Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2023, Vol. 43 Issue (9): 33-45    DOI: 10.13523/j.cb.2305048
综述     
重组蛋白质在大肠杆菌体系中的可溶性表达策略*
苗朝悦,杜乐,王佳琦,陈梓杰,黄靖倍,陈且昕,邹沛璇,韩笑,张纯**()
四川大学华西药学院 靶向药物及释药系统教育部重点实验室 成都 610041
Soluble Expression Strategies for Production of Recombinant Proteins in Escherichia coli
MIAO Zhao-yue,DU Le,WANG Jia-qi,CHEN Zi-jie,HUANG Jing-bei,CHEN Qie-xin,ZOU Pei-xuan,HAN Xiao,ZHANG Chun**()
Key Laboratory of Drug Targeting and Drug Delivery System of Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
 全文: PDF(841 KB)   HTML
摘要:

大肠杆菌表达体系因其表达量高、周期短、成本低等诸多优势特征而被广泛用作重组异源蛋白质的表达宿主。据统计超过30%的重组蛋白质药物和50%重组蛋白质的制备是使用大肠杆菌作为表达宿主。蛋白质错误折叠或未折叠以及包涵体形成是大肠杆菌表达体系更广泛应用的主要阻碍。因此,重组蛋白质在大肠杆菌体系中可溶性表达策略探索意义重大。综述了重组蛋白质在大肠杆菌表达系统中不可溶性表达的原因、机制以及影响大肠杆菌表达系统重组蛋白质可溶性的一些关键因素,并基于外源蛋白质在大肠杆菌中表达的各个步骤,总结了目前促进蛋白质在大肠杆菌表达系统中高效、可溶性表达的策略,为进一步拓展大肠杆菌表达体系在重组异源蛋白质可溶性表达中的应用提供参考。

关键词: 大肠杆菌表达体系重组异源蛋白质可溶性表达包涵体糖基化    
Abstract:

Escherichia coli expression system is widely used as the expression host of recombinant heterologous proteins because of its high expression level, short cycle, low cost and many other advantages. According to statistics, more than 30% of the recombinant protein drugs and 50% of the recombinant proteins were obtained by using E. coli as the expression host. The misfolding or unfolding of proteins and the formation of inclusion bodies are the main obstacles to the wider application of E. coli expression systems. Therefore, it is of great significance to explore the strategy of soluble expression of recombinant proteins in E. coli system. In this paper, the reasons and mechanisms of insoluble expression of recombinant proteins in E. coli expression system and some key factors affecting the solubility of recombinant proteins in E. coli expression system were reviewed. Based on the various steps of expression of foreign proteins in E. coli, the current strategies to promote efficient and soluble expression of proteins in E. coli expression system were summarized, with the aim to provide a reference for further expanding the application of E. coli expression system in the soluble expression of recombinant heterologous proteins.

Key words: Escherichia coli expression system    Recombinant heterologous protein    Soluble expression    Inclusion bodies    Glycosylation
收稿日期: 2023-05-31 出版日期: 2023-10-08
ZTFLH:  Q814  
基金资助: * 国家自然科学基金(82003685);四川省科学技术厅项目(2021YJ0187)
通讯作者: ** 电子信箱:chunzhang@scu.edu.cn   
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
苗朝悦
杜乐
王佳琦
陈梓杰
黄靖倍
陈且昕
邹沛璇
韩笑
张纯

引用本文:

苗朝悦, 杜乐, 王佳琦, 陈梓杰, 黄靖倍, 陈且昕, 邹沛璇, 韩笑, 张纯. 重组蛋白质在大肠杆菌体系中的可溶性表达策略*[J]. 中国生物工程杂志, 2023, 43(9): 33-45.

