释数量 片段长度/bp
300~1 000 ≥1 000
COG 14 604 4 157 7 272
GO 36 135 12 135 16 204
KEGG 16 679 5 665 7 179
KOG 25 724 8 157 11 550
Pfam 31 365 9 527 15 847
Swiss-Prot 27 617 8 722 14 455
eggNOG 47 362 16 338 20 075
NR 51 138 18 418 21 317
合计 53 790 19 261 21 445
表3  Unigene 注释统计
图1  与NR数据库比对上的物种分布
差异表达基因集
名称
差异表达
基因数目
上调基因
数目
下调基因
数目
S-ROC_vs_S-GR 2 484 1 206 1 278
T-ROC_vs_T-GR 6 224 2 334 3 890
表4  差异表达基因数目统计表
图2  不同宿根年限甘蔗品种间差异表达基因火山图
差异表达基因集名称 注释到的差异
表达基因数目
各功能数据库注释到的差异表达基因数目
COG GO KEGG KOG Pfam Swiss-Prot eggNOG NR
S-ROC_vs_S-GR 1 728 402 1 029 302 681 1 046 968 1 470 1 714
T-ROC_vs_T-GR 4 831 1 347 3 391 1 190 2 092 3 225 3 080 4 385 4 813
表5  注释的差异表达基因数量统计表
图3  6年宿根蔗差异表达基因GO功能富集
图4  3年宿根蔗差异表达基因GO功能富集
图5  6年宿根蔗差异表达基因COG功能分类
图6  3年宿根蔗差异表达基因COG功能分类 A:RNA加工和修饰;B:染色质结构和动力学;C:能源生产与转换;D:细胞周期控制,细胞分裂,染色体分裂;E:氨基酸运输和代谢;F:核苷酸迁移和代谢;G:碳水化合物运输和代谢;H:辅酶运输和代谢;I:脂质运输与代谢;J:翻译、核糖体结构和生物发生;K:转录;L:复制、重组和修复;M:细胞壁/膜/信封生源论;N:细胞运动性;O:翻译后修饰,蛋白质转换,分子伴侣;P:无机离子的转运和代谢;Q:次级代谢产物生物合成、运输和分解代谢;R:通用功能预测;S:未知功能;T:信号转导机制;U:细胞内运输、分泌和囊泡运输;V:防御机制;W:细胞外结构;X:噬菌体原,转座子;Z:细胞骨架
图7  6年宿根蔗差异表达基因KEGG注释
图8  3年宿根蔗差异表达基因KEGG注释
图9  T-ROC_vs_T-GR.KEGG富集因子
图10  S-ROC_vs_S-GR.KEGG富集因子
ID 条目 数量
S-ROC_vs_S-GR T-ROC_vs_T-GR
ko04075 植物激素信号转导 6 74
ko00500 淀粉和蔗糖代谢 7 33
ko00260 甘氨酸、丝氨酸和苏氨酸代谢 5 20
ko00940 苯丙素生物合成 7 48
ko03440 同源重组 11 13
ko03030 DNA复制 11 12
ko03430 错配修复 10 12
ko04626 植物病原体相互作用 9 49
表6  主要 KEGG 代谢通路注释
基因ID 脱落酸相关差异基因表达量FPKM 差异倍数 上下调 基因名称
S-GR1 S-GR2 S-GR3 S-ROC1 S-ROC2 S-ROC3 S-GR-vs-
S-ROC
c83449 9.99 9.42 12.21 4.26 4.16 4.33 7.40* 1.065 上调 脱落酸不敏感5-like蛋白2
c73830 0.00 0.00 0.00 3.75 6.31 6.64 5.57* -5.669 下调 碱性亮氨酸拉链型转录因子(ABI5)
c87455 13.75 13.75 14.68 36.57 36.08 20.25 22.52 -1.448 下调 aba响应元件结合因子1(ABF1)
c99528 9.91 10.61 12.13 15.55 21.68 15.00 14.18* -1.165 下调 G-box结合因子(GBFs)
c77791 3.54 3.73 3.90 0.69 1.07 1.22 2.36* 1.509 上调 bZIP转录因子超家族蛋白
c87455 6.23 16.08 9.26 37.83 41.91 26.21 22.92* -1.981 下调 aba响应元件结合因子(ABF)
表7  脱落酸差异基因表达分析
[1] 唐仕云, 杨丽涛, 李杨瑞. 低温胁迫下不同甘蔗品种的转录组比较分析. 生物技术通报, 2018, 34(12): 116-124.
doi: 10.13560/j.cnki.biotech.bull.1985.2018-0522
Tang S Y, Yang L T, Li Y R. Comparative analysis on transcriptome among different sugarcane cultivars under low temperature stress. Biotechnology Bulletin, 2018, 34(12): 116-124.
doi: 10.13560/j.cnki.biotech.bull.1985.2018-0522
[2] 李穆, 程志远, 石莹, 等. 基于RNA-seq技术的甘蔗参考转录组建立及分析. 分子植物育种, 2015, 13(2): 355-360.
