Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2023, Vol. 43 Issue (11): 56-65    DOI: 10.13523/j.cb.2304001
综述     
工程化间充质干细胞抗肿瘤研究进展*
王沁尧1,2,王溪溪1,2,李丽2,胡耀晟2,撒亚莲2,**()
1 昆明理工大学医学院 昆明 650500
2 云南省第一人民医院(昆明理工大学附属医院)临床医学研究中心(云南省临床病毒学重点实验室) 昆明 650032
Advances in Engineered Mesenchymal Stem Cells in Tumor Therapy
WANG Qin-yao1,2,WANG Xi-xi1,2,LI Li2,HU Yao-sheng2,SA Ya-lian2,**()
1 Medical School, Kunming University of Science and Technology, Kunming 650500, China
2 Center for Clinical Medicine Research(Yunnan Provincial Key Laboratory of Clinical Virology), The First People’s Hospital of Yunnan Province (Affiliated Hospital of Kunming University of Science and Technology), Kunming 650032, China
 全文: PDF(480 KB)   HTML
摘要:

间充质干细胞(mesenchymal stem cells, MSCs)是一类来源广泛的成体多能干细胞,因其具有低免疫原性、易向受损组织归巢、有旁分泌效应与免疫调节能力以及易于工程化操作等特点,在肿瘤治疗中具有一定优势。尽管目前在肿瘤治疗中应用MSCs存在争议,但已观察到过表达抗肿瘤基因(自杀基因、肿瘤坏死因子、白介素和干扰素等)或荷载溶瘤病毒、纳米颗粒、抗癌药物等经工程化改造和修饰的MSCs及其胞外囊泡能主动归巢到肿瘤组织,发挥抗肿瘤作用。目前已有工程化MSCs应用于复发性多形性胶质母细胞瘤的临床研究。因而概述MSCs特性以及工程化MSCs靶向肿瘤细胞和/或微环境的治疗研究,以期为MSCs临床转化及肿瘤治疗拓展新视野。

关键词: 间充质干细胞肿瘤治疗工程化修饰胞外囊泡    
Abstract:

Mesenchymal stem cells (MSCs) are adult multipotent stem cells possessing the advantages of rich and wide sources, low immunogenicity, homing to the tissue of injury, paracrine activity, immunomodulation capacity, and easiness to be engineered. With the above-mentioned advantages, MSCs may have great application value in the treatment of cancer. Despite the controversial roles of MSC in cancer therapy, engineering MSCs with homing capacity to tumor tissues show great antitumor potential for delivering anticancer agents, suicide genes, and oncolytic viruses to tumors. Current clinical trial utilizing engineered MSCs in GBM treatment was shown to exert anti-GBM activity. Therefore, the following review elaborates on the characteristics of MSCs as well as the effects of engineering MSCs on tumor cells and their microenvironments, in order to provide new insights into MSCs’ value in translational medicine and tumor treatment.

Key words: Mesenchymal stem cells (MSCs)    Tumor treatment    Engineered modification    Extracellular vesicle
收稿日期: 2023-04-04 出版日期: 2023-12-01
ZTFLH:  Q26  
基金资助: *国家自然科学基金(82060028);云南省临床病毒学重点实验室项目(202205AG070053);云南省卫生科技计划(L-2019003)
通讯作者: **撒亚莲     E-mail: sayalian@126.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
王沁尧
王溪溪
李丽
胡耀晟
撒亚莲

引用本文:

王沁尧, 王溪溪, 李丽, 胡耀晟, 撒亚莲. 工程化间充质干细胞抗肿瘤研究进展*[J]. 中国生物工程杂志, 2023, 43(11): 56-65.