MIAO Zhao-yue, DU Le, WANG Jia-qi, CHEN Zi-jie, HUANG Jing-bei, CHEN Qie-xin, ZOU Pei-xuan, HAN Xiao, ZHANG Chun. Soluble Expression Strategies for Production of Recombinant Proteins in Escherichia coli. China Biotechnology, 2023, 43(9): 33-45.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.2305048        https://manu60.magtech.com.cn/biotech/CN/Y2023/V43/I9/33

图1  蛋白质折叠过程示意图
图2  影响重组蛋白质包涵体形成的因素
大肠杆菌
宿主类型
功能应用 特征 抗性特征
BL21 常规表达 非毒性蛋白的高水平表达,不能用于由T7启动子驱动的蛋白质表达
BL21(DE3) 含T7 RNA聚合酶,可用于T7、lac、tac、trc及trp启动子控制的目的基因表达
BL21Star(DE3) RNase E基因突变失活,防止转录后mRNA的快速降解
BL21(DE3) plysS 毒性蛋白表达,稀有密码子基因表达 含有表达T7溶菌酶的基因,可降低目的基因的背景表达水平,但不干扰目的蛋白表达 氯霉素
Rossatta (DE3) 含6种稀有密码子质粒(AUA、AGG、AGA、CUA、CCC、GGA),适合含稀有密码子基因表达 四环素、卡那霉素
BL21 Origami B (DE3) 含二硫键蛋白表达 有助于含二硫键蛋白的活性蛋白质形成 四环素、卡那霉素
Origami 2 (DE3) trxBgor基因上同时含有突变,利于含二硫键蛋白的折叠与氧化 四环素、链霉素、卡那霉素
BL21 trxB (DE3) 拥有硫氧还蛋白还原酶突变体,利于二硫键在细胞质中形成,适合含二硫键蛋白的正确折叠和表达 卡那霉素
Rosetta-gami (DE3) pLysS 二硫键氧化,稀有密码子表达 TrxBGor基因突变,利于含二硫键蛋白质正确折叠,同时含有稀有密码子tRNA 氯霉素、卡那霉素、链霉素、四环素
Rosetta-gami 2(DE3) 携带有TrxBGor基因突变,利于含二硫键蛋白质正确折叠,同时含有稀有密码子tRNA 四环素
表1  大肠杆菌表达体系常用宿主亚型类型
融合标签 大小/aa 功能 特征
MBP (Maltose-binding protein) 396 防止聚集沉淀 极强促溶
NusA (N-utilization substance) 495 辅助折叠 促溶
Trx (Thioredoxin) 109 辅助二硫键氧化 改善胞内还原性
SUMO (Small ubiquitin modifier) 约100 促溶、辅助折叠 特异性蛋白酶识别(Ulp-1)
GST (Glutathione-S-transferase) 211 促溶表达 形成二聚体
表2  重组蛋白质表达常用融合标签类型
分子伴侣家族 大肠杆菌体系
对应家族
功能 应用
HSP60 GroEL
GroES
高度协调和对称变构辅助蛋白质折叠 GroEL S. aureus type I dihydrofolate reductase (DHFR)[68]
GroES
GroEL-GroES(ELS) MalZ and aconitase; 5-Aminolevulinic
acid[69-70]
HSP70 DnaK
DnaJ/GrpE
减少错误折叠蛋白质的聚集并促进蛋白质水解;稳定未折叠蛋白质 DnaK Human procollagenase[71]
DnaJ
DnaK-DnaJ anti-TNF-α Fab antibody[72]
DnaK-DnaJ-GrpE(KJE) GM-CSF anti-CD20[73-74]
HSP90 HptG 减少错误折叠或未折叠蛋白质的聚集 HptG
HSP100 ClpA
ClpB
拆分含有错误折叠蛋白质的聚集体 ClpA
ClpB PhK、Xklp3A4 ect.[67]
sHSP IbpA
IbpB
保护热变性蛋白质不发生不可逆聚集;结合并稳定变性蛋白质 IbpAB MDH[75]
Trigger factor Trigger factor 核糖体相关伴侣 TF (alone and/or together with ELS and/or KJE)[76]
FMDV protein VP1
Spike protein of PEDV[77]
表3  大肠杆菌表达体系常用分子伴侣
[1] Villaverde A, Carrió M M. Protein aggregation in recombinant bacteria: biological role of inclusion bodies. Biotechnology Letters, 2003, 25(17): 1385-1395.
doi: 10.1023/a:1025024104862 pmid: 14514038
[2] Hannig G, Makrides S C. Strategies for optimizing heterologous protein expression in Escherichia coli. Trends in Biotechnology, 1998, 16(2): 54-60.
