Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2024, Vol. 44 Issue (2/3): 1-13    DOI: 10.13523/j.cb.2306001
研究报告     
FGFR3基因突变影响膀胱癌酪氨酸激酶抑制剂敏感性的研究*
邓李歆旭1,2,车文安1,2,徐海波2,丁雪1,孙远东1,**()
1 湖南科技大学 湘潭 411201
2 深圳市第二人民医院医学合成生物学临床应用关键技术国家地方联合工程实验室 深圳 518036
Effect of FGFR3 Gene Mutation on Tyrosine Kinase Inhibitor Sensitivity in Bladder Cancer
DENG Lixinxu1,2,CHE Wenan1,2,XU Haibo2,DING Xue1,SUN Yuandong1,**()
1 Hunan University of Science and Technology, Xiangtan 411201, China
2 State and Local Government Joint Engineering Laboratory of Synthetic Biology Medicine and Clinical Application of Key Technologies, Shenzhen Second People’s Hospital, Shenzhen 518036, China
 全文: PDF(2654 KB)   HTML
摘要:

目的: 通过构建含FGFR3不同位点突变的膀胱癌细胞系与类器官模型,检测上述模型对不同FGFR3酪氨酸激酶抑制剂的敏感性差异。方法: 构建野生型FGFR3、点突变型FGFR3(S249C、R248C、Y373C)和FGFR3-TACC3基因融合的细胞系。随后选取8种酪氨酸激酶抑制剂(TKI)并测试这些细胞的药物敏感性差异。利用蛋白质印迹法检测FGFR3下游通路蛋白质的磷酸化水平,探索不同稳转细胞系出现TKI敏感性差异的机制。构建膀胱癌患者肿瘤组织来源的类器官模型,重复上述实验,从类器官水平检测不同突变型膀胱癌类器官对不同TKI的敏感性差异。结果: 细胞系水平中FGFR3 R248C点突变和FGFR3-TACC3融合基因型细胞相较野生型FGFR3对TKI的敏感性增加5~10倍(P<0.05)。成功构建膀胱癌患者肿瘤组织来源类器官,证实类器官具备原位肿瘤的组织形态与遗传特征,并从类器官水平证实FGFR3 R248C点突变提高细胞对所有药物的敏感性,相比野生型可达1~5倍,此外FGFR3-TACC3融合基因和FGFR3 Y373C点突变明显改变细胞对药物的敏感性。结论: 成功构建含不同FGFR3突变的细胞系和类器官,并进一步证明不同突变型FGFR3对酪氨酸激酶抑制剂存在不同的敏感性,其中FGFR3 R248C点突变的细胞系及类器官均对所有TKI药物有高敏感性。

关键词: 膀胱癌FGFR3酪氨酸激酶抑制剂类器官    
Abstract:

Objective: Bladder cancer cell lines and organoid models with FGFR3 mutations were constructed at different sites first, and then their sensitivity to different tyrosine kinase inhibitors targeting FGFR3 gene mutations was determined. Methods: Cell line models with wild type FGFR3, point mutant FGFR3 (S249C, R248C and Y373C) and FGFR3-TACC3 fusion were established. Eight tyrosine kinase inhibitors were then used to test for differences in drug sensitivity in different stable cells. The phosphorylation level of FGFR3 downstream pathway protein was detected by Western blot analysis to analyze the mechanism of the difference in tyrosine kinase inhibitor (TKI) sensitivity in different stable cells. Organoid models were constructed using bladder cancer patient tissues, and the above experiment was repeated. The sensitivity of different mutant bladder cancer organoids to different TKIs was determined at the organoid level. Results: FGFR3 point mutation R248C and FGFR3-TACC3 fusion increased by 5-10 fold compared with wild type FGFR3 to half of tyrosine kinase inhibitors at the cell line level (P<0.05). Organoids derived from tumor tissue of bladder cancer patients were successfully constructed. This confirmed that the organoid has the organizational and genetic characteristics of the tumor in situ. The FGFR3 point mutations S249C and Y373C did not show significant differences in sensitivity, which can be 1-5 fold different from the wild type. The FGFR3-TACC3 fusion and the FGFR3 point mutation Y373C can significantly alter the sensitivity of cells to drugs at the organoid level. Conclusions: This study successfully constructed cell lines and organoids with different FGFR3 mutations, further demonstrating that different FGFR3 mutations have different sensitivities to tyrosine kinase inhibitors, and that organoids with the FGFR3 point mutation R248C have high sensitivity to all TKI drugs.