Li M, Cheng Z Y, Shi Y, et al. Establishment and analysis on reference transcriptome of sugarcane based on RNA-seq technology. Molecular Plant Breeding, 2015, 13(2): 355-360.
[3] 苏亚春. 甘蔗应答黑穗病菌侵染的转录组与蛋白组研究及抗性相关基因挖掘. 福州: 福建农林大学, 2014.
Su Y C. Transcriptomics and proteomics of sugarcane response to Sporisorium scitamineum infection and mining of resistance-related genes. Fuzhou: Fujian Agriculture and Forestry University, 2014.
[4] 马丽, 苏火生, 刘新龙, 等. 国内甘蔗种质六年宿根蔗的产量评价. 中国糖料, 2012, 34(4): 29-32.
Ma L, Su H S, Liu X L, et al. Evaluating yield and sucrose content for the sixth year ratoot sugarcane in China. Sugar Crops of China, 2012, 34(4): 29-32.
[5] 覃伟, 吴才文, 曾千春, 等. 用新台糖甘蔗品种作母本培育强宿根后代的潜力评价. 湖南农业大学学报(自然科学版), 2012, 38(1): 1-7.
Qin W, Wu C W, Zeng Q C, et al. Ratooning traits in sugarcane progenies of ROC varieties as female parents. Journal of Hunan Agricultural University (Natural Sciences), 2012, 38(1): 1-7.
[6] 庞新华, 朱鹏锦, 周全光, 等. 广西蔗区引进甘蔗品种(系)的比较试验. 作物杂志, 2016(2): 73-78.
Pang X H, Zhu P J, Zhou Q G, et al. Comparative study of introduced sugarcane varieties(lines) in Guangxi. Crops, 2016(2): 73-78.
[7] 张玉叶. 甘蔗受黑穗病菌胁迫下microRNA差异表达及其靶基因功能分析. 福州: 福建农林大学, 2015.
Zhang Y Y. Differentially expressed microRNAs in sugarcane challenged by Sporisorium scitamineum and their target gene function identification. Fuzhou: Fujian Agriculture and Forestry University, 2015.
[8] 张培珠. 基于转录组测序技术的赖草根茎发育调控基因分析及应用研究. 济南: 济南大学, 2017.
Zhang P Z. Analysis and application of genes controlling rhizome development in Leymus secalinus based on transcriptome sequencing technique. Jinan: University of Jinan, 2017.
[9] 丘立杭, 罗含敏, 陈荣发, 等. 基于RNA-Seq的甘蔗主茎和分蘖茎转录组建立及初步分析. 基因组学与应用生物学, 2018, 37(3): 1271-1279.
Qiu L H, Luo H M, Chen R F, et al. Establishment and preliminary analysis on transcriptome of sugarcane between stalk and tiller based on RNA-seq technology. Genomics and Applied Biology, 2018, 37(3): 1271-1279.
[10] Cardoso-Silva C B, Costa E A, Mancini M C, et al. De novo assembly and transcriptome analysis of contrasting sugarcane varieties. PLoS One, 2014, 9(2): e88462.
[11] Zeng Q Y, Ling Q P, Fan L N, et al. Transcriptome profiling of sugarcane roots in response to low potassium stress. PLoS One, 2015, 10(5): e0126306.
[12] Li M, Liang Z X, Zeng Y, et al. De novo analysis of transcriptome reveals genes associated with leaf abscission in sugarcane (Saccharum officinarum L.). BMC Genomics, 2016, 17: 195.
doi: 10.1186/s12864-016-2552-2
[13] Ye Y P. Studies on the physiological and biochemical mechanism on ethephon promoting effective tillering in sugarcane. Nanning: Guangxi University, 2006.
[14] 丘立杭, 范业庚, 罗含敏, 等. 甘蔗分蘖发生及成茎的调控研究进展. 植物生理学报, 2018, 54(2): 192-202.
doi: 10.1104/pp.54.2.192
Qiu L H, Fan Y G, Luo H M, et al. Advances of regulation study on tillering formation and stem forming from available tillers in sugarcane (Saccharum officinarum). Plant Physiology Journal, 2018, 54(2): 192-202.
doi: 10.1104/pp.54.2.192
[15] Pribil M, Ngo C, Wang L, et al. Altering sugarcane shoot architecture through genetic engineering: prospects for increasing cane and sugar yield. Proceedings of the Australian Society of Sugar Cane Technologist, 2007, 29:251-257.