WANG Qin-yao, WANG Xi-xi, LI Li, HU Yao-sheng, SA Ya-lian. Advances in Engineered Mesenchymal Stem Cells in Tumor Therapy. China Biotechnology, 2023, 43(11): 56-65.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.2304001        https://manu60.magtech.com.cn/biotech/CN/Y2023/V43/I11/56

细胞来源 疾病类型 移植方式 病例数 安全性和有效性 注册编号/文献
脐带MSCs 急性GVHD 外周血干细胞移植前4~6 h静脉输注(1×106/kg) 50 无输注细胞相关不良反应
单剂量MSCs能促进造血干细胞植入,减少急性GVHD的发病率,疾病复发率下降
ChiCTR-INR-
16008399[20]
同种异体骨髓MSCs 激素难治性慢性GVHD 6~12月内反复静脉输注(2×106/kg) 11 无输注细胞相关不良反应
6名患者疾病进程和生活质量得到改善;CXCL9和CXCL10可作为MSCs治疗的早期生物标志物
NCT01522716[21]
脐带MSCs 激素难治性急性GVHD 静脉注射低剂量(2×106/kg)或高剂量(10×106/kg) 10 半年内无输注细胞相关不良反应
低剂量组和高剂量组输注耐受性良好,未观察到异位组织形成,70%患者的临床症状得到明显改善
NCT03158896[22]
同种异体骨髓MSCs 急性GVHD 脐带血移植前4 h经骨髓腔内注射(≥0.2×106/kg)5 mL 5 一年内无输注细胞相关不良反应
MSCs能促进脐带血移植植活率,且1年内未见疾病复发
UMIN000024291[23]
同种异体骨髓来源MSCs 激素难治性急性GVHD 在使用二线药物的7天内,静脉注射(1×106/kg),每周一次,连续4周为一个周期 203 2年内未观察到输注细胞相关不良反应
MSCs联合巴利西单抗和钙调磷酸酶抑制剂可以增加激素耐药急性GVHD的疗效,减少抗排异药物毒性和GVHD复发风险,并且患者的耐受性良好
NCT02241018[24]
自体骨髓MSCs 难治性急性或慢性GVHD 静脉输注(2×106/kg),按照输注次数分为三组(单剂量、每周2次、每周4次) 11 3个月内未观察到输注细胞相关不良反应,未观察到剂量限制性毒性
难治性急性GVHD组的病人缓解率较高
NCT02359929[25]
脐带MSCs 激素耐药性急性GVHD 静脉输注(1×106/kg或2×106/kg) 7 16周内未观察到输注细胞相关不良反应
显著抑制CD4+和CD8+T细胞增殖,NK细胞数明显增加,而IL-12、IL-17和IL-33水平下降,CCL2和CCL11水平增加
UMIN000032819[26]
同种异体骨髓MSCs 急性GVHD 静脉输注(1×106/kg) 43 30天内未观察到输注细胞相关不良反应
输注MSCs对异体造血干细胞移植后患者T细胞亚群的恢复有积极作用
NCT01941394[27]
表1  MSCs治疗异基因造血干细胞移植后GVHD的临床研究
来源 肿瘤类型 结果 作用机制 参考文献
hBM-MSCs 乳腺癌 抑瘤 分泌细胞外囊泡诱导乳腺癌细胞在骨髓血管周围逐步分化为休眠状态 [31]
hAT-MSCs 乳腺癌 促瘤 吞噬MSCs的乳腺癌细胞使MSR1(CD204)、WNT5A、ELMO1、IL1RL2(IL-36)、ZPLD1和SIRPB1(CD172)表达上调,促进癌症侵袭转移 [32]
hUC-MSCs 乳腺癌 促瘤 通过ERK途径增加N-钙黏着蛋白表达,促进乳腺癌细胞的上皮-间质转化,从而提高肿瘤侵袭和迁移潜力 [33]
hCB-MSCs 肺癌 抑瘤 hCB-MSCs与肺癌细胞自发融合上调FOXF1表达,进而诱导肺癌细胞重新编程为非致瘤性的干细胞样状态,逆转肺癌细胞表型以及恢复p21信号通路 [34]
hBM-MSCs 肺腺癌 促瘤 MSCs可激活肿瘤细胞自噬、提高活性氧含量以及上皮-间质转化,从而增强肺腺癌的侵袭迁移 [35]
mBM-MSCs 黑色素瘤 抑瘤 构建黑色素瘤小鼠模型24 h后静脉注射MSCs,可明显增强体内自NK细胞和T细胞的抗肿瘤能力,进而抑制肿瘤生长,改善实验动物的生存率 [36]
mBM-MSCs 黑色素瘤 促瘤 构建黑色素瘤小鼠模型14天后静脉注射MSCs,可抑制肿瘤浸润性树突状细胞和巨噬细胞的抗原呈递特性,以及降低NK细胞和T细胞的杀瘤能力,进而促进肿瘤生长 [36]
表2  未修饰MSCs在肿瘤治疗中的两面性
来源 转染方式 非编码RNA 肿瘤类型 靶点 参考文献
hBM-MSC 质粒 miRNA-187 前列腺癌 CD276/B7-H3 [64]
hBM-MSC 质粒 LINC00847 骨尤文肉瘤 ceRNA: GFPT1、HIF1A、NEDD9和NOTCH2 [65]
hUC-MSC 质粒 miR-655-3p 食管癌 LMO4/HDAC2-HIF-1α [66]
mBM-MSC 慢病毒 miR-30C 结肠癌 IL-6 [67]
hMSC 脂质体 miR-744-5p M2巨噬细胞 TGFB1 [68]
hUC-MSC 脂质体 miR-15a-5p 胆管癌 CHEK1 [69]
hBM-MSC 质粒 Circ_0006790 胰腺癌 CBX7 [70]
hAT-MSC 慢病毒 miR-199-3p 肝癌 mTOR [71]
hBM-MSC 质粒 miR-7-5p 急性髓系白血病 OSBPL11 [72]
hBM-MSC 脂质体 ALKBH5-shRNA 三阴性乳腺癌 UBE2C [73]
表3  工程化MSCs细胞外囊泡携载非编码RNA用于肿瘤治疗
[1] Weinberg R A. The biology of cancer. 2nd ed., Taylor & Francis Group, LLC, 2013.