doi: 10.1016/s0167-7799(97)01155-4 pmid: 9487731
[3] Bhatwa A, Wang W J, Hassan Y I, et al. Challenges associated with the formation of recombinant protein inclusion bodies in Escherichia coli and strategies to address them for industrial applications. Frontiers in Bioengineering and Biotechnology, 2021, 9: 630551.
doi: 10.3389/fbioe.2021.630551
[4] Oberg K, Chrunyk B A, Wetzel R, et al. Native-like secondary structure in interleukin-1 beta inclusion bodies by attenuated total reflectance FTIR. Biochemistry, 1994, 33(9): 2628-2634.
pmid: 8117725
[5] Netzer W J, Hartl F U. Recombination of protein domains facilitated by co-translational folding in eukaryotes. Nature, 1997, 388(6640): 343-349.
doi: 10.1038/41024
[6] Canaves J M, Page R, Wilson I A, et al. Protein biophysical properties that correlate with crystallization success in Thermotoga maritima: maximum clustering strategy for structural genomics. Journal of Molecular Biology, 2004, 344(4): 977-991.
pmid: 15544807
[7] Goh C S, Lan N, Douglas S M, et al. Mining the structural genomics pipeline: identification of protein properties that affect high-throughput experimental analysis. Journal of Molecular Biology, 2004, 336(1): 115-130.
doi: 10.1016/j.jmb.2003.11.053
[8] Consortium S G, Consortium C S G, Consortium N S G, et al. Protein production and purification. Nature Methods, 2008, 5(2): 135-146.
doi: 10.1038/nmeth.f.202 pmid: 18235434
[9] Schlieker C, Bukau B, Mogk A. Prevention and reversion of protein aggregation by molecular chaperones in the E. coli cytosol: implications for their applicability in biotechnology. Journal of Biotechnology, 2002, 96(1): 13-21.
doi: 10.1016/S0168-1656(02)00033-0
[10] Zhang G, Ignatova Z. Folding at the birth of the nascent chain: coordinating translation with co-translational folding. Current Opinion in Structural Biology, 2011, 21(1): 25-31.
doi: 10.1016/j.sbi.2010.10.008 pmid: 21111607
[11] Lu J L, Deutsch C. Folding zones inside the ribosomal exit tunnel. Nature Structural & Molecular Biology, 2005, 12(12): 1123-1129.
doi: 10.1038/nsmb1021
[12] Wittrup K D. Disulfide bond formation and eukaryotic secretory productivity. Current Opinion in Biotechnology, 1995, 6(2): 203-208.
pmid: 7734749
[13] Sharp P M, Cowe E, Higgins D G, et al. Codon usage patterns in Escherichia coli, Bacillus subtilis, Saccharomyces cerevisiae, Schizosaccharomyces pombe, Drosophila melanogaster and Homo sapiens; a review of the considerable within-species diversity. Nucleic Acids Research, 1988, 16(17): 8207-8211.
pmid: 3138659
[14] Chen H Q, Xu Z N, Xu N Z, et al. High-level expression of human β-defensin-2 gene with rare codons in E. coli cell-free system. Protein & Peptide Letters, 2006, 13(2): 155-161.
[15] Cruz-Vera L R, Magos-Castro M A, Zamora-Romo E, et al. Ribosome stalling and peptidyl-tRNA drop-off during translational delay at AGA codons. Nucleic Acids Research, 2004, 32(15): 4462-4468.
pmid: 15317870
[16] Ikemura T. Correlation between the abundance of Escherichia coli transfer RNAs and the occurrence of the respective codons in its protein genes. Journal of Molecular Biology, 1981, 146(1): 1-21.
pmid: 6167728
[17] Ikemura T. Correlation between the abundance of Escherichia coli transfer RNAs and the occurrence of the respective codons in its protein genes: a proposal for a synonymous codon choice that is optimal for the E. coli translational system. Journal of Molecular Biology, 1981, 151(3): 389-409.
doi: 10.1016/0022-2836(81)90003-6 pmid: 6175758
[18] Angov E, Hillier C J, Kincaid R L, et al. Heterologous protein expression is enhanced by harmonizing the codon usage frequencies of the target gene with those of the expression host. PLoS One, 2008, 3(5): e2189.