Key words: Bladder cancer    FGFR3    Tyrosine kinase inhibitor    Organoids
收稿日期: 2023-06-01 出版日期: 2024-04-03
ZTFLH:  R-33  
基金资助: *国家重点研发计划(2019YFA0906000);深圳市科技计划(JCYJ20200109120016553)
通讯作者: **电子信箱:syd@hnust.edu.cn   
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
邓李歆旭
车文安
徐海波
丁雪
孙远东

引用本文:

邓李歆旭, 车文安, 徐海波, 丁雪, 孙远东. FGFR3基因突变影响膀胱癌酪氨酸激酶抑制剂敏感性的研究*[J]. 中国生物工程杂志, 2024, 44(2/3): 1-13.

DENG Lixinxu, CHE Wenan, XU Haibo, DING Xue, SUN Yuandong. Effect of FGFR3 Gene Mutation on Tyrosine Kinase Inhibitor Sensitivity in Bladder Cancer. China Biotechnology, 2024, 44(2/3): 1-13.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.2306001        https://manu60.magtech.com.cn/biotech/CN/Y2024/V44/I2/3/1

试剂 编号 品牌
PageRulerTM Prestained Protein Ladder 26617 Thermo Fisher
Ham’s F-12K(Kaighn’s) 21127030 Gibco
RPMI1640 11875119 Gibco
DMEM 11320082 Gibco
Immobilon-P SQ roll PVDF ISEQ00010 Millipore
0.25% TE 25200072 Gibco
FBS DGF8283 SCIENCELL
PBS B540626-0500 Sangon Biotech
Anti-Anti 15240062 Gibco
Puro P8230 Solarbio
DMSO DMSO ACMEC
Carbinol M116115-10L Aladdin
RAPI R0010 Solarbio
PMSF P0100 Solarbio
All-in-One (100×) P1260 Solarbio
HiTransG A GCD0265400 吉凯基因
CCK8 FC101-04 TransGen Biotech
TRIzol 15596018 Thermo Fisher
Hifair V Reverse Transcriptase 11300ES93 YEASEN
SYBR 11184ES60 YEASEN
PAGE Gel Quick Preparation Kit(7.5%) PG111 Epizyme
PAGE Gel Quick Preparation Kit(12.5%) PG113 Epizyme
SDS-PAGE loading buffer(5×) P0015 Beyotime
Tris-Glycine-SDS running buffer(10×) PS105S Epizyme
TBS/Tween(10×) PS103S Epizyme
Transfer Buffer(10×) PS109S Epizyme
BSA BSA ACMEC
PageRuler Prestained Protein Ladder 26617 Thermo Fisher
FGFR3 rabbit mAb A19052 ABclonal
Erk1/2 rabbit mAb 4695S CST
p-Erk1/2 rabbit mAb 4370S CST
Akt rabbit mAb 4685S CST
p-Akt rabbit mAb 4060S CST
GAPDH nouse mAb AC002 ABclonal
Anti-rabbit IgG-HRP 7074S CST
Anti-mouse IgG-HRP 7076S CST
Omni-ECL SQ202 雅酶
表1  主要试剂及来源
药物 靶点 说明 品牌
Ponatinib BCR-ABL、FLT3、KIT、RET、FGFR1-4、TIE2、
PDGFRA、VEGFR2
FDA已批准临床药物,批准年份:2012年 Selleck
Nintedanib FGFR1-3、VEGFR1-3、PDGFR、SRC family FDA已批准临床药物,批准年份:2014年 Selleck
Erdafitinib Pan-FGFR FDA已批准临床药物,批准年份:2019年 Selleck