[2] Tsimberidou A M, Fountzilas E, Nikanjam M, et al. Review of precision cancer medicine: evolution of the treatment paradigm. Cancer Treatment Reviews, 2020, 86: 102019.
doi: 10.1016/j.ctrv.2020.102019
[3] Ding D C, Shyu W C, Lin S Z. Mesenchymal stem cells. Cell Transplantation, 2011, 20(1): 5-14.
doi: 10.3727/096368910X
[4] Giselle C, James F, Brian A, et al. Concise review: mesenchymal stem cells: their phenotype, differentiation capacity, immunological features, and potential for homing. Stem Cells (Dayton, Ohio), 2007, 25(11): 2739-2749.
doi: 10.1634/stemcells.2007-0197
[5] 李士欣, 华映坤, 王林坪, 等. 人脐带Wharton’s jelly间充质干细胞生物学特性的研究. 中国临床解剖学杂志, 2014, 32(4): 432-436.
Li S X, Hua Y K, Wang L P, et al. Study on biological characterization of Wharton’s jelly mesenchymal stem cells from human umbilical cord. Chinese Journal of Clinical Anatomy, 2014, 32(4): 432-436.
[6] 撒亚莲, 沈晓梅, 史克倩, 等. hMSC对异体DC-CIK细胞分泌细胞因子的影响. 细胞与分子免疫学杂志, 2010, 26(10): 988-991.
Sa Y L, Shen X M, Shi K Q, et al. Effects of human bone marrow mesenchymal stem cells on cytokines secretion from allogeneic dendritic cell activated cytokine-induced killer cells. Chinese Journal of Cellular and Molecular Immunology, 2010, 26(10):988-991.
[7] Dominici M, Le Blanc K, Mueller I, et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy, 2006, 8(4): 315-317.
doi: 10.1080/14653240600855905 pmid: 16923606
[8] Lanza R P, Atala A. Essentials of stem cell biology. 2nd ed. Amsterdam, the Netherlands: Elsevier/Academic Press, 2014.
[9] Farkhad N K, Mahmoudi A, Mahdipour E. How similar are human mesenchymal stem cells derived from different origins? A review of comparative studies. Current Stem Cell Research & Therapy, 2021, 16(8): 980-993.
[10] Ullah I, Subbarao R, Rho G. Human mesenchymal stem cells - current trends and future prospective. Bioscience Reports, 2015, 35(2): BSR20150025.
[11] Ankrum J A, Ong J F, Karp J M. Mesenchymal stem cells: immune evasive, not immune privileged. Nature Biotechnology, 2014, 32(3): 252-260.
doi: 10.1038/nbt.2816 pmid: 24561556
[12] Sun Z, Wang S H, Zhao R C. The roles of mesenchymal stem cells in tumor inflammatory microenvironment. Journal of Hematology & Oncology, 2014, 7(1): 1-10.
[13] Kalluri R, LeBleu V S. The biology,function,and biomedical applications of exosomes. Science, 2020, 367(6478): eaau6977.
doi: 10.1126/science.aau6977
[14] Brennan M Á, Layrolle P, Mooney D J. Biomaterials functionalized with MSC secreted extracellular vesicles and soluble factors for tissue regeneration. Advanced Functional Materials, 2020, 30(37): 1909125.
doi: 10.1002/adfm.v30.37
[15] Lepelletier Y, Lecourt S, Renand A, et al. Galectin-1 and semaphorin-3A are two soluble factors conferring T-cell immunosuppression to bone marrow mesenchymal stem cell. Stem Cells and Development, 2010, 19(7): 1075-1079.
doi: 10.1089/scd.2009.0212 pmid: 19886821
[16] Cheung T S, Bertolino G M, Giacomini C, et al. Mesenchymal stromal cells for graft versus host disease: mechanism-based biomarkers. Frontiers in Immunology, 2020, 11: 1338.
