Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2023, Vol. 43 Issue (9): 1-8    DOI: 10.13523/j.cb.2303061
研究报告     
基于贻贝和沙堡蠕虫的仿生黏附肽构建及评价*
安文政,刘青,张超,邢微微,蔡贵玲,付文亮**(),徐东刚**()
军事科学院军事医学研究院 军事认知与脑科学研究所 北京 100850
Construction and Evaluation of Biomimetic Adhesion Peptides Based on Mussel and Phragmatopoma californica
AN Wen-zheng,LIU Qing,ZHANG Chao,XING Wei-wei,CAI Gui-ling,FU Wen-liang**(),XU Dong-gang**()
Institute of Military Cognition and Brain Sciences, Institute of Military Medical Sciences, Academy of Military Sciences, Beijing 100850, China
 全文: PDF(1652 KB)   HTML
摘要:

目的:基于仿生学原理设计、合成具备黏附性能的阴、阳离子肽,并分析其混合后对黏附力的影响,为新型仿生黏附材料研制奠定基础。方法:分析贻贝足蛋白5(mussel foot protein 5,Mfp5)和沙堡蠕虫分泌蛋白3(cement precursor protein of the Phragmatopoma californica 3,Pc3)的结构特点,理性设计出黏附性能较好的阴、阳离子肽。通过拉力强度试验机、原子力显微镜(atomic force microscope,AFM)及石英晶体微天平(quartz crystal microbalance,QCM)等对其黏附力和吸附量等参数进行检测,并从多肽组成和相互作用等方面分析其黏附机制。结果:阴、阳离子肽通过多肽固相合成法合成,纯度达到95%以上。拉力测试表明阴、阳离子肽的黏附力随固化时间增加而增大,最高分别达到174.04 kPa及180.11 kPa,并且两者混合后黏附力显著增强,等比例混合后高达347.81 kPa;QCM检测表明阳离子肽、阴阳离子肽混合物对金(aurum,Au)表面的吸附量可分别达到82.67 ng/cm2和151.53 ng/cm2;AFM检测阴、阳离子肽的平均微观黏附力分别为5.43 nN及4.95 nN,且两者等比例混合后可提高至18.54 nN。结论:基于贻贝和沙堡蠕虫构建的阴、阳离子肽具备良好的黏附性能,且其黏附力可通过静电力介导的复合凝聚显著提高,该结果为新型仿生黏附材料研制提供了依据。

关键词: 贻贝沙堡蠕虫黏附肽静电作用复合凝聚    
Abstract:

Objective: Inspired by the principle of bionics, both anionic and cationic peptides with adhesive