Pemigatinib(INCB054828) FGFR1-3 FDA已批准临床药物,批准年份:2020年 Selleck
Infigratinib(BGJ398) FGFR1-3 在研FGFR抑制剂,Ⅲ期 Selleck
TAS-120(Futibatinib) FGFR1-4 在研FGFR抑制剂,Ⅱ期 Selleck
CH-5183284(Debio1347) FGFR1-4 在研FGFR抑制剂,Ⅱ期 Selleck
LY2874455 FGFR1-4、VEGFR2 在研FGFR抑制剂,Ⅰ期 Selleck
表2  主要FGFR3 酪氨酸激酶抑制剂
试剂 终浓度
Advanced DMEM/F-12 培养基
Antibiotic-Antimycotic(100×)
GlutaMAXTM Supplement(100×)
HEPES 10 mmol/L
B-27TM Supplement(50×)
N-Acetylcysteine 1.25 mmol/L
Nicotinamide 10 mmol/L
SB202190 10 mmol/L
A83-01 500 nmol/L
Recombinant Human R-Spondin 1 Protein 500 ng/mL
Human Noggin 100 ng/mL
Y-27632 10 mmol/L
Recombinant Human FGF-2 20 ng/mL
Recombinant Human FGF-10 20 ng/mL
表3  膀胱癌类器官培养基成分
图1  FGFR3总体突变与膀胱癌患者生存相关性
图2  sv-huc-1 FGFR3过表达细胞系中FGFR3 mRNA 表达水平
图3  sv-huc-1 FGFR3过表达细胞系FGFR3及下游蛋白质ERK和AKT的表达水平 A:sv-huc-1 FGFR3 OE细胞系蛋白质印迹法结果 B:sv-huc-1 FGFR3 OE细胞系FGFR3蛋白表达量化 C:sv-huc-1 FGFR3 OE细胞系下游蛋白质pAKT/AKT量化 D: sv-huc-1 FGFR3 OE细胞系下游蛋白质pERK/ERK量化
图4  FGFR3-TKIs 作用于sv-huc-1 FGFR3 OE稳定转染细胞系药敏曲线
药物 载体 WT S249C R248C Y373C FGFR3-TACC3
CH5183284 18.98 15.55 13.46 11.29 11.49 13.65
Erdafitinib 22.94 24.01 24.94 13.74 17.48 13.38
LY2874455 1.641 1.131 0.898 8 0.179 7 0.977 4 0.564 2
Nintedanib 17.28 13.9 12.52 10.03 13.24 9.581
TAS-120 10.41 13.68 9.434 10.18 24.86 2.762
表4  各FGFR3 TKIs' IC50值
图5  FGFR3-TKIs 作用于sv-huc-1 FGFR3 OE稳定转染细胞系的下游信号通路蛋白质印迹 A: CH5183284 B: Erdafitinib C: LY2874455 D; Nintedanib E: TAS-120
图6  HE染色显示肿瘤组织与肿瘤来源类器官组织学特征一致 A: 亲本肿瘤组织 B: 类器官。比例尺,50 μm
图7  亲代肿瘤和患者源性类器官中标志物表达的免疫荧光分析 比例尺,100 μm
图8  肿瘤组织和类器官携带的体细胞突变
图9  BCO1 FGFR3 OE类器官FGFR3 mRNA 表达水平
图10  BCO1 FGFR3 OE细胞系FGFR3蛋白的表达水平
图11  BCO1 FGFR3 OE类器官FGFR3蛋白表达量化
图12  FGFR3-TKIs 作用于BCO1 FGFR3 OE的药敏曲线
药物 IC50
载体 WT S249C R248C Y373C FGFR3-TACC3
TAS-120 13.73 9.401 11.17 5.567 11.87 13.36
Infigratinib 5.055 3.815 4.362 3.668 7.971 4.074
LY2874455 2.987 2.373 2.06 0.9247 1.186 2.342
Erdafitinib 16.05 12.87 16.93 7.39 13.51 17.02
CH5183284 17.64 31.14 16.78 20.43 22.76 18.11
Pemigatinib - 23.27 23.94 5.028 - 33.57
表5  各FGFR3 TKIs' IC50值
[1] Sung H, Ferlay J, Siegel R L, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: a Cancer Journal for Clinicians, 2021, 71(3): 209-249.