[19] Rehbein P, Berz J, Kreisel P, et al. “CodonWizard”-An intuitive software tool with graphical user interface for customizable codon optimization in protein expression efforts. Protein Expression and Purification, 2019, 160: 84-93.
doi: S1046-5928(19)30121-4 pmid: 30953700
[20] Puigbò P, Guzmán E, Romeu A, et al. OPTIMIZER: a web server for optimizing the codon usage of DNA sequences. Nucleic Acids Research, 2007, 35(suppl_2): W126-W131.
doi: 10.1093/nar/gkm219
[21] Rong Y X, Jensen S I, Lindorff-Larsen K, et al. Folding of heterologous proteins in bacterial cell factories: cellular mechanisms and engineering strategies. Biotechnology Advances, 2023, 63: 108079.
doi: 10.1016/j.biotechadv.2022.108079
[22] Gayathri R, Sheetal B, Chaudhuri Tapan K. Multimodal approaches for the improvement of the cellular folding of a recombinant iron regulatory protein in E. coli. Microbial Cell Factories, 2022, 21(1): 20.
doi: 10.1186/s12934-022-01749-w
[23] Kiefhaber T, Rudolph R, Kohler H H, et al. Protein aggregation in vitro and in vivo: a quantitative model of the kinetic competition between folding and aggregation. Bio/Technology, 1991, 9(9): 825-829.
[24] Restrepo-Pineda S, Sánchez-Puig N, Pérez N O, et al. The pre-induction temperature affects recombinant HuGM-CSF aggregation in thermoinducible Escherichia coli. Applied Microbiology and Biotechnology, 2022, 106(8): 2883-2902.
doi: 10.1007/s00253-022-11908-z
[25] Chou C P. Engineering cell physiology to enhance recombinant protein production in Escherichia coli. Applied Microbiology and Biotechnology, 2007, 76(3): 521-532.
doi: 10.1007/s00253-007-1039-0
[26] Sahdev S, Khattar S K, Saini K S. Production of active eukaryotic proteins through bacterial expression systems: a review of the existing biotechnology strategies. Molecular and Cellular Biochemistry, 2008, 307(1): 249-264.
doi: 10.1007/s11010-007-9603-6
[27] 田顺立, 郑春阳. 重组角质细胞生长因子(KGF)的原核表达及优化. 安徽农业科学, 2018, 46(33): 71-74.
Tian S L, Zheng C Y. Expression and optimization of recombinant keratinocyte growth factor(KGF) in E. coli. Journal of Anhui Agricultural Sciences, 2018, 46(33): 71-74.
[28] Jonasson P, Liljeqvist S, Nygren P Å, et al. Genetic design for facilitated production and recovery of recombinant proteins in Escherichia coli. Biotechnology and Applied Biochemistry, 2002, 35(2): 91.
pmid: 11916451
[29] Falak S, Sajed M, Rashid N. Strategies to enhance soluble production of heterologous proteins in Escherichia coli. Biologia, 2022, 77(3): 893-905.
doi: 10.1007/s11756-021-00994-5
[30] Studier F W, Rosenberg A H, Dunn J J, et al. Use of T7 RNA polymerase to direct expression of cloned genes. Methods in Enzymology, 1990, 185: 60-89.
pmid: 2199796
[31] Moffatt B A, Studier F W. T7 lysozyme inhibits transcription by T7 RNA polymerase. Cell, 1987, 49(2): 221-227.
pmid: 3568126
[32] Song X T, Zheng Y X, Liu Y D, et al. Conversion of recombinant human ferritin light chain inclusion bodies into uniform nanoparticles in Escherichia coli for facile production. Engineering in Life Sciences, 2022, 22(6): 453-463.
doi: 10.1002/elsc.v22.6
[33] Marbach A, Bettenbrock K. lac operon induction in Escherichia coli: systematic comparison of IPTG and TMG induction and influence of the transacetylase LacA. Journal of Biotechnology, 2012, 157(1): 82-88.
doi: 10.1016/j.jbiotec.2011.10.009 pmid: 22079752
[34] 彭树英, 吕宁, 贾淑玲, 等. 应用自动诱导表达体系提高原核表达效率. 农业生物技术学报, 2009, 17(1):138-143.
