Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2023, Vol. 43 Issue (10): 10-19    DOI: 10.13523/j.cb.2305006
研究报告     
抗EpCAM免疫毒素制备与体外活性研究*
刘玉萍1,邓昌平2,马兴元2,刘秋丽1,鲍雯1,郑文云1,**()
1 华东理工大学药学院 上海市新药设计重点实验室 上海 200237
2 华东理工大学生物工程学院 生物反应器工程国家重点实验室 上海 200237
Preparation and in vitro Activity of Anti-EpCAM Immunotoxin
LIU Yu-ping1,DENG Chang-ping2,MA Xing-yuan2,LIU Qiu-li1,BAO Wen1,ZHENG Wen-yun1,**()
1 Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
2 State Key Laboratory of Bioreactor Engineering, School of Biological Engineering, East China University of Science and Technology, Shanghai 200237, China
 全文: PDF(2451 KB)   HTML
摘要:

目的:上皮细胞粘附分子(epithelial cell adhesion molecule,EpCAM)在正常细胞中的表达局限于上皮基底外侧细胞,且具有隐蔽性,而在包括膀胱癌在内的多种上皮性癌症中过表达且处于易结合的状态,是抗肿瘤治疗的特异性有效靶标之一;以EpCAM作为膀胱癌靶向治疗的靶点,探索高效、安全的膀胱癌新型治疗方法。方法:在分子水平利用柔性肽GGGGS将EpCAM单链抗体4D5MOCB与毒素PE38KDEL连接设计制备免疫毒素,在大肠杆菌BL21(DE3)中进行表达,并研究其与膀胱癌细胞的结合和对癌细胞生长的抑制作用。结果:4D5MOCB介导的免疫毒素具有良好的选择性,与EpCAM高表达的膀胱癌细胞5637结合良好,其结合率约为阴性细胞结合率的169倍,并能有效抑制癌细胞生长,IC50最低可达0.5 pmol/L,同时能够抑制细胞克隆形成和细胞迁移,诱导细胞凋亡;免疫毒素与EpCAM阴性细胞HeLa不结合,也不具有抑制细胞活性的作用。结论:制备的基因工程免疫毒素具有较好的选择性,能够有效抑制阳性癌细胞的增殖和转移,且比相同抗原的抗体药物偶联物(antibody-drug conjugates,ADC)的制备更简单,均一性更好,为免疫毒素应用于实体瘤的治疗提供了实验基础。

关键词: 重组免疫毒素EpCAM绿脓杆菌外毒素A单链抗体靶向治疗    
Abstract:

Objective: Epithelial cell adhesion molecule(EpCAM) is one of the specific and effective targets of anti-tumor therapy, because the expression of EpCAM is limited to the basolateral epithelial cells in normal cells and is concealed. However, EpCAM is overexpressed in a variety of epithelial cancers, including bladder cancer, and is in a state of easy binding. Since immunotoxins targeting EpCAM have not been applied to the treatment of bladder cancer, new treatments for bladder cancer will be explored. Methods: The immunotoxin was constructed by linking the single-chain antibody of EpCAM 4D5MOCB with toxin PE38KDEL by flexible peptide GGGGS at the molecular level for design and preparation, and expressed in Escherichia coli BL21 (DE3). The binding effect of the immunotoxin on bladder cancer cells and its inhibitory effect on the growth of bladder cancer cells were studied. Results: The quantity of 4D5MOCB-mediated immunotoxin selectively binding to positive cells is about 169 times that binding to negative cells. The immunotoxin could effectively inhibit the growth of 5637, SW780 and RT4 with an IC50 up to 0.5 pmol/L. At the same time, it could inhibit cell colony formation and cell migration and induce cell apoptosis. The immunotoxin did not bind to EpCAM-negative HeLa cells and had no inhibitory activity. Conclusion: The immunotoxin prepared in this study has good selectivity and can effectively inhibit the proliferation and metastasis of positive cancer cells. The preparation of immunotoxin is simpler than that of antibody-drug conjugates (ADCs) and it is more homogeneous than ADCs. This study also provides an experimental basis for the application of immunotoxin in the treatment of solid tumors.

