Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2023, Vol. 43 Issue (10): 20-31    DOI: 10.13523/j.cb.2305046
技术与方法     
CHO细胞强化流加培养过程理性设计与建立
苏影1,张炜坚1,万宇翔2,沈天放2,张欣然1,张如悦1,谭文松1,3,赵亮1,3,*()
1 华东理工大学生物反应器工程国家重点实验室 上海 200237
2 海正药业杭州有限公司 杭州 311404
3 上海倍谙基生物科技有限公司 上海 201203
Rational Design and Establishment of CHO Cell Intensified Fed-batch Culture Process
SU Ying1,ZHANG Wei-jian1,WAN Yu-xiang2,SHEN Tian-fang2,ZHANG Xin-ran1,ZHANG Ru-yue1,TAN Wen-song1,3,ZHAO Liang1,3,*()
1 State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
2 Zhejiang Hisun Pharmaceutical Co., Ltd., Hangzhou 311404, China
3 Shanghai Bioengine Sci-Tech Co., Ltd., Shanghai 201203, China
 全文: PDF(1224 KB)   HTML
摘要:

目的:由于强化流加培养工艺(intensified fed batch of ultra-high seeding density,uHSD-IFB)的接种密度与运行密度较高,传统低密度培养工艺的流加策略往往不能提供充足的营养物质用于该过程的细胞维持与产物表达,最终导致过程产率低、经济性下降;通过优化流加培养基以及补料方案,成功建立CHO细胞强化流加培养过程,从而提高目的蛋白产量。方法:以一株表达单克隆抗体的CHO-K1细胞株为研究对象,通过代谢动力学与化学计量学分析,设计出以葡萄糖为控制模型的两阶段动态反馈流加策略,并结合实验设计(design of experiment,DoE)筛选并优化流加培养基中关键微量元素的营养浓度。结果:优化设计后的uHSD-IFB过程有效缓解了uHSD-IFB过程营养物质的耗竭与代谢副产物累积之间的矛盾,实现了超高接种密度培养工艺的细胞生长与产物合成的目的;累积产量相较于优化前提高了95%,日体积产量提高了约97%。结论:该补料策略有助于快速建立高细胞密度、高产物表达的高接种密度强化流加培养过程。

关键词: CHO细胞过程强化动态反馈流加理性设计葡萄糖控制模型    
Abstract:

Objective: Due to the higher seeding density and running density of the intensified fed-batch of ultra-high seeding density (uHSD-IFB) process, the feeding strategy of the traditional low-density culture process often does not provide sufficient nutrients for cell maintenance and product expression of the process, which ultimately leads to low process yield and lower production efficiency. By optimizing the feed medium and feeding strategy, the uHSD-IFB process will be successfully established and the target protein yield will be increased. Methods: A monoclonal antibody-expressing CHO-K1 cell line was studied in this paper, a two-stage dynamic feedback feeding strategy with glucose as the control indicator was designed by metabolic kinetics and stoichiometry analysis, and the nutrient concentrations for key trace elements in the feed medium were screened and optimized in combination with design of experiment (DoE). Results: The optimized process effectively alleviated the contradiction between nutrient depletion and accumulation of metabolic by-products in the uHSD-IFB process and achieved the purpose of cell growth and product synthesis in the ultra-high inoculation density culture process. The cumulative titer of the optimized design of the uHSD-IFB process was increased by 95% and the daily yield was increased by about 97% compared to that before optimization. Conclusion: This proposed feeding strategy can provide help to rapidly establish an enhanced fed-batch culture process of ultra-high seeding density with high cell density and high product expression.

Key words: CHO cell    Process intensification    Dynamic feedback fed-batch    Rational design    Glucose control model
收稿日期: 2023-05-30 出版日期: 2023-11-02
ZTFLH:  Q813  
通讯作者: *电子信箱:zhaoliang@ecust.edu.cn   
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
苏影
张炜坚
万宇翔
沈天放
张欣然
张如悦
谭文松
赵亮

引用本文:

苏影, 张炜坚, 万宇翔, 沈天放, 张欣然, 张如悦, 谭文松, 赵亮. CHO细胞强化流加培养过程理性设计与建立[J]. 中国生物工程杂志, 2023, 43(10): 20-31.