Peng S Y, Lv N, Jia S L, et al. Higher prokaryotic expression efficiency achieved by auto-induction expression system. Journal of Agricultural Biotechnology, 2009, 17(1):138-143.
[35] Giladi H, Goldenberg D, Koby S, et al. Enhanced activity of the bacteriophage lambda PL promoter at low temperature. Proceedings of the National Academy of Sciences of the United States of America, 1995, 92(6): 2184-2188.
[36] Le Y L, Peng J J, Wu H W, et al. An approach to the production of soluble protein from a fungal gene encoding an aggregation-prone xylanase in Escherichia coli. PLoS One, 2011, 6(4): e18489.
doi: 10.1371/journal.pone.0018489
[37] Wunderlich M, Glockshuber R. Redox properties of protein disulfide isomerase (dsba) from Escherichia coli. Protein Science, 1993, 2(5): 717-726.
pmid: 8495194
[38] 张彭湃, 王松廷.乳糖诱导剂促进P450 BM-3在大肠杆菌中可溶性表达的研究. 工业微生物, 2016, 46(4): 14-18.
Zhang P P, Wang S T. Enhanced soluble expression of cytochrome P450 BM-3 in E. coli by using lactose as inducer. Industrial Microbiology, 2016, 46(4):14-18.
[39] Narciandi R, Rivera J, Rodríguez D. Effect of induction strategy on the expression of different recombinant protein synthesized in Escherichia coli under the control of tryptophan promoter. Afinidad, 2016, 73(576).[2023-08-29]. https://scholar.cnki.net/zn/Detail/index/GARJ2016/SFJG7FC934BD4C25FADB0F7C46497A5B486E.
[40] Grunberg-Manago M. Messenger RNA stability and its role in control of gene expression in bacteria and phages. Annual Review of Genetics, 1999, 33: 193-227.
pmid: 10690408
[41] Prinz W A, Åslund F, Holmgren A, et al. The role of the thioredoxin and glutaredoxin pathways in reducing protein disulfide bonds in the Escherichia coli cytoplasm. Journal of Biological Chemistry, 1997, 272(25): 15661-15667.
doi: 10.1074/jbc.272.25.15661 pmid: 9188456
[42] Tsai W C, Wu T C, Chiang B L, et al. Cloning, expression, and purification of recombinant major mango allergen Man i 1 in Escherichia coli. Protein Expression and Purification, 2017, 130: 35-43.
doi: 10.1016/j.pep.2016.06.009
[43] Boock J T, Waraho-Zhmayev D, Mizrachi D, et al. Beyond the cytoplasm of Escherichia coli:localizing recombinant proteins where you want them. insoluble proteins. New York: Humana Press, 2015: 79-97.
[44] Nik-Pa N I M, Abd-Aziz S, Ibrahim M F, et al. Improved extracellular secretion of β-cyclodextrin glycosyltransferase from Escherichia coli by glycine supplementation without apparent cell lysis. Asia Pacific Journal of Molecular Biology and Biotechnology, 2019, 27(2): 93-102.
[45] Mohamad Fuzi S F Z, Nor Ashikin N A L, Kheng Oon L. Screening the effect of the expression medium and growth conditions on the performance of engineered xylanase produced by immobilized recombinant E. coli. Jurnal Teknologi, 2023, 85(3): 183-193.
[46] Young C L, Britton Z T, Robinson A S. Recombinant protein expression and purification: a comprehensive review of affinity tags and microbial applications. Biotechnology Journal, 2012, 7(5): 620-634.
doi: 10.1002/biot.201100155 pmid: 22442034
[47] Kataeva I, Chang J, Xu H, et al. Improving solubility of Shewanella oneidensis MR-1 and Clostridium thermocellum JW-20 proteins expressed into Esherichia coli. Journal of Proteome Research, 2005, 4(6): 1942-1951.
pmid: 16335938
[48] Dyson M R, Shadbolt S P, Vincent K J, et al. Production of soluble mammalian proteins in Escherichia coli: identification of protein features that correlate with successful expression. BMC Biotechnology, 2004, 4: 32.