Key words: Recombinant immunotoxin    EpCAM    Pseudomonas aeruginosa exotoxin A    Single chain antibody    Targeted therapy
收稿日期: 2023-05-04 出版日期: 2023-11-02
ZTFLH:  Q78  
基金资助: *国家重点研发计划(2018YFA0902804)
通讯作者: **电子信箱:zwy@ecust.edu.cn   
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
刘玉萍
邓昌平
马兴元
刘秋丽
鲍雯
郑文云

引用本文:

刘玉萍, 邓昌平, 马兴元, 刘秋丽, 鲍雯, 郑文云. 抗EpCAM免疫毒素制备与体外活性研究*[J]. 中国生物工程杂志, 2023, 43(10): 10-19.

LIU Yu-ping, DENG Chang-ping, MA Xing-yuan, LIU Qiu-li, BAO Wen, ZHENG Wen-yun. Preparation and in vitro Activity of Anti-EpCAM Immunotoxin. China Biotechnology, 2023, 43(10): 10-19.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.2305006        https://manu60.magtech.com.cn/biotech/CN/Y2023/V43/I10/10

图1  重组免疫毒素载体的构建与蛋白制备
图2  EpCAM在不同癌细胞中的表达情况及免疫毒素与细胞的结合
图3  免疫毒素、抗体及毒素对不同细胞的MTT实验结果
细胞类别 细胞名称 作用时间 DP/(nmol·L-1) 4D5MOCB/(nmol·L-1) PE38KDEL/(nmol·L-1)
EpCAM阴性细胞 HeLa 48 h 147.077 - -
72 h 128.411 783.356 -
T24 48 h 183.434 - -
72 h 179.295 - -
UMUC-3 48 h 228.133 - -
72 h 130.944 620.053 -
EpCAM阳性细胞 5637 48 h 0.949 785.591 -
72 h 0.065 150.838 671.097
SW780 48 h 3.922 - -
72 h 0.079 109.544 -
RT4 48 h 0.001 - -
72 h 0.000 05 293.423 114.900
表1  免疫毒素DP作用各细胞系的IC50值
图4  免疫毒素对细胞克隆形成与细胞迁移的影响
图5  免疫毒素对5637和HeLa细胞诱导凋亡作用
[1] Patel V G, Oh W K, Galsky M D. Treatment of muscle-invasive and advanced bladder cancer in 2020. CA: A Cancer Journal for Clinicians, 2020, 70(5): 404-423.
doi: 10.3322/caac.v70.5
[2] Zheng R S, Zhang S W, Zeng H M, et al. Cancer incidence and mortality in Cancer incidence and mortality in China, 2016. Journal of the National Cancer Center, 2022, 2(1): 1-9.
doi: 10.1016/j.jncc.2022.02.002
[3] Lenis A T, Lec P M, Chamie K, et al. Bladder cancer: a review. JAMA, 2020, 324(19): 1980-1991.
doi: 10.1001/jama.2020.17598 pmid: 33201207
[4] Nguyen S, Chevalier M F, Benmerzoug S, et al. Vδ2 T cells are associated with favorable clinical outcomes in patients with bladder cancer and their tumor reactivity can be boosted by BCG and zoledronate treatments. Journal for Immunotherapy of Cancer, 2022, 10(8): e004880.
doi: 10.1136/jitc-2022-004880
[5] van Straten C G J I, Bruins M H, Dijkstra S, et al. The accuracy of cystoscopy in predicting muscle invasion in newly diagnosed bladder cancer patients. World Journal of Urology, 2023, 41(7): 1829-1835.
doi: 10.1007/s00345-023-04428-6 pmid: 37195314
[6] Chang S S, Boorjian S A, Chou R, et al. Diagnosis and treatment of non-muscle invasive bladder cancer: AUA/SUO guideline. The Journal of Urology, 2016, 196(4): 1021-1029.
doi: 10.1016/j.juro.2016.06.049
[7] MacDonald A, Wu T C, Hung C F. Interleukin 2-based fusion proteins for the treatment of cancer. Journal of Immunology Research, 2021, 2021: 7855808.