doi: 10.3389/fimmu.2020.01338 pmid: 32670295
[17] Heidari N, Abbasi-Kenarsari H, Namaki S, et al. Adipose-derived mesenchymal stem cell-secreted exosome alleviates dextran sulfate sodium-induced acute colitis by Treg cell induction and inflammatory cytokine reduction. Journal of Cellular Physiology, 2021, 236(8): 5906-5920.
doi: 10.1002/jcp.30275 pmid: 33728664
[18] Harrell C R, Jovicic N, Djonov V, et al. Mesenchymal stem cell-derived exosomes and other extracellular vesicles as new remedies in the therapy of inflammatory diseases. Cells, 2019, 8(12): 1605.
doi: 10.3390/cells8121605
[19] Zhao L, Chen S Q, Yang P X, et al. The role of mesenchymal stem cells in hematopoietic stem cell transplantation: prevention and treatment of graft-versus-host disease. Stem Cell Research & Therapy, 2019, 10(1): 182.
[20] Wang X N, Zhang M, He P. Pre-infusion single-dose mesenchymal stem cells promote platelet engraftment and decrease severe acute graft versus host disease without relapse in haploidentical peripheral blood stem cell transplantation. J Int Med Res, 2020, 48: 300060520920438.
[21] Boberg E, Bahr L, Afram G, et al. Treatment of chronic GvHD with mesenchymal stromal cells induces durable responses: a phase II study. Stem Cells Translational Medicine, 2020, 9(10): 1190-1202.
doi: 10.1002/sctm.20-0099
[22] Soder R P, Dawn B, Weiss M L, et al. A phase I study to evaluate two doses of Wharton’s jelly-derived mesenchymal stromal cells for the treatment of de novo high-risk or steroid-refractory acute graft versus host disease. Stem Cell Reviews and Reports, 2020, 16(5): 979-991.
doi: 10.1007/s12015-020-10015-8
[23] Goto T, Murata M, Nishida T, et al. Phase I clinical trial of intra-bone marrow cotransplantation of mesenchymal stem cells in cord blood transplantation. Stem Cells Translational Medicine, 2021, 10(4): 542-553.
doi: 10.1002/sctm.20-0381 pmid: 33314650
[24] Zhao K, Lin R, Fan Z P, et al. Mesenchymal stromal cells plus basiliximab, calcineurin inhibitor as treatment of steroid-resistant acute graft-versus-host disease: a multicenter, randomized, phase 3, open-label trial. Journal of Hematology & Oncology, 2022, 15(1): 22.
[25] Stenger E, Giver C R, Langston A, et al. Safety of autologous freshly expanded mesenchymal stromal cells for the treatment of graft-versus-host disease. Frontiers in Immunology, 2022, 13: 959658.
doi: 10.3389/fimmu.2022.959658
[26] Nagamura-Inoue T, Kato S, Najima Y, et al. Immunological influence of serum-free manufactured umbilical cord-derived mesenchymal stromal cells for steroid-resistant acute graft-versus-host disease. International Journal of Hematology, 2022, 116(5): 754-769.
doi: 10.1007/s12185-022-03408-7
[27] Petinati N, Davydova Y, Nikiforova K, et al. T cell and cytokine dynamics in the blood of patients after hematopoietic stem cell transplantation and multipotent mesenchymal stromal cell administration. Transplantation and Cellular Therapy, 2023, 29(2): 109.e1-109.e10.
doi: 10.1016/j.jtct.2022.10.030
[28] Harrell C R, Volarevic A, Djonov V G, et al. Mesenchymal stem cell: a friend or foe in anti-tumor immunity. International Journal of Molecular Sciences, 2021, 22(22): 12429.
doi: 10.3390/ijms222212429
[29] Raj A T, Kheur S, Bhonde R, et al. Assessing the effect of human mesenchymal stem cell-derived conditioned media on human cancer cell lines: a systematic review. Tissue and Cell, 2021, 71: 101505.
doi: 10.1016/j.tice.2021.101505
[30] Rubinstein-Achiasaf L, Morein D, Ben-Yaakov H, et al. Persistent inflammatory stimulation drives the conversion of MSCs to inflammatory CAFs that promote pro-metastatic characteristics in breast cancer cells. Cancers, 2021, 13(6): 1472.
doi: 10.3390/cancers13061472
[31] Sandiford O A, Donnelly R J, ElFar M H, et al. Mesenchymal stem cell-secreted extracellular vesicles instruct stepwise dedifferentiation of breast cancer cells into dormancy at the bone marrow perivascular region. Cancer Research, 2021, 81(6): 1567-1582.