doi: 10.1186/1472-6750-4-32
[49] Tolun A A, Dickerson I M, Malhotra A. Overexpression and purification of human calcitonin gene-related peptide-receptor component protein in Escherichia coli. Protein Expression and Purification, 2007, 52(1): 167-174.
doi: 10.1016/j.pep.2006.09.008
[50] Frangioni J V, Neel B G. Solubilization and purification of enzymatically active glutathione S-transferase (pGEX) fusion proteins. Analytical Biochemistry, 1993, 210(1): 179-187.
pmid: 8489015
[51] Marblestone J G, Edavettal S C, Lim Y, et al. Comparison of SUMO fusion technology with traditional gene fusion systems:enhanced expression and solubility with SUMO. Protein Science: a Publication of the Protein Society, 2006, 15(1): 182-189.
[52] Bird L E. High throughput construction and small scale expression screening of multi-tag vectors in Escherichia coli. Methods, 2011, 55(1): 29-37.
doi: 10.1016/j.ymeth.2011.08.002
[53] Francis D M, Page R. Strategies to optimize protein expression in E. coli. Current Protocols in Protein Science, 2010, Chapter 5(1): 5.24.1-5.24.29.
[54] Butt T R, Edavettal S C, Hall J P, et al. SUMO fusion technology for difficult-to-express proteins. Protein Expression and Purification, 2005, 43(1): 1-9.
pmid: 16084395
[55] Lauber T, Marx U C, Schulz A, et al. Accurate disulfide formation in Escherichia coli: overexpression and characterization of the first domain (HF6478) of the multiple kazal-type inhibitor LEKTI. Protein Expression and Purification, 2001, 22(1): 108-112.
pmid: 11388807
[56] LaVallie E R, Lu Z J, Diblasio-Smith E A, et al. Thioredoxin as a fusion partner for production of soluble recombinant proteins in Escherichia coli. Methods in Enzymology, 2000, 326: 322-340.
pmid: 11036651
[57] Ki M R, Pack S P. Fusion tags to enhance heterologous protein expression. Applied Microbiology and Biotechnology, 2020, 104(6): 2411-2425.
doi: 10.1007/s00253-020-10402-8 pmid: 31993706
[58] Cserjan-Puschmann M, Lingg N, Engele P, et al. Production of circularly permuted caspase-2 for affinity fusion-tag removal: cloning, expression in Escherichia coli, purification, and characterization. Biomolecules, 2020, 10(12): 1592.
doi: 10.3390/biom10121592
[59] Malhotra A. Tagging for protein expression. Methods in Enzymology, 2009, 463: 239-258.
doi: 10.1016/S0076-6879(09)63016-0 pmid: 19892176
[60] Huang L Q, Agrawal T, Zhu G X, et al. DAXX represents a new type of protein-folding enabler. Nature, 2021, 597(7874): 132-137.
doi: 10.1038/s41586-021-03824-5
[61] Mital S, Christie G, Dikicioglu D. Recombinant expression of insoluble enzymes in Escherichia coli: a systematic review of experimental design and its manufacturing implications. Microbial Cell Factories, 2021, 20(1): 208.
doi: 10.1186/s12934-021-01698-w
[62] de Marco A. Protocol for preparing proteins with improved solubility by co-expressing with molecular chaperones in Escherichia coli. Nature Protocols, 2007, 2(10): 2632-2639.
pmid: 17948006
[63] Thomas J G, Ayling A, Baneyx F. Molecular chaperones, folding catalysts, and the recovery of active recombinant proteins from E. coli. Applied Biochemistry and Biotechnology, 1997, 66(3): 197-238.
doi: 10.1007/BF02785589 pmid: 9276922
[64] Nishihara K, Kanemori M, Yanagi H, et al. Overexpression of trigger factor prevents aggregation of recombinant proteins in Escherichia coli. Applied and Environmental Microbiology, 2000, 66(3): 884-889.
doi: 10.1128/AEM.66.3.884-889.2000 pmid: 10698746
[65] Mermans D, Nicolaus F, Baygin A, et al. Cotranslational folding of human growth hormone invitro and in Escherichia coli. FEBS Letters, 2023, 597(10): 1355-1362.
doi: 10.1002/feb2.v597.10
[66] Mogk A, Deuerling E, Vorderwülbecke S, et al. Small heat shock proteins, ClpB and the DnaK system form a functional triade in reversing protein aggregation. Molecular Microbiology, 2003, 50(2): 585-595.