[8] Dhillon S. Moxetumomab pasudotox: first global approval. Drugs, 2018, 78(16): 1763-1767.
doi: 10.1007/s40265-018-1000-9 pmid: 30357593
[9] Pemmaraju N, Lane A A, Sweet K L, et al. Tagraxofusp in blastic plasmacytoid dendritic-cell neoplasm. The New England Journal of Medicine, 2019, 380(17): 1628-1637.
doi: 10.1056/NEJMoa1815105 pmid: 31018069
[10] Mohtar M A, Syafruddin S E, Nasir S N, et al. Revisiting the roles of pro-metastatic EpCAM in cancer. Biomolecules, 2020, 10(2): 255.
doi: 10.3390/biom10020255
[11] Patriarca C, Macchi R M, Marschner A K, et al. Epithelial cell adhesion molecule expression (CD326) in cancer: a short review. Cancer Treatment Reviews, 2012, 38(1): 68-75.
doi: 10.1016/j.ctrv.2011.04.002 pmid: 21576002
[12] Havaei S M, Aucoin M G, Jahanian-Najafabadi A. Pseudomonas exotoxin-based immunotoxins: over three decades of efforts on targeting cancer cells with the toxin. Frontiers in Oncology, 2021, 11: 781800.
doi: 10.3389/fonc.2021.781800
[13] Di Paolo C, Willuda J, Kubetzko S, et al. A recombinant immunotoxin derived from a humanized epithelial cell adhesion molecule-specific single-chain antibody fragment has potent and selective antitumor activity. Clinical Cancer Research, 2003, 9(7): 2837-2848.
pmid: 12855664
[14] MacDonald G C, Rasamoelisolo M, Entwistle J, et al. A phase I clinical study of VB4-845: weekly intratumoral administration of an anti-EpCAM recombinant fusion protein in patients with squamous cell carcinoma of the head and neck. Drug Design, Development and Therapy, 2009, 2: 105-114.
pmid: 19920898
[15] Kowalski M, Guindon J, Brazas L, et al. A phase II study of oportuzumab monatox: an immunotoxin therapy for patients with noninvasive urothelial carcinoma in situ previously treated with bacillus Calmette-Guérin. The Journal of Urology, 2012, 188(5): 1712-1718.
doi: 10.1016/j.juro.2012.07.020
[16] Wu J, Guo Q, Zhang G L, et al. Study on the targeted therapy of oral squamous cell carcinoma with a plasmid expressing PE38KDEL toxin under control of the SERPINB3 promoter. Cancer Medicine, 2020, 9(6): 2213-2222.
doi: 10.1002/cam4.2880 pmid: 32017381
[17] Huang L, Yang Y H, Yang F, et al. Functions of EpCAM in physiological processes and diseases (review). International Journal of Molecular Medicine, 2018, 42(4): 1771-1785.
doi: 10.3892/ijmm.2018.3764 pmid: 30015855
[18] Barzaman K, Vafaei R, Samadi M, et al. Anti-cancer therapeutic strategies based on HGF/MET, EpCAM, and tumor-stromal cross talk. Cancer Cell International, 2022, 22(1): 259.
doi: 10.1186/s12935-022-02658-z pmid: 35986321
[19] Eyvazi S, Farajnia S, Dastmalchi S, et al. Antibody based EpCAM targeted therapy of cancer, review and update. Current Cancer Drug Targets, 2018, 18(9): 857-868.
doi: 10.2174/1568009618666180102102311