SU Ying, ZHANG Wei-jian, WAN Yu-xiang, SHEN Tian-fang, ZHANG Xin-ran, ZHANG Ru-yue, TAN Wen-song, ZHAO Liang. Rational Design and Establishment of CHO Cell Intensified Fed-batch Culture Process. China Biotechnology, 2023, 43(10): 20-31.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.2305046        https://manu60.magtech.com.cn/biotech/CN/Y2023/V43/I10/20

氨基酸 0~4 d的浓度
/(mmol·L-1)
5~8 d的浓度
/(mmol·L-1)
氨基酸 0~4 d的浓度
/(mmol·L-1)
5~8 d的浓度
/(mmol·L-1)
天冬氨酸 72.02 29.22 酪氨酸 39.17 23.88
谷氨酸 81.12 81.7 胱氨酸 49.32 31.45
天冬酰胺 100.43 91.03 缬氨酸 114.1 69.02
丝氨酸 136.98 93.59 甲硫氨酸 29.31 14.25
脯氨酸 43.2 43.2 色氨酸 16.93 17.39
组氨酸 41.47 19.59 苯丙氨酸 26.21 37.6
苏氨酸 64.09 50.11 异亮氨酸 61.1 40.16
精氨酸 46.85 19.25 亮氨酸 78.2 65.01
丙氨酸 23.6 23.6 赖氨酸 46.76 69.02
表1  葡萄糖控制模型的uHSD-IFB过程中流加培养基的氨基酸浓度
图1  Optimized uHSD-IFB过程的理性设计流程
图2  传统与强化流加培养过程中细胞生长与产物合成比较
图3  uHSD-IFB过程中氨基酸浓度变化
图4  uHSD-IFB(AA)过程中氨基酸的比消耗(生成)速率
图5  uHSD-IFB(AA)过程中细胞生长阶段与产物合成阶段氨基酸的累计消耗与葡萄糖的累积消耗之间的关系
图6  葡萄糖控制模型的uHSD-IFB过程与优化前的uHSD-IFB过程比较
编号 物质 高水平质量浓度/(mg·L-1) 编号 物质 高水平质量浓度/(mg·L-1)
A D-泛酸钙 95.306 N 柠檬酸钠 103.228
B 氯化胆碱 55.852 O ZnSO4·7H2O 3.22
C 抗坏血酸钠 39.603 P 亚硒酸钠 0.346
D 叶酸 44.1 Q 腐胺 17.63
E 肌醇 84 R 乙醇胺盐酸盐 9.75
F 烟酰胺 12.213 S 胰岛素 11.6
G 钴胺素 13.55 T 谷胱甘肽 12.29
H 生物素 0.673 U 胸苷 9.69
J 核黄素 1.882 V α-酮戊二酸 59.44
K 盐酸吡哆醇 6.169 W 虚拟因子1 -
L CuSO4·5H2O 0.1 X 虚拟因子2 -
M FeSO4·7H2O 55.6
表2  Plackett-Burman试验设计因素及水平
因素 平方和 均方 F值 P 重要性
Model 396.84 18.9 878.62 0.001 1 Significant
A-D-泛酸钙 0.055 7 0.055 7 2.59 0.248 9 15
B-氯化胆碱 2.22 2.22 103.17 0.009 6 2
C-抗坏血酸钠 2.05 2.05 95.38 0.010 3 3
D-叶酸 0.005 3 0.005 3 0.248 3 0.667 7 21
E-I-肌醇 0.081 3 0.081 3 3.78 0.191 3 14
F-烟酰胺 0.344 2 0.344 2 16.01 0.057 2 12
G-钴胺素 1.11 1.11 51.55 0.018 9 5
H-生物素 0.661 9 0.661 9 30.78 0.031 0 7
J-核黄素 0.891 8 0.891 8 41.47 0.023 3 6
K-盐酸吡哆醇 0.040 3 0.040 3 1.88 0.304 4 16
L-五水硫酸铜 0.005 6 0.005 6 0.26 0.660 8 20
M-七水硫酸亚铁 0.008 0.008 0.371 9 0.604 0 18
N-柠檬酸钠 0.271 1 0.271 1 12.6 0.071 0 13
O-七水硫酸锌 0.353 5 0.353 5 16.43 0.055 8 11
P-亚硒酸钠 0.489 8 0.489 8 22.77 0.041 2 10
Q-腐胺 0.521 8 0.521 8 24.26 0.038 8 9
R-乙醇胺 1.33 1.33 61.99 0.015 8 4
S-胰岛素 385.74 385.74 17 935.24 < 0.000 1 1
T-谷胱甘肽 0.602 8 0.602 8 28.03 0.033 9 8
U-胸苷 0.039 6 0.039 6 1.84 0.307 6 17
V-α-酮戊二酸 0.006 0.006 0.279 4 0.649 9 19
表3  Plackett-Burman试验结果方差分析
Parameters Traditional FB uHSD-IFB Optimized uHSD-IFB
Seeding density (106 cells/mL) 0.5 15 15
μ-Growth phase (1/day) 0.44 0.43 0.34
Peak VCD (106 cells/mL) 19.10 37.35 33.33
IVCC (109cells·day/L) 173 246 214
Feeding strategy Constant ratio Constant ratio Glucose control + DoE
Culture time (day) 14 8 8
Titer (g/L)% - 11.79±0.60 117.89±0.79
QP (pg/cell/day)% - 17.26±0.57 156.94±1.45
Vp (g/L/day)% - 95.93±4.88 255.56±1.72
Peak lactate concentration (mmol/L) 30.87 30.65 24.26
Peak osmolality (mOsm/kg) 452 586 520
表4  几种流加培养过程的主要结果比较
[1] O’Flaherty R, Bergin A, Flampouri E, et al. Mammalian cell culture for production of recombinant proteins: a review of the critical steps in their biomanufacturing. Biotechnology Advances, 2020, 43: 107552.
