Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2023, Vol. 43 Issue (10): 1-9    DOI: 10.13523/j.cb.2305021
研究报告     
功能化外泌体重编程免疫细胞与肿瘤细胞之间靶向识别*
项建1,叶邦策1,尹斌成1,2,**()
1 华东理工大学生物反应器工程国家重点实验室 上海 200237
2 石河子大学化学化工学院 石河子 832003
Functionalized Exosomes Reprogram the Targeted Recognition Between Immune Cells and Tumor Cells
XIANG Jian1,YE Bang-ce1,YIN Bin-cheng1,2,**()
1 State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
2 School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, China
 全文: PDF(1878 KB)   HTML
摘要:

目的:通过基因工程技术制备表面展示具有促进膜融合作用的水泡性口炎病毒糖蛋白G(vesicular stomatitis virus glycoprotein,VSVG)的外泌体VSVG-Exos,利用核酸探针介导DNA杂交链式反应在其膜表面修饰靶向树突状细胞间黏附分子-3-结合非整合素DC-SIGN的核酸适配体,构建功能化外泌体,通过重编程肿瘤细胞与树突细胞之间的靶向识别过程增强相互作用。方法:以小鼠乳腺癌细胞4T1和小鼠树突状细胞DC2.4为研究对象,通过共聚焦成像和流式细胞术等实验证明VSVG-Exos以膜融合方式特异性结合4T1细胞,以及DC-SIGN适配体具有特异性靶向DC2.4细胞的能力。结果:功能化外泌体可以重编程修饰4T1细胞,增强与DC2.4细胞之间的靶向识别效应。结论:功能化外泌体有效地输送具有特定功能的分子到肿瘤细胞表面,对其进行重编程修饰,提高免疫细胞精准定位和高效攻击肿瘤细胞的能力,为靶向清除肿瘤细胞提供了新的思路和策略。

关键词: 功能化外泌体靶向识别核酸适配体膜融合水泡性口炎病毒糖蛋白    
Abstract:

Objective: To prepare the exosomes that display the vesicular stomatitis virus glycoprotein (VSVG) by utilizing genetic engineering technology, which promotes membrane fusion. Meanwhile, the exosomes were further modified with aptamers that target dendritic cell-specific intercellular adhesion molecule-3-grabbing non-integrin (DC-SIGN) receptors to prepare functionalized exosomes, which is achieved through DNA hybridization chain reaction mediated by nucleic acid probes. This approach reprograms the targeted recognition process between tumor cells and dendritic cells, ultimately enhancing their interaction. Methods: The paper focuses on mouse mammary tumor cells (4T1) and mouse dendritic cells (DC2.4) as research subjects, which demonstrates through confocal imaging and flow cytometry that VSVG-Exos can specifically bind to 4T1 cells via membrane fusion, and that DC-SIGN aptamers can specifically target DC2.4 cells. Results: Functionalized exosomes can reprogram and modify 4T1 cells to enhance their targeted recognition effect with DC2.4 cells. Conclusion: Functionalized exosomes can effectively deliver molecules with specific functions to the surface of tumor cells and reprogram and modify them, thus improving the ability of immune cells to accurately locate and efficiently attack tumor cells. This provides a new approach and strategy for targeted elimination of tumor cells.

Key words: Functionalized exosomes    Targeted recognition    Aptamers    Membrane fusion    Vesicular stomatitis virus glycoprotein
收稿日期: 2023-05-15 出版日期: 2023-11-02
ZTFLH:  Q78  
基金资助: *国家自然科学基金(22374047);国家自然科学基金(22134003);中央高校基本科研业务费专项资金资助项目
通讯作者: **电子信箱:binchengyin@ecust.edu.cn   
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
项建
叶邦策
尹斌成

引用本文:

项建, 叶邦策, 尹斌成. 功能化外泌体重编程免疫细胞与肿瘤细胞之间靶向识别*[J]. 中国生物工程杂志, 2023, 43(10): 1-9.