doi: 10.1046/j.1365-2958.2003.03710.x pmid: 14617181
[67] de Marco A, Deuerling E, Mogk A, et al. Chaperone-based procedure to increase yields of soluble recombinant proteins produced in E. coli. BMC Biotechnology, 2007, 7: 32-32.
pmid: 17565681
[68] Viitanen P V, Gatenby A A, Lorimer G H. Purified chaperonin 60 (groEL) interacts with the nonnative states of a multitude of Escherichia coli proteins. Protein Science: a Publication of the Protein Society, 1992, 1(3): 363-369.
[69] Marchenkov V V, Semisotnov G V. GroEL-assisted protein folding: does it occur within the chaperonin inner cavity? International Journal of Molecular Sciences, 2009, 10(5): 2066-2083.
doi: 10.3390/ijms10052066 pmid: 19564940
[70] Yu T H, Yi Y C, Shih I T, et al. Enhanced 5-aminolevulinic acid production by Co-expression of codon-optimized hemA gene with chaperone in genetic engineered Escherichia coli. Applied Biochemistry and Biotechnology, 2020, 191(1): 299-312.
doi: 10.1007/s12010-019-03178-9
[71] Lee S C, Olins P O. Effect of overproduction of heat shock chaperones GroESL and DnaK on human procollagenase production in Escherichia coli. Journal of Biological Chemistry, 1992, 267(5): 2849-2852.
pmid: 1346610
[72] Farajnia S, Ghorbanzadeh V, Dariushnejad H. Effect of molecular chaperone on the soluble expression of recombinant fab fragment in E. coli. International Journal of Peptide Research and Therapeutics, 2020, 26(1): 251-258.
doi: 10.1007/s10989-019-09833-3
[73] Malekian R, Sima S, Jahanian-Najafabadi A, et al. Improvement of soluble expression of GM-CSF in the cytoplasm of Escherichia coli using chemical and molecular chaperones. Protein Expression and Purification, 2019, 160: 66-72.
doi: S1046-5928(19)30047-6 pmid: 30998976
[74] Yousefi M, Farajnia S, Mokhtarzadeh A, et al. Soluble expression of humanized anti-CD20 single chain antibody in Escherichia coli by cytoplasmic chaperones co-expression. Avicenna Journal of Medical Biotechnology, 2018, 10: 141-146.
[75] Lee G J, Vierling E. A small heat shock protein cooperates with heat shock protein 70 systems to reactivate a heat-denatured protein. Plant Physiology, 2000, 122(1): 189-198.
doi: 10.1104/pp.122.1.189 pmid: 10631262
[76] Liu C, Feng H, Liu Y C, et al. Soluble FMDV VP 1 proteins fused with calreticulin expressed in Escherichia coli under the assist of trigger factor16 (Tf16) formed into high immunogenic polymers. International Journal of Biological Macromolecules, 2020, 155: 1532-1540.
doi: 10.1016/j.ijbiomac.2019.11.130
[77] Piao D C, Shin D W, Kim I S, et al. Trigger factor assisted soluble expression of recombinant spike protein of porcine epidemic diarrhea virus in Escherichia coli. BMC Biotechnology, 2016, 16(1): 1-9.
doi: 10.1186/s12896-015-0230-0
[78] Beygmoradi A, Homaei A, Hemmati R, et al. Recombinant protein expression: challenges in production and folding related matters. International Journal of Biological Macromolecules, 2023, 233: 123407.
doi: 10.1016/j.ijbiomac.2023.123407
[79] Wacker M, Linton D, Hitchen P G, et al. N-linked glycosylation in Campylobacter jejuni and its functional transfer into E. coli. Science, 2002, 298(5599): 1790-1793.
doi: 10.1126/science.298.5599.1790
[80] Linton D, Dorrell N, Hitchen P G, et al. Functional analysis of the Campylobacter jejuni N-linked protein glycosylation pathway. Molecular Microbiology, 2005, 55(6): 1695-1703.