doi: 10.1016/j.biotechadv.2020.107552
[2] Fan Y Z, Ley D, Andersen M R. Fed-batch CHO cell culture for lab-scale antibody production. Methods in Molecular Biology, 2018, 1674: 147-161.
doi: 10.1007/978-1-4939-7312-5_12 pmid: 28921435
[3] Lin P C, Chan K F, Kiess I A, et al. Attenuated glutamine synthetase as a selection marker in CHO cells to efficiently isolate highly productive stable cells for the production of antibodies and other biologics. mAbs, 2019, 11(5): 965-976.
doi: 10.1080/19420862.2019.1612690
[4] Tang P F, Xu J L, Louey A, et al. Kinetic modeling of Chinese hamster ovary cell culture: factors and principles. Critical Reviews in Biotechnology, 2020, 40(2): 265-281.
doi: 10.1080/07388551.2019.1711015 pmid: 31928250
[5] Handlogten M W, Lee-O’Brien A, Roy G, et al. Intracellular response to process optimization and impact on productivity and product aggregates for a high-titer CHO cell process. Biotechnology and Bioengineering, 2018, 115(1): 126-138.
doi: 10.1002/bit.26460 pmid: 28941283
[6] Kelley B, Kiss R, Laird M. A different perspective: how much innovation is really needed for monoclonal antibody production using mammalian cell technology. Advances in Biochemical Engineering/Biotechnology, 2018, 165: 443-462.
[7] Stepper L, Filser F A, Fischer S, et al. Pre-stage perfusion and ultra-high seeding cell density in CHO fed-batch culture: a case study for process intensification guided by systems biotechnology. Bioprocess and Biosystems Engineering, 2020, 43(8): 1431-1443.
doi: 10.1007/s00449-020-02337-1 pmid: 32266469
[8] Schulze M, Kumar Y, Rattay M, et al. Transcriptomic analysis reveals mode of action of butyric acid supplementation in an intensified CHO cell fed-batch process. Biotechnology and Bioengineering, 2022, 119(9): 2359-2373.
doi: 10.1002/bit.v119.9
[9] Xu J L, Rehmann M S, Xu M M, et al. Development of an intensified fed-batch production platform with doubled titers using N-1 perfusion seed for cell culture manufacturing. Bioresources and Bioprocessing, 2020, 7(1): 17.
doi: 10.1186/s40643-020-00304-y
[10] Bielser J M, Wolf M, Souquet J, et al. Perfusion mammalian cell culture for recombinant protein manufacturing: a critical review. Biotechnology Advances, 2018, 36(4): 1328-1340.
doi: 10.1016/j.biotechadv.2018.04.011
[11] Xu S, Gavin J, Jiang R B, et al. Bioreactor productivity and media cost comparison for different intensified cell culture processes. Biotechnology Progress, 2017, 33(4): 867-878.
doi: 10.1002/btpr.2415 pmid: 27977910
[12] Jordan M, Mac Kinnon N, Monchois V, et al. Intensification of large-scale cell culture processes. Current Opinion in Chemical Engineering, 2018, 22: 253-257.
doi: 10.1016/j.coche.2018.11.008
[13] Yang W C, Lu J Y, Kwiatkowski C, et al. Perfusion seed cultures improve biopharmaceutical fed-batch production capacity and product quality. Biotechnology Progress, 2014, 30(3): 616-625.
doi: 10.1002/btpr.1884 pmid: 24574326
[14] Mahé A, Martiné A, Fagète S, et al. Exploring the limits of conventional small-scale CHO fed-batch for accelerated on demand monoclonal antibody production. Bioprocess and Biosystems Engineering, 2022, 45(2): 297-307.