doi: 10.1158/0008-5472.CAN-20-2434 pmid: 33500249
[32] Chen Y C, Gonzalez M E, Burman B, et al. Mesenchymal stem/stromal cell engulfment reveals metastatic advantage in breast cancer. Cell Reports, 2019, 27(13): 3916-3926.e5.
doi: 10.1016/j.celrep.2019.05.084
[33] Zhou X H, Li T, Chen Y F, et al. Mesenchymal stem cell-derived extracellular vesicles promote the in vitro proliferation and migration of breast cancer cells through the activation of the ERK pathway. International Journal of Oncology, 2019, 54:1843-1852.
[34] Wei H J, Nickoloff J A, Chen W H, et al. FOXF1 mediates mesenchymal stem cell fusion-induced reprogramming of lung cancer cells. Oncotarget, 2014, 5(19): 9514-9529.
doi: 10.18632/oncotarget.v5i19
[35] Luo D, Hu S Y, Tang C L, et al. Mesenchymal stem cells promote cell invasion and migration and autophagy-induced epithelial-mesenchymal transition in A 549 lung adenocarcinoma cells. Cell Biochemistry and Function, 2018, 36(2): 88-94.
doi: 10.1002/cbf.v36.2
[36] Miloradovic D, Miloradovic D, Markovic B S, et al. The effects of mesenchymal stem cells on antimelanoma immunity depend on the timing of their administration. Stem Cells International, 2020, 2020: 1-13.
[37] Bashyal N, Lee T Y, Chang D Y, et al. Improving the safety of mesenchymal stem cell-based ex vivo therapy using Herpes simplex virus thymidine kinase. Molecules and Cells, 2022, 45(7): 479-494.
doi: 10.14348/molcells.2022.5015
[38] Villatoro A J, Alcoholado C, del Carmen Martín-Astorga M, et al. Suicide gene therapy by canine mesenchymal stem cell transduced with thymidine kinase in a u-87 glioblastoma murine model: secretory profile and antitumor activity. PLoS One, 2022, 17(2): e0264001.
doi: 10.1371/journal.pone.0264001
[39] Oraee-Yazdani S, Tavanaei R, Rostami F, et al. Suicide gene therapy using allogeneic adipose tissue-derived mesenchymal stem cell gene delivery vehicles in recurrent glioblastoma multiforme: a first-in-human, dose-escalation, phase I clinical trial. J Transl Med, 2023, 21:350.
doi: 10.1186/s12967-023-04213-4 pmid: 37245011
[40] Loebinger M R, Eddaoudi A, Davies D, et al. Mesenchymal stem cell delivery of TRAIL can eliminate metastatic cancer. Cancer Research, 2009, 69(10): 4134-4142.
doi: 10.1158/0008-5472.CAN-08-4698 pmid: 19435900
[41] Bae J, Liu L C, Moore C, et al. IL-2 delivery by engineered mesenchymal stem cells re-invigorates CD8+ T cells to overcome immunotherapy resistance in cancer. Nature Cell Biology, 2022, 24(12): 1754-1765.
doi: 10.1038/s41556-022-01024-5
[42] Zhao C Y, Pu Y, Zhang H D, et al. IL10-modified human mesenchymal stem cells inhibit pancreatic cancer growth through angiogenesis Inhibition. Journal of Cancer, 2020, 11(18): 5345-5352.
doi: 10.7150/jca.38062 pmid: 32742480
[43] Zhang H X, Feng Y, Xie X X, et al. Engineered mesenchymal stem cells as a biotherapy platform for targeted photodynamic immunotherapy of breast cancer. Advanced Healthcare Materials, 2022, 11(6): e2101375.
[44] Jing W, Chen Y, Lu L, et al. Human umbilical cord blood-derived mesenchymal stem cells producing IL 15 eradicate established pancreatic tumor in syngeneic mice. Molecular Cancer Therapeutics, 2014, 13(8): 2127-2137.
doi: 10.1158/1535-7163.MCT-14-0175 pmid: 24928851
[45] Liu X Y, Hu J X, Li Y Y, et al. Mesenchymal stem cells expressing interleukin-18 inhibit breast cancer in a mouse model. Oncology Letters, 2018, 15:6265-6274.
doi: 10.3892/ol.2018.8166 pmid: 29725393
[46] McGuire J J, Frieling J S, Lo C H, et al. Mesenchymal stem cell-derived interleukin-28 drives the selection of apoptosis resistant bone metastatic prostate cancer. Nature Communications, 2021, 12(1): 1-13.