doi: 10.3322/caac.v71.3
[2] Sanli O, Dobruch J, Knowles M A, et al. Bladder cancer. Nature Reviews Disease Primers, 2017, 3: 17022.
doi: 10.1038/nrdp.2017.22 pmid: 28406148
[3] De Santis M, Bellmunt J, Mead G, et al. Randomized phase II/III trial assessing gemcitabine/carboplatin and methotrexate/carboplatin/vinblastine in patients with advanced urothelial cancer who are unfit for cisplatin-based chemotherapy: EORTC study 30986. J Clin Oncol, 2012, 30: 191.
doi: 10.1200/JCO.2011.37.3571 pmid: 22162575
[4] Scholtes M P, Alberts A R, Iflé I G, et al. Biomarker-oriented therapy in bladder and renal cancer. International Journal of Molecular Sciences, 2021, 22(6): 2832.
[5] Wu Y M, Su F Y, Kalyana-Sundaram S, et al. Identification of targetable FGFR gene fusions in diverse cancers. Cancer Discovery, 2013, 3(6): 636-647.
doi: 10.1158/2159-8290.CD-13-0050
[6] Nakanishi Y, Akiyama N, Tsukaguchi T, et al. Mechanism of oncogenic signal activation by the novel fusion kinase FGFR3-BAIAP2L1. Molecular Cancer Therapeutics, 2015, 14(3): 704-712.
doi: 10.1158/1535-7163.MCT-14-0927-T pmid: 25589496
[7] Shi M J, Meng X Y, Lamy P, et al. APOBEC-mediated mutagenesis as a likely cause of FGFR3 S249C mutation over-representation in bladder cancer. European Urology, 2019, 76(1): 9-13.
doi: 10.1016/j.eururo.2019.03.032
[8] Tomlinson D C, Baldo O, Harnden P, et al. FGFR3 protein expression and its relationship to mutation status and prognostic variables in bladder cancer. The Journal of Pathology, 2007, 213(1): 91-98.
doi: 10.1002/path.v213:1
[9] Williams S V, Hurst C D, Knowles M A. Oncogenic FGFR3 gene fusions in bladder cancer. Human Molecular Genetics, 2013, 22(4): 795-803.
doi: 10.1093/hmg/dds486 pmid: 23175443
[10] Drost J, Clevers H. Translational applications of adult stem cell-derived organoids. Development, 2017, 144(6): 968-975.
doi: 10.1242/dev.140566 pmid: 28292843
[11] Pauli C, Hopkins B D, Prandi D, et al. Personalized in vitro and in vivo cancer models to guide precision medicine. Cancer Discovery, 2017, 7(5): 462-477.
doi: 10.1158/2159-8290.CD-16-1154
[12] Fatehullah A, Tan S H, Barker N. Organoids as an in vitro model of human development and disease. Nature Cell Biology, 2016, 18(3):246-254.
doi: 10.1038/ncb3312 pmid: 26911908
[13] Medle B, Sjdahl G, Eriksson P, et al. Patient-derived bladder cancer organoid models in tumor biology and drug testing: A systematic review. Cancers, 2022, 14(9):10.3390.
doi: 10.3390/cancers14010010
[14] Yu L, Li Z C, Mei H B, et al. Patient-derived organoids of bladder cancer recapitulate antigen expression profiles and serve as a personal evaluation model for CAR-T cells in vitro. Clinical & Translational Immunology, 2021, 10(2): e1248.
[15] Li Z C, Qian Y H, Li W J, et al. Human lung adenocarcinoma-derived organoid models for drug screening. iScience, 2020, 23(8): 101411.