[16] Wang J, Wu B W, Lu K, et al. The amino acid permease 5 (OsAAP5) regulates tiller number and grain yield in rice. Plant Physiology, 2019, 180(2): 1031-1045.
doi: 10.1104/pp.19.00034 pmid: 30890663
[17] 程琴, 谭秦亮, 李佳慧, 等. 不同宿根年限甘蔗品种内源激素及酶活性分析. 作物杂志, 2022(3): 181-186.
Cheng Q, Tan Q L, Li J H, et al. Endogenous hormones and enzyme activity analysis in sugarcane varieties with different perennial root ages. Crops, 2022(3): 181-186.
[18] Fujii H, Chinnusamy V, Rodrigues A, et al. In vitro reconstitution of an abscisic acid signalling pathway. Nature, 2009, 462(7273): 660-664.
doi: 10.1038/nature08599
[19] Umezawa T, Nakashima K, Miyakawa T, et al. Molecular basis of the core regulatory network in ABA responses: sensing, signaling and transport. Plant and Cell Physiology, 2010, 51(11): 1821-1839.
doi: 10.1093/pcp/pcq156 pmid: 20980270
[20] Righetto G L, Sriranganadane D, Halabelian L, et al. The C-terminal domains SnRK 2 box and ABA box have a role in sugarcane SnRK2s auto-activation and activity. Frontiers in Plant Science, 2019, 10: 1105
doi: 10.3389/fpls.2019.01105
[21] 邢璐. 植物激素脱落酸的受体蛋白PYL8和PYL9通过结合转录因子MYB家族成员调控拟南芥的侧根生长. 合肥: 中国科学技术大学, 2016.
Xing L. ABA receptors PYL8 and PYL9 regulate plant lateral root growth via MYB transcription factors. Hefei: University of Science and Technology of China, 2016.
[22] Koornneef M, Reuling G, Karssen C M. The isolation and characterization of abscisic acid-insensitive mutants of Arabidopsis thaliana. Physiologia Plantarum, 1984, 61(3): 377-383.
doi: 10.1111/ppl.1984.61.issue-3
[23] Finkelstein R R. Abscisic acid-insensitive mutations provide evidence for stage-specific signal pathways regulating expression of an Arabidopsis late embryo genesis-abundant (lea) gene. Molecular and General Genetics MGG, 1993, 238(3): 401-408.
doi: 10.1007/BF00291999
[24] Merlot S, Gosti F, Guerrier D, et al. The ABI1 and ABI 2 protein phosphatases 2C act in a negative feedback regulatory loop of the abscisic acid signalling pathway. The Plant Journal, 2001, 25(3): 295-303.
doi: 10.1046/j.1365-313x.2001.00965.x
[25] Leung J, Merlot S, Giraudat J. The Arabidopsis ABSCISIC ACID-INSENSITIVE2 (ABI2) and ABI1 genes encode homologous protein phosphatases 2C involved in abscisic acid signal transduction. The Plant Cell, 1997, 9(5): 759-771.
[26] Antoni R, Rodriguez L, Gonzalez-Guzman M, et al. News on ABA transport, protein degradation, and ABFs/WRKYs in ABA signaling. Current Opinion in Plant Biology, 2011, 14(5): 547-553.
doi: 10.1016/j.pbi.2011.06.004 pmid: 21742545
[27] Lopez-Molina L, Mongrand S, McLachlin D T, et al. ABI5 acts downstream of ABI3 to execute an ABA-dependent growth arrest during germination. The Plant Journal, 2002, 32(3): 317-328.
doi: 10.1046/j.1365-313X.2002.01430.x
[28] Carles C, Bies-Etheve N, Aspart L, et al. Regulation of Arabidopsis thaliana Em genes: role of ABI5. The Plant Journal, 2002, 30(3): 373-383.
doi: 10.1046/j.1365-313X.2002.01295.x
[29] 刘传光, 伍时照, 王雪梅, 等. 宿根性水稻的越冬机理初探. 作物研究, 1999, 13(4): 12-13.
Liu C G, Wu S Z, Wang X M, et al. Preliminary study on overwintering mechanism of perennial rice. Crop Research, 1999, 13(4): 12-13.
[30] Schlögl P S, Nogueira F T S, Drummond R, et al. Identification of new ABA- and MEJA-activated sugarcane bZIP genes by data mining in the SUCEST database. Plant Cell Reports, 2008, 27(2): 335-345.
[31] Xu F, Wang Z T, Lu G L, et al. Sugarcane ratooning ability: research status, shortcomings, and prospects. Biology, 2021, 10(10): 1052.
[32] 杨荣仲. 甘蔗宿根性与抗寒性初探. 甘蔗糖业, 1996(6): 13-17.
Yang R Z. The preliminary study on cold-resistance and ratooning ability of sugarcane. Sugarcane and Canesugar, 1996(6): 13-17.