XIANG Jian, YE Bang-ce, YIN Bin-cheng. Functionalized Exosomes Reprogram the Targeted Recognition Between Immune Cells and Tumor Cells. China Biotechnology, 2023, 43(10): 1-9.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.2305021        https://manu60.magtech.com.cn/biotech/CN/Y2023/V43/I10/1

图1  功能化外泌体(VSVG-Exos-Apt)的构建及其重编程4T1细胞特异性靶向DC2.4细胞
名称 序列(5'-3')
P CCTCATCCCACTCCTACCTAAACCAAAAAAAAAA
P-Chol CCTCATCCCACTCCTACCTAAACCAAAAAAAAAA-Cholesterol
FAM-P-Chol FAM-CCTCATCCCACTCCTACCTAAACCAAAAAAAAAA-Cholesterol
H1 GGTTTAGGTAGGAGTGGGATGAGGCCAAATCCTCATCCCACTCCTACC
H2 CTTATATTCTCTCTCTCTCCCCTCATCCCACTCCTACCTAAACCGGTAGGAGTGGGATGAGGATTTGG
H2-Cy3 Cy3-CTTATATTCTCTCTCTCTCCCCTCATCCCACTCCTACCTAAACCGGTAGGAGTGGGATGAGGATTTGG
Apt-Cy3(DC-SIGN) GGAGAGAGAGAGAATATAAGAAAAGGCGAAAATTTGTGGATATAGAGGGTTACTCGGATTGT-Cy3
表1  本文所使用的序列信息
图2  VSVG-Exos的制备与表征
图3  功能化外泌体的制备与表征
图4  VSVG-Exos与4T1细胞膜融合作用验证
图5  适配体的体外靶向性验证
图6  功能化外泌体重编程4T1细胞
图7  4T1与DC2.4细胞的相互作用分析
[1] Zhang H M, Chen J B. Current status and future directions of cancer immunotherapy. Journal of Cancer, 2018, 9(10): 1773-1781.
doi: 10.7150/jca.24577 pmid: 29805703
[2] Hegde P S, Chen D S. Top 10 challenges in cancer immunotherapy. Immunity, 2020, 52(1): 17-35.
doi: S1074-7613(19)30530-8 pmid: 31940268
[3] Coulie P G, Van den Eynde B J, van der Bruggen P, et al. Tumour antigens recognized by T lymphocytes: at the core of cancer immunotherapy. Nature Reviews Cancer, 2014, 14(2): 135-146.
doi: 10.1038/nrc3670 pmid: 24457417
[4] Kim G B, Nam G H, Hong Y, et al. Xenogenization of tumor cells by fusogenic exosomes in tumor microenvironment ignites and propagates antitumor immunity. Science Advances, 2020, 6(27): eaaz2083.
[5] Sadelain M, Rivière I, Riddell S. Therapeutic T cell engineering. Nature, 2017, 545(7655): 423-431.
doi: 10.1038/nature22395
[6] Maude S L, Frey N, Shaw P A, et al. Chimeric antigen receptor T cells for sustained remissions in leukemia. The New England Journal of Medicine, 2014, 371(16): 1507-1517.
doi: 10.1056/NEJMoa1407222 pmid: 25317870
[7] Jackson H J, Rafiq S, Brentjens R J. Driving CAR T-cells forward. Nature Reviews Clinical Oncology, 2016, 13(6): 370-383.
doi: 10.1038/nrclinonc.2016.36 pmid: 27000958
[8] Bonifant C L, Jackson H J, Brentjens R J, et al. Toxicity and management in CAR T-cell therapy. Molecular Therapy - Oncolytics, 2016, 3: 16011.
doi: 10.1038/mto.2016.11
[9] Zhang Y, Bi J Y, Huang J Y, et al. Exosome: a review of its classification, isolation techniques, storage, diagnostic and targeted therapy applications. International Journal of Nanomedicine, 2020, 15: 6917-6934.
doi: 10.2147/IJN.S264498 pmid: 33061359
[10] Gurung S, Perocheau D, Touramanidou L, et al. The exosome journey: from biogenesis to uptake and intracellular signalling. Cell Communication and Signaling, 2021, 19(1): 47.