doi: 10.1038/s41467-020-20314-w
[47] Zhang T, Wang Y, Li Q, et al. Mesenchymal stromal cells equipped by IFNα empower T cells with potent anti-tumor immunity. Oncogene, 2022, 41(13): 1866-1881.
doi: 10.1038/s41388-022-02201-4 pmid: 35145233
[48] Park J H, Ryu C H, Kim M J, et al. Combination therapy for gliomas using temozolomide and interferon-beta secreting human bone marrow derived mesenchymal stem cells. Journal of Korean Neurosurgical Society, 2015, 57(5): 323-328.
doi: 10.3340/jkns.2015.57.5.323
[49] Yin P, Gui L M, Wang C H, et al. Targeted delivery of CXCL9 and OX40L by mesenchymal stem cells elicits potent antitumor immunity. Molecular Therapy: the Journal of the American Society of Gene Therapy, 2020, 28(12): 2553-2563.
doi: 10.1016/j.ymthe.2020.08.005
[50] Ho C T, Wu M H, Chen M J, et al. Combination of mesenchymal stem cell-delivered oncolytic virus with prodrug activation increases efficacy and safety of colorectal cancer therapy. Biomedicines, 2021, 9(5): 548.
doi: 10.3390/biomedicines9050548
[51] Yuan X F, Lu Y, Yang Y Y, et al. Systemic administration of mesenchymal stem cells loaded with a novel oncolytic adenovirus carrying a bispecific T cell engager against hepatocellular carcinoma. OncoImmunology, 2023, 12(1): 2219544.
doi: 10.1080/2162402X.2023.2219544
[52] Xu L N, Xu M, Sun X, et al. Quantitative comparison of gold nanoparticle delivery via the enhanced permeation and retention (EPR) effect and mesenchymal stem cell (MSC)-based targeting. ACS Nano, 2023, 17(3): 2039-2052.
doi: 10.1021/acsnano.2c07295
[53] Xie L X, Zhang C W, Liu M, et al. Nucleus-targeting Manganese dioxide nanoparticles coated with the human umbilical cord mesenchymal stem cell membrane for cancer cell therapy. ACS Applied Materials & Interfaces, 2023, 15(8): 10541-10553.
[54] Takayama Y, Kusamori K, Tsukimori C, et al. Anticancer drug-loaded mesenchymal stem cells for targeted cancer therapy. Journal of Controlled Release, 2021, 329: 1090-1101.
doi: 10.1016/j.jconrel.2020.10.037 pmid: 33098911
[55] Ho T C, Kim H S, Chen Y M, et al. Scaffold-mediated CRISPR-Cas9 delivery system for acute myeloid leukemia therapy. Science Advances, 2021, 7(21): eabg3217.
doi: 10.1126/sciadv.abg3217
[56] Yun W S, Shim M K, Lim S, et al. Mesenchymal stem cell-mediated deep tumor delivery of gold nanorod for photothermal therapy. Nanomaterials, 2022, 12(19): 3410.
doi: 10.3390/nano12193410
[57] Du L, Tao X G, Shen X W.Human umbilical cord mesenchymal stem cell-derived exosomes inhibit migration and invasion of breast cancer cells via miR-21-5p/ZNF367 pathway. Breast Cancer, 2021, 28(4): 829-837.
doi: 10.1007/s12282-021-01218-z
[58] Yu T T, Yu H, Xiao D, et al. Human bone marrow mesenchymal stem cell (hBMSCs)-derived miR-29a-3p-containing exosomes impede laryngocarcinoma cell malignant phenotypes by inhibiting PTEN. Stem Cells International, 2022, 2022: 1-14.
[59] Bongolo C C, Thokerunga E, Yan Q, et al. Exosomes derived from microRNA-27a-3p overexpressing mesenchymal stem cells inhibit the progression of liver cancer through suppression of Golgi membrane protein 1. Stem Cells International, 2022, 2022: 1-14.