doi: 10.1111/j.1365-2958.2005.04519.x
[81] Sørensen H P, Kristensen J E, Sperling-Petersen H U, et al. Soluble expression of aggregating proteins by covalent coupling to the ribosome. Biochemical and Biophysical Research Communications, 2004, 319(3): 715-719.
pmid: 15184041
[82] Dragosits M, Nicklas D, Tagkopoulos I. A synthetic biology approach to self-regulatory recombinant protein production in Escherichia coli. Journal of Biological Engineering, 2012, 6: 2-2.
doi: 10.1186/1754-1611-6-2 pmid: 22463687
[1] 任自强,王梦灿,张海灵,朱希强,林剑. CHO细胞表达糖蛋白的研究进展*[J]. 中国生物工程杂志, 2022, 42(6): 54-65.
[2] 林艳梅,罗湘,李瑞杰,秦秀林,冯家勋. 纤维二糖水解酶N-糖基化对其在草酸青霉中的分泌和酶活影响*[J]. 中国生物工程杂志, 2021, 41(4): 18-29.
[3] 邓通,周海胜,吴坚平,杨立荣. 基于分子伴侣策略提高NADPH依赖型醇脱氢酶的异源可溶性表达 *[J]. 中国生物工程杂志, 2020, 40(8): 24-32.
[4] 陈心怡,刘护,戴大章,李春. 提高糖基化的酶蛋白可结晶性研究 *[J]. 中国生物工程杂志, 2020, 40(3): 154-162.
[5] 江一帆,贾宇,王龙,王志明. 细胞培养过程对单克隆抗体糖基化修饰的影响和调控[J]. 中国生物工程杂志, 2019, 39(8): 95-103.
[6] 许敏华,张晶晶,金小宝,李小波,王艳,马艳. 美洲大蠊内生菌几丁质酶基因的克隆、表达及其活性研究 *[J]. 中国生物工程杂志, 2019, 39(1): 31-37.
[7] 李庆猛,李盛陶,王宁,高晓冬. 酵母来源α-1,2甘露糖转移酶Alg11的异源表达、纯化和活性分析 *[J]. 中国生物工程杂志, 2018, 38(6): 26-33.
[8] 刘啸尘,刘护,张良,李春. 细胞代谢过程中的酶促糖基化及其功能[J]. 中国生物工程杂志, 2018, 38(1): 69-77.
[9] 徐云巧, 李婷婷, 吴彩娥, 范龚健, 李佟. 糖蛋白的去糖基化方法研究进展[J]. 中国生物工程杂志, 2017, 37(5): 97-106.
[10] 冀君, 朱晨晨, 许鑫, 刘晓, 冷超粮, 史鸿飞, 姚伦广, 阚云超. 鸡贫血病毒凋亡素基因的可溶性融合表达及抗肿瘤活性分析[J]. 中国生物工程杂志, 2017, 37(2): 26-32.
[11] 黄嘉慧, 汪才坤, 覃锦红, 陈龙冠, 黄云娜, 谢秋玲. N-糖基化对TNFR-Fc融合蛋白结构稳定性和生物活性的影响[J]. 中国生物工程杂志, 2016, 36(5): 12-19.
[12] 张宇萌, 童梅, 陆小冬, 米月, 徐晨, 姚文兵. 提高大肠杆菌可溶性重组蛋白表达产率的研究进展[J]. 中国生物工程杂志, 2016, 36(5): 118-124.
[13] 刘盼娆, 周雪晨, 朱雪蛟, 白娟, 王先炜, 姜平. 猪圆环病毒2型Cap蛋白在大肠杆菌中的可溶性表达及在小鼠体内免疫特性研究[J]. 中国生物工程杂志, 2016, 36(4): 50-56.
[14] 刘亚龙, 闫东明, 翁樑, 邹雪, 刘丹, 彭超, 苏亚南, 闫锦锦, 张静, 郭志燕. 重组大肠杆菌不耐热肠毒素B亚单位的中试发酵及纯化工艺[J]. 中国生物工程杂志, 2015, 35(2): 78-83.
[15] 路青山, 乔媛媛, 李金凤, 王运良, 王姗姗, 史成和, 杨霄鹏, 张达矜. 人HPPCn重组蛋白可溶性表达及其增殖活性检测[J]. 中国生物工程杂志, 2015, 35(12): 15-20.