doi: 10.1186/s12964-021-00730-1 pmid: 33892745
[11] Xu M, Feng T, Liu B W, et al. Engineered exosomes: desirable target-tracking characteristics for cerebrovascular and neurodegenerative disease therapies. Theranostics, 2021, 11(18): 8926-8944.
doi: 10.7150/thno.62330 pmid: 34522219
[12] Wang X Y, Huang J, Chen W J, et al. The updated role of exosomal proteins in the diagnosis, prognosis, and treatment of cancer. Experimental & Molecular Medicine, 2022, 54(9): 1390-1400.
[13] Liang Y J, Duan L, Lu J P, et al. Engineering exosomes for targeted drug delivery. Theranostics, 2021, 11(7): 3183-3195.
doi: 10.7150/thno.52570 pmid: 33537081
[14] Yan H, Li S, Zhou L F, et al. Selection of DNA aptamers against DC-SIGN protein. Molecular and Cellular Biochemistry, 2007, 306(1-2): 71-77.
pmid: 17660953
[15] Yang Y, Hong Y, Nam G H, et al. Virus-mimetic fusogenic exosomes for direct delivery of integral membrane proteins to target cell membranes. Advanced Materials, 2017, 29(13): 1605604.
doi: 10.1002/adma.v29.13
[16] Zhao H, Xu J, Li Y, et al. Nanoscale coordination polymer based nanovaccine for tumor immunotherapy. ACS Nano, 2019, 13(11): 13127-13135.
doi: 10.1021/acsnano.9b05974 pmid: 31710460
[17] Valadi H, Ekström K, Bossios A, et al. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nature Cell Biology, 2007, 9(6): 654-659.
doi: 10.1038/ncb1596 pmid: 17486113
[18] Cho E, Nam G H, Hong Y, et al. Comparison of exosomes and ferritin protein nanocages for the delivery of membrane protein therapeutics. Journal of Controlled Release, 2018, 279: 326-335.
doi: S0168-3659(18)30221-9 pmid: 29679665
[19] Koh E, Lee E J, Nam G H, et al. Exosome-SIRPα, a CD47 blockade increases cancer cell phagocytosis. Biomaterials, 2017, 121: 121-129.
doi: S0142-9612(17)30004-2 pmid: 28086180
[20] Yang Y, Hong Y, Cho E, et al. Extracellular vesicles as a platform for membrane-associated therapeutic protein delivery. Journal of Extracellular Vesicles, 2018, 7(1): 1440131.
doi: 10.1080/20013078.2018.1440131
[1] 张雅琪, 张建, 唐雨婷, 黄庆媛, 季璐, 卢辰, 罗志丹. 利用核酸适配体封闭Tth DNA聚合酶突变体实现温启动一步法RT-qPCR*[J]. 中国生物工程杂志, 2023, 43(4): 51-58.
[2] 颜志超,宋梦华,刘建平,黄强. 基于分子模拟的河鲀毒素核酸适配体的连续优化*[J]. 中国生物工程杂志, 2022, 42(8): 1-12.
[3] 姚芷昕,李婉明. 核酸适配体在三阴性乳腺癌诊疗中的研究进展*[J]. 中国生物工程杂志, 2022, 42(7): 62-68.
[4] 刘少金,冯雪娇,王俊姝,肖正强,程平生. 我国核酸药物市场分析及对策建议[J]. 中国生物工程杂志, 2021, 41(7): 99-109.
[5] 苏艺,蒋灵丽,林俊生. 小分子靶标与其核酸适配体亲和力的表征方法 *[J]. 中国生物工程杂志, 2019, 39(11): 96-104.
[6] 何敏瑜, 冉海涛. 核酸适配体结合纳米材料用于肿瘤靶向治疗[J]. 中国生物工程杂志, 2015, 35(4): 86-91.
[7] 周妮, 陈丹, 姚冬生, 谢春芳, 刘大岭. 莱克多巴胺核酸适配体电化学生物传感器的研制[J]. 中国生物工程杂志, 2014, 34(1): 42-49.
[8] 陈丹, 姚冬生, 谢春芳, 刘大岭. 四环素核酸适配体电化学生物传感器的研制[J]. 中国生物工程杂志, 2013, 33(11): 56-62.