doi: 10.1007/s00449-021-02657-w
[15] Pohlscheidt M, Jacobs M, Wolf S, et al. Optimizing capacity utilization by large scale 3000 L perfusion in seed train bioreactors. Biotechnology Progress, 2013, 29(1): 222-229.
doi: 10.1002/btpr.1672 pmid: 23225663
[16] Schulze M, Lemke J, Pollard D, et al. Automation of high CHO cell density seed intensification via online control of the cell specific perfusion rate and its impact on the N-stage inoculum quality. Journal of Biotechnology, 2021, 335: 65-75.
doi: 10.1016/j.jbiotec.2021.06.011 pmid: 34090946
[17] Brunner M, Kolb K, Keitel A, et al. Application of metabolic modeling for targeted optimization of high seeding density processes. Biotechnology and Bioengineering, 2021, 118(5): 1793-1804.
doi: 10.1002/bit.27693 pmid: 33491766
[18] Yongky A, Xu J L, Tian J, et al. Process intensification in fed-batch production bioreactors using non-perfusion seed cultures. mAbs, 2019, 11(8): 1502-1514.
doi: 10.1080/19420862.2019.1652075 pmid: 31379298
[19] Padawer I, Ling W L W, Bai Y L. Case study: an accelerated 8-day monoclonal antibody production process based on high seeding densities. Biotechnology Progress, 2013, 29(3): 829-832.
doi: 10.1002/btpr.1719 pmid: 23596148
[20] Bielser J M, Chappuis L, Xiao Y S, et al. Perfusion cell culture for the production of conjugated recombinant fusion proteins reduces clipping and quality heterogeneity compared to batch-mode processes. Journal of Biotechnology, 2019, 302: 26-31.
doi: 10.1016/j.jbiotec.2019.06.006
[21] Hecht V, Duvar S, Ziehr H, et al. Efficiency improvement of an antibody production process by increasing the inoculum density. Biotechnology Progress, 2014, 30(3): 607-615.
doi: 10.1002/btpr.1887 pmid: 24574274
[22] Pereira S, Kildegaard H F, Andersen M R. Impact of CHO metabolism on cell growth and protein production: an overview of toxic and inhibiting metabolites and nutrients. Biotechnology Journal, 2018, 13(3): e1700499.
[23] Ali A S, Raju R, Kshirsagar R, et al. Multi-omics study on the impact of cysteine feed level on cell viability and mAb production in a CHO bioprocess. Biotechnology Journal, 2019, 14(4): e1800352.
[24] 范里. GS-CHO细胞无血清培养过程的开发与优化. 上海: 华东理工大学, 2010.
Fan L. Development and optimization of serum-free culture process of GS-CHO cells. Shanghai: East China University of Science and Technology, 2010.
[25] Bai Y L, Wu C J, Zhao J, et al. Role of iron and sodium citrate in animal protein-free CHO cell culture medium on cell growth and monoclonal antibody production. Biotechnology Progress, 2011, 27(1): 209-219.
doi: 10.1002/btpr.513 pmid: 21312368
[26] Parampalli A, Eskridge K, Smith L, et al. Developement of serum-free media in CHO-DG 44 cells using a central composite statistical design. Cytotechnology, 2007, 54(1): 57-68.
doi: 10.1007/s10616-007-9074-3 pmid: 19003018
[27] Ritacco F V, Wu Y Q, Khetan A. Cell culture media for recombinant protein expression in Chinese hamster ovary (CHO) cells: history, key components, and optimization strategies. Biotechnology Progress, 2018, 34(6): 1407-1426.
doi: 10.1002/btpr.2706 pmid: 30290072
[28] Zhang H F, Wang H B, Liu M, et al. Rational development of a serum-free medium and fed-batch process for a GS-CHO cell line expressing recombinant antibody. Cytotechnology, 2013, 65(3): 363-378.
doi: 10.1007/s10616-012-9488-4 pmid: 22907508
[29] Jordan M, Voisard D, Berthoud A, et al. Cell culture medium improvement by rigorous shuffling of components using media blending. Cytotechnology, 2013, 65(1): 31-40.
doi: 10.1007/s10616-012-9462-1 pmid: 22695856
[30] Liu Y Y, Zhang W Y, Deng X C, et al. Chinese hamster ovary cell performance enhanced by a rational divide-and-conquer strategy for chemically defined medium development. Journal of Bioscience and Bioengineering, 2015, 120(6): 690-696.