[16] Chandrani P, Prabhash K, Prasad R, et al. Drug-sensitive FGFR3 mutations in lung adenocarcinoma. Annals of Oncology, 2017, 28(3): 597-603.
doi: 10.1093/annonc/mdw636 pmid: 27998968
[17] Lee S H, Hu W H, Matulay J T, et al. Tumor evolution and drug response in patient-derived organoid models of bladder cancer. Cell, 2018, 173(2): 515-528.e17.
doi: S0092-8674(18)30297-6 pmid: 29625057
[18] Harada K, Sakamoto N, Ukai S, et al. Establishment of oxaliplatin-resistant gastric cancer organoids: importance of myoferlin in the acquisition of oxaliplatin resistance. Gastric Cancer, 2021, 24(6): 1264-1277.
doi: 10.1007/s10120-021-01206-4 pmid: 34272617
[19] Ukai S, Honma R, Sakamoto N, et al. Molecular biological analysis of 5-FU-resistant gastric cancer organoids; KHDRBS 3 contributes to the attainment of features of cancer stem cell. Oncogene, 2020, 39: 7265-7278.
doi: 10.1038/s41388-020-01492-9
[20] Chell V, Balmanno K, Little A S, et al. Tumour cell responses to new fibroblast growth factor receptor tyrosine kinase inhibitors and identification of a gatekeeper mutation in FGFR3 as a mechanism of acquired resistance. Oncogene, 2013, 32(25): 3059-3070.
doi: 10.1038/onc.2012.319 pmid: 22869148
[1] 许丽, 杨若南, 王玥, 施慧琳, 李祯祺, 靳晨琦, 李伟, 徐萍. 生命健康科技领域发展态势*[J]. 中国生物工程杂志, 2024, 44(1): 32-40.
[2] 石瑾, 刘柯, 丁军颖. 肺类器官模型在感染性肺系病研究中的应用及展望*[J]. 中国生物工程杂志, 2023, 43(8): 30-37.
[3] 唐子慧, 钟畅, 段艳丽, 马瑞堉, 周平. 骨类器官的构建及应用进展*[J]. 中国生物工程杂志, 2023, 43(8): 11-19.
[4] 朱翔, 张静引, 王丽蕊. 人源肝脏类器官的研究及应用进展[J]. 中国生物工程杂志, 2023, 43(8): 20-29.
[5] 王玥, 施慧琳, 靳晨琦, 徐萍. 类器官领域发展现状及展望*[J]. 中国生物工程杂志, 2023, 43(8): 1-10.
[6] 杨换连,邱飞,王国权,刁勇. 肿瘤类器官在药物筛选和个性化用药中的研究进展*[J]. 中国生物工程杂志, 2022, 42(6): 47-53.
[7] 冯晓莹,孟倩,陈巍,余磊,黄卫人. 类器官芯片在医学研究中的应用进展*[J]. 中国生物工程杂志, 2022, 42(1/2): 112-118.
[8] 黄胜, 严启滔, 熊仕琳, 彭弈骐, 赵蕊. 基于CRISPR/Cas9-SAM系统CHD5基因过表达慢病毒载体的构建及对膀胱癌T24细胞增殖,迁移和侵袭能力的影响 *[J]. 中国生物工程杂志, 2020, 40(3): 1-8.
[9] 何询,张鹏,张俊祥. 类器官的构建与应用进展[J]. 中国生物工程杂志, 2020, 40(12): 82-87.
[10] 郝燕妮,李婷,范佳鑫,李罗,牛凌芳,欧俐苹,吴小候,罗春丽. shPLCε通过下调CDC25A抑制T24细胞的瓦伯格效应 *[J]. 中国生物工程杂志, 2018, 38(5): 33-39.
[11] 苟理尧,刘梦瑶,夏菁,万群,孙恃雷,唐敏,张彦. 骨形成蛋白9对人膀胱癌BIU-87细胞增殖和迁移的影响[J]. 中国生物工程杂志, 2018, 38(5): 10-16.
[12] 赵燕, 郝燕妮, 刘南京, 李婷, 吴小候, 罗春丽. miR-145通过下调PLCε抑制膀胱癌EMT和迁移及其机制研究[J]. 中国生物工程杂志, 2017, 37(3): 27-36.