[60] Liu P P, Zhang Q, Mi J, et al. Exosomes derived from stem cells of human deciduous exfoliated teeth inhibit angiogenesis in vivo and in vitro via the transfer of miR-100-5p and miR-1246. Stem Cell Res Ther, 2022, 13:89.
doi: 10.1186/s13287-022-02764-9
[61] Wang B Y, Xu Y, Wei Y H, et al. Human mesenchymal stem cell-derived exosomal microRNA-143 promotes apoptosis and suppresses cell growth in pancreatic cancer via target gene regulation. Front Genet, 2021, 12:581694.
doi: 10.3389/fgene.2021.581694
[62] Zhang F, Lu Y Q, Wang M, et al. Exosomes derived from human bone marrow mesenchymal stem cells transfer miR-222-3p to suppress acute myeloid leukemia cell proliferation by targeting IRF2/INPP4B. Molecular and Cellular Probes, 2020, 51: 101513.
doi: 10.1016/j.mcp.2020.101513 pmid: 31968218
[63] Kurniawati I, Liu M C, Hsieh C L, et al. Targeting castration-resistant prostate cancer using mesenchymal stem cell exosomes for therapeutic microRNA-let-7c delivery. Frontiers in Bioscience (Landmark Edition), 2022, 27(9): 256.
[64] Li C G, Sun Z, Song Y J, et al. Suppressive function of bone marrow-derived mesenchymal stem cell-derived exosomal microRNA-187 in prostate cancer. Cancer Biology & Therapy, 2022, 23(1): 1-14.
[65] Huang L, Xiong J, Fu J, et al. Bone marrow mesenchymal stem cell-derived exosomal LINC00847 inhibits the proliferation, migration, and invasion of Ewing sarcoma. Journal of Clinical and Translational Research, 2022, 8:563-576.
pmid: 36518202
[66] Chen M J, Xia Z K, Deng J. Human umbilical cord mesenchymal stem cell-derived extracellular vesicles carrying miR-655-3p inhibit the development of esophageal cancer by regulating the expression of HIF-1α via a LMO4/HDAC2-dependent mechanism. Cell Biology and Toxicology, 2023, 39(4): 1319-1339.
doi: 10.1007/s10565-022-09759-5
[67] Mahjoor M, Afkhami H, Najafi M, et al. The role of microRNA-30c in targeting interleukin 6, as an inflammatory cytokine, in the mesenchymal stem cell: a therapeutic approach in colorectal cancer. Journal of Cancer Research and Clinical Oncology, 2023, 149(7): 3149-3160.
doi: 10.1007/s00432-022-04123-w
[68] Liu L, Cheng M X, Zhang T, et al. Mesenchymal stem cell-derived extracellular vesicles prevent glioma by blocking M2 polarization of macrophages through a miR-744-5p/TGFB1-dependent mechanism. Cell Biology and Toxicology, 2022, 38(4): 649-665.
doi: 10.1007/s10565-021-09652-7 pmid: 34978010
[69] Li N, Wang B M.Suppressive effects of umbilical cord mesenchymal stem cell-derived exosomal miR-15a-5p on the progression of cholangiocarcinoma by inhibiting CHEK1 expression. Cell Death Discovery, 2022, 8: 205.
doi: 10.1038/s41420-022-00932-7 pmid: 35428780
[70] Gao G, Wang L Q, Li C F. Circ_0006790 carried by bone marrow mesenchymal stem cell-derived exosomes regulates S100A11 DNA methylation through binding to CBX7 in pancreatic ductal adenocarcinoma. Am J Cancer Res, 2022, 12:1934-1959.
pmid: 35693076
[71] Lou G H, Chen L, Xia C X, et al. miR-199a-modified exosomes from adipose tissue-derived mesenchymal stem cells improve hepatocellular carcinoma chemosensitivity through mTOR pathway. Journal of Experimental & Clinical Cancer Research: CR, 2020, 39(1): 4.
[72] Jiang D, Wu X, Sun X Y, et al. Bone mesenchymal stem cell-derived exosomal microRNA-7-5p inhibits progression of acute myeloid leukemia by targeting OSBPL11. J Nanobiotechnology, 2022, 20:29.
doi: 10.1186/s12951-021-01206-7
[73] Hu Y, Liu H Y, Xiao X D, et al. Bone marrow mesenchymal stem cell-derived exosomes inhibit triple-negative breast cancer cell stemness and metastasis via an ALKBH5-dependent mechanism. Cancers, 2022, 14(24): 6059.
doi: 10.3390/cancers14246059
[74] Zhou W X, Zhou Y, Chen X L, et al. Pancreatic cancer-targeting exosomes for enhancing immunotherapy and reprogramming tumor microenvironment. Biomaterials, 2021, 268: 120546.
doi: 10.1016/j.biomaterials.2020.120546
[75] Abas B I, Demirbolat G M, Cevik O. Wharton jelly-derived mesenchymal stem cell exosomes induce apoptosis and suppress EMT signaling in cervical cancer cells as an effective drug carrier system of paclitaxel. PLoS One, 2022, 17(9): e0274607.