[20] Krishnamurthy A, Jimeno A. Bispecific antibodies for cancer therapy: a review. Pharmacology & Therapeutics, 2018, 185: 122-134.
[21] 张琴. 截短的铜绿假单胞菌外毒素(PE38KDEL)在大肠杆菌中的表达及其生物学活性的研究. 成都: 四川大学, 2007.
Zhang Q. Expression and biological activity of truncated Pseudomonas aeruginosa exotoxin (PE38KDEL) in Escherichia coli. Chengdu: Sichuan University, 2007.
[22] Antignani A, Segal D, Simon N, et al. Essential role for Bim in mediating the apoptotic and antitumor activities of immunotoxins. Oncogene, 2017, 36(35): 4953-4962.
doi: 10.1038/onc.2017.111 pmid: 28436946
[23] Rioja-Blanco E, Arroyo-Solera I, Álamo P, et al. CXCR4-targeted nanotoxins induce GSDME-dependent pyroptosis in head and neck squamous cell carcinoma. Journal of Experimental & Clinical Cancer Research, 2022, 41(1): 49.
[24] Du X, Youle R J, FitzGerald D J, et al. Pseudomonas exotoxin A-mediated apoptosis is Bak dependent and preceded by the degradation of Mcl-1. Molecular and Cellular Biology, 2010, 30(14): 3444-3452.
doi: 10.1128/MCB.00813-09
[25] Andersson Y, Juell S, Fodstad Ø. Downregulation of the antiapoptotic MCL-1 protein and apoptosis in MA-11 breast cancer cells induced by an anti-epidermal growth factor receptor-Pseudomonas exotoxin a immunotoxin. International Journal of Cancer, 2004, 112(3): 475-483.
doi: 10.1002/ijc.20371 pmid: 15382075
[1] 李雨桐, 崔天琦, 张海林, 于广乐, 栾霁, 王海龙. 肿瘤靶向细菌Escherichia coli Nissle 1917在癌症治疗中的研究进展*[J]. 中国生物工程杂志, 2023, 43(6): 54-68.
[2] 林鹏, 钱菁, 冯强, 雷琎, 江亚, 杨举伦. 单链抗体的制备及其在肿瘤诊疗中的应用*[J]. 中国生物工程杂志, 2023, 43(6): 76-86.
[3] 吴忧,辛林. 新的药物传递系统:外泌体作为药物载体递送*[J]. 中国生物工程杂志, 2020, 40(9): 28-35.
[4] 李彤彤,宋彩玲,杨凯越,王文静,陈慧宇,刘明. 抗犬细小病毒VP2蛋白单链抗体的制备与中和活性研究 *[J]. 中国生物工程杂志, 2020, 40(4): 10-16.
[5] 安明晖,田文,韩晓旭,尚红. 表达HIV单链抗体的重组乳酸杆菌的构建及表型分析 *[J]. 中国生物工程杂志, 2019, 39(10): 1-8.
[6] 高鑫,韦攀健,闫卓红,易玲,王小珏,杨斌,张洪涛. 一株针对人EGFR的单链抗体克隆与哺乳细胞表达 *[J]. 中国生物工程杂志, 2018, 38(5): 73-78.
[7] 赵荣,陈含宇,黄春,章晓联,潘勤. 靶向B细胞并特异结合其分泌IL-10的重组融合蛋白的构建、表达和初步鉴定 *[J]. 中国生物工程杂志, 2018, 38(2): 1-6.
[8] 庞倩,陈晶,王小红,王佳. 基于噬菌体展示技术抗黄曲霉毒素B1单链抗体的筛选及其蛋白结构分析 *[J]. 中国生物工程杂志, 2018, 38(12): 41-48.
[9] 王冬冬, 张国利, 岳玉环, 吴广谋, 田园, 刘雨玲, 吉元刚, 王金鹏, 李建, 潘荣荣, 马洪圆. 抗A型产气荚膜梭菌α毒素全人源双价单链抗体的构建、表达及其活性的初步研究[J]. 中国生物工程杂志, 2017, 37(4): 18-25.
[10] 温杰, 宋琳琳, 张莹, 王荷, 何金生, 洪涛. 稳定表达Aβ特异性单链抗体的哺乳动物细胞株构建和功能研究[J]. 中国生物工程杂志, 2017, 37(2): 1-7.
[11] 陈华新, 武静, 赵瑾, 姜鹏. 抗人AFP单链抗体与藻胆蛋白融合蛋白的构建、表达与活性分析[J]. 中国生物工程杂志, 2016, 36(5): 74-80.
[12] 代云见, 张勇侠, 何勇智, 丛聪, 张涛, 王明蓉. 技术与方法Anti-IgE单链抗体纯化工艺研究及活性鉴定[J]. 中国生物工程杂志, 2015, 35(12): 51-57.
[13] 王报贵, 武晓丽, 董素琴, 甘敏, 陈星星, 陈飞, 明星, 徐锋. 抗肠炎沙门氏菌单链抗体制备及其特异性分析[J]. 中国生物工程杂志, 2013, 33(5): 62-67.
[14] 李炳娟, 李玉霞, 李北平, 凌焱, 周围, 李伟东, 林海龙, 梁龙, 刘刚, 张景海, 陈惠鹏. 应用改构的炭疽毒素作为靶向肿瘤细胞的药物递送系统及其效果评价[J]. 中国生物工程杂志, 2013, 33(4): 1-8.
[15] 陈继军, 毛晓燕, 乔玉玲, 毕司英. 抗狂犬病病毒单链抗体的筛选及鉴定[J]. 中国生物工程杂志, 2013, 33(11): 27-31.