[33] Papini-Terzi F S, Rocha F R, Vêncio R Z N, et al. Sugarcane genes associated with sucrose content. BMC Genomics, 2009, 10: 120.
doi: 10.1186/1471-2164-10-120 pmid: 19302712
[34] Banerjee N, Siraree A, Yadav S, et al. Marker-trait association study for sucrose and yield contributing traits in sugarcane (Saccharum spp. hybrid). Euphytica, 2015, 205(1): 185-201.
doi: 10.1007/s10681-015-1422-3
[35] Wang H B. Genetic map construction and QTL mapping of main agronomic traits in sugarcane. Fuzhou: Fujian Agriculture and Forestry University, 2018.
[36] Ukoskit K, Posudsavang G, Pongsiripat N, et al. Detection and validation of EST-SSR markers associated with sugar-related traits in sugarcane using linkage and association mapping. Genomics, 2019, 111(1): 1-9.
doi: S0888-7543(18)30027-2 pmid: 29608956
[37] Aljanabi S M, Parmessur Y, Kross H, et al. Identification of a major quantitative trait locus (QTL) for yellow spot (Mycovellosiella koepkei) disease resistance in sugarcane. Molecular Breeding, 2007, 19(1): 1-14.
doi: 10.1007/s11032-006-9008-3
[1] 姜宇佳, 荆泽华, 冯静, 徐讯. 时空组学技术新进展*[J]. 中国生物工程杂志, 2024, 44(1): 19-31.
[2] 马聪, 张想军, 叶彤, 柳凤敏, 张皓杰, 刘慧燕, 方海田. 基于转录组学分析大肠杆菌中purR基因缺失对胞苷合成代谢的影响*[J]. 中国生物工程杂志, 2023, 43(8): 52-62.
[3] 马莉, 崔海星, 李金泽. 空间组学技术发展趋势的专利分析*[J]. 中国生物工程杂志, 2023, 43(8): 111-117.
[4] 卢南巡, 王荔巍, 刘玫秀, 张中华, 常景玲, 李志刚. 低聚磷酸盐促进cAMP发酵合成的全局转录组分析*[J]. 中国生物工程杂志, 2023, 43(4): 41-50.
[5] 贺立恒,张毅,张洁,任豫超,解红娥,唐锐敏,贾小云,武宗信. 基于转录组和WGCNA的甘薯花青素合成相关基因共表达网络的构建及核心基因的挖掘*[J]. 中国生物工程杂志, 2021, 41(9): 27-36.
[6] 何官榕,何碧珠,吴沙沙,石京山,陈集双,兰思仁. 多叶斑叶兰繁殖体系建立及基于转录组的发育调控途径功能基因研究[J]. 中国生物工程杂志, 2018, 38(12): 57-64.
[7] 周琳, 汪靓, 高娟, 赵权宇, 魏伟, 孙予罕. 进化与未进化小球藻响应苯酚的转录组学分析[J]. 中国生物工程杂志, 2017, 37(7): 72-79.
[8] 徐媛媛, 俞翰炳, 吴飞华, 吴晓梅. 基因组时代林木抗病分子机理研究的新进展[J]. 中国生物工程杂志, 2017, 37(6): 114-123.
[9] 梁士博, 刘佳莹, 刘杰, 杨江涛, 李集临, 张延明. NGS技术在作物基因组研究中的应用[J]. 中国生物工程杂志, 2017, 37(2): 111-120.
[10] 苏稚喆, 王雪华, 杨华, 孙焕, 魏炜. 镉胁迫下麻疯树转录组测序分析[J]. 中国生物工程杂志, 2016, 36(4): 69-77.
[11] 吕珊珊, 侯运华, 闫孟节, 钟耀华. 工业真菌高效产酶突变技术与高产机制[J]. 中国生物工程杂志, 2016, 36(3): 111-119.
[12] 周茜, 赵惠新, 李萍萍, 曾卫军, 李艳红, 葛风伟, 赵君洁, 赵和平. 独行菜种子转录组的高通量测序及分析[J]. 中国生物工程杂志, 2016, 36(1): 38-46.
[13] 敖妍, 马履一, 韩树文, 杨晓辉. 基于高通量测序的文冠果转录组分析[J]. 中国生物工程杂志, 2015, 35(7): 22-29.
[14] 李真, 刘兆雨, 徐丹, 陈婷, 孟赞, 唐勇, 彭彦. 星形胶质细胞通过CX47促进少突胶质前体细胞增殖[J]. 中国生物工程杂志, 2015, 35(12): 21-29.
[15] 秦翠鲜, 陈忠良, 桂意云, 汪淼, 周建辉, 廖青, 李杨瑞, 黄东亮. 农杆菌介导甘蔗愈伤组织遗传转化体系的优化[J]. 中国生物工程杂志, 2013, 33(9): 66-72.