doi: 10.1371/journal.pone.0274607
[76] Chen M Z, Li Y Y, Ma N F, et al. Mesenchymal stem cell-derived exosomes loaded with 5-Fu against cholangiocarcinoma in vitro. Molecular Medicine Reports, 2022, 25(6): 213.
doi: 10.3892/mmr
[77] Wei H X, Chen F, Chen J Y, et al. Mesenchymal stem cell derived exosomes as nanodrug carrier of doxorubicin for targeted osteosarcoma therapy via SDF1-CXCR4 axis. International Journal of Nanomedicine, 2022, 17: 3483-3495.
doi: 10.2147/IJN.S372851 pmid: 35959282
[78] He X M, Hong W Q, Yang J Y, et al. Spontaneous apoptosis of cells in therapeutic stem cell preparation exert immunomodulatory effects through release of phosphatidylserine. Signal Transduction and Targeted Therapy, 2021, 6(1): 1-14.
doi: 10.1038/s41392-020-00451-w
[79] Pang S H M, D’Rozario J, Mendonca S, et al. Mesenchymal stromal cell apoptosis is required for their therapeutic function. Nature Communications, 2021, 12(1): 1-19.
doi: 10.1038/s41467-020-20314-w
[80] Wang J, Cao Z Y, Wang P P, et al. Apoptotic extracellular vesicles ameliorate multiple myeloma by restoring fas-mediated apoptosis. ACS Nano, 2021, 15(9): 14360-14372.
doi: 10.1021/acsnano.1c03517 pmid: 34506129
[1] 董蒨蒨, 李玉淼. CAR-T在血液类恶性肿瘤中的研究进展*[J]. 中国生物工程杂志, 2023, 43(6): 43-53.
[2] 林鹏, 钱菁, 冯强, 雷琎, 江亚, 杨举伦. 单链抗体的制备及其在肿瘤诊疗中的应用*[J]. 中国生物工程杂志, 2023, 43(6): 76-86.
[3] 王泽华, 张丽昀, 马春燕. 间充质干细胞来源细胞外囊泡对肺部疾病作用研究进展*[J]. 中国生物工程杂志, 2023, 43(5): 76-84.
[4] 靖金鹏, 朱朝军, 张朝晖. 人羊膜来源干细胞的生物学特性及应用潜力*[J]. 中国生物工程杂志, 2023, 43(4): 79-91.
[5] 姚芷昕,李婉明. 核酸适配体在三阴性乳腺癌诊疗中的研究进展*[J]. 中国生物工程杂志, 2022, 42(7): 62-68.
[6] 毛露珈,史恩宇,王瀚平,单天贺,王银松,王悦. 细菌外膜囊泡在抗肿瘤治疗方面的研究进展*[J]. 中国生物工程杂志, 2022, 42(5): 100-105.
[7] 邓嘉强, 李韦瑶, 钟丽君, 余树民. 自噬与间充质干细胞衰老的关系研究进展[J]. 中国生物工程杂志, 2022, 42(3): 55-61.
[8] 王彧,白岳丘,田易晓,王新月,黄庆生. mRNA疫苗在疾病预防与治疗中的研究进展与展望[J]. 中国生物工程杂志, 2022, 42(10): 51-59.
[9] 李开秀,司维. 间充质干细胞来源的外泌体治疗炎症性肠病研究进展*[J]. 中国生物工程杂志, 2021, 41(7): 66-73.
[10] 王宇轩,陈婷,张永亮. MiR-148生物学功能研究进展*[J]. 中国生物工程杂志, 2021, 41(7): 74-80.
[11] 吕慧中,赵晨辰,朱链,许娜. 外泌体靶向递药在肿瘤治疗中的进展[J]. 中国生物工程杂志, 2021, 41(5): 79-86.
[12] 原博,王杰文,康广博,黄鹤. 双特异性纳米抗体的研究进展及其应用 *[J]. 中国生物工程杂志, 2021, 41(2/3): 78-88.
[13] 赵久梅,王哲,李学英. 调控软骨形成的信号通路及相关因子在骨髓间充质干细胞骨向分化中的作用*[J]. 中国生物工程杂志, 2021, 41(10): 62-72.
[14] 苑亚坤,刘广洋,刘拥军,谢亚芳,吴昊. 间充质干细胞基础研究与临床转化的中美比较[J]. 中国生物工程杂志, 2020, 40(4): 97-107.
[15] 陈利军,屈晶晶,项春生. 间充质干细胞在2019新型冠状病毒肺炎(COVID-19)中的治疗潜能、临床研究与应用前景*[J]. 中国生物工程杂志, 2020, 40(11): 43-55.