doi: 10.1016/j.jbiosc.2015.04.016 pmid: 26183860
[31] Kuwae S, Miyakawa I, Doi T. Development of a chemically defined platform fed-batch culture media for monoclonal antibody-producing CHO cell lines with optimized choline content. Cytotechnology, 2018, 70(3): 939-948.
doi: 10.1007/s10616-017-0185-1 pmid: 29322349
[32] Zhang J, Zhou J W, Liu J, et al. Development of chemically defined media supporting high cell density growth of Ketogulonicigenium vulgare and Bacillus megaterium. Bioresource Technology, 2011, 102(7): 4807-4814.
doi: 10.1016/j.biortech.2010.10.124 pmid: 21296571
[1] 刘小妍, 黄超群, 金雪芮, 罗云孜. 人工金属酶研究进展*[J]. 中国生物工程杂志, 2023, 43(10): 72-84.
[2] 魏子翔,张柳群,雷磊,韩正刚,杨江科. 疏棉状嗜热丝孢菌(Thermomyces lanuginosus)脂肪酶的理性设计提高其活性和温度稳定性[J]. 中国生物工程杂志, 2021, 41(2/3): 63-69.
[3] 苏永君,胡蝶,胡博淳,李闯,文正,章晨,邬敏辰. 定点突变提高环氧化物水解酶AuEH2催化对甲基苯基缩水甘油醚的对映选择性*[J]. 中国生物工程杂志, 2020, 40(3): 88-95.
[4] 李炳娟,刘金锭,廖谊芳,韩文英,刘珂,侯晨露,张磊. 老黄酶OYE家族的蛋白质工程的研究进展 *[J]. 中国生物工程杂志, 2020, 40(3): 163-169.
[5] 陈英,肖海鹏,张晓焰,龚庆伟,马利,李文佳,陈小锋. GLP-1-IgG4-Fc融合蛋白的表达与鉴定 *[J]. 中国生物工程杂志, 2018, 38(7): 58-66.
[6] 唐存多,史红玲,焦铸锦,刘飞,许建和,阚云超,姚伦广. CPC乙酰化酶底物结合区域Loop上脯氨酸对其催化特性的影响*[J]. 中国生物工程杂志, 2017, 37(12): 34-39.
[7] 虞晓丹, 吴秀秀, 姚冬生, 刘大岭, 谢春芳. 基于分子结构评价的Bacillus subtilis β-1,4-内切木聚糖酶胰蛋白酶抗性的理性设计[J]. 中国生物工程杂志, 2016, 36(8): 80-88.
[8] 郭超, 王志彦, 甘一如, 李丹, 邓勇, 于浩然, 黄鹤. 技术与方法理性设计改造牛肠激酶的热稳定性[J]. 中国生物工程杂志, 2016, 36(8): 46-54.
[9] 温家明, 聂艳峰, 梁翰章, 黄雯茜, 雷云, 谢秋玲, 裴运林, 熊盛. MG-132提高TNFR-Fc融合蛋白在CHO细胞中表达的研究[J]. 中国生物工程杂志, 2015, 35(9): 1-6.
[10] 晏丽, 王康, 李瑞建, 白义, 白先宏, 周海平. 一种新型高糖基化免疫融合蛋白NESP-Fc的研制[J]. 中国生物工程杂志, 2015, 35(4): 80-85.
[11] 马晨露, 唐存多, 史红玲, 王瑞, 岳超, 夏敏, 邬敏辰, 阚云超. 头孢菌素C乙酰化酶的半理性改造及7-ACA的生物合成[J]. 中国生物工程杂志, 2015, 35(12): 65-71.
[12] 唐存多, 史红玲, 唐青海, 焦铸锦, 阚云超, 邬敏辰, 李剑芳. 生物催化剂发现与改造的研究进展[J]. 中国生物工程杂志, 2014, 34(9): 113-121.
[13] 黄芬, 安小平, 李存, 何彰华, 张宝中, 米志强, 王娟, 童贻刚. 过表达热休克蛋白70提高CHO细胞表达抗体的能力[J]. 中国生物工程杂志, 2011, 31(9): 8-13.
[14] 邓春平, 陶建军, 侯永敏, 钟翎. hK1-L-Fc融合蛋白在CHO细胞中的表达及其活性研究[J]. 中国生物工程杂志, 2011, 31(03): 23-28.
[15] 宋小红 于婷 李冰 付玲 侯利华 陈薇. 促进CHO细胞生长及其产物hNGF表达的培养条件的初步研究[J]. 中国生物工程杂志, 2010, 30(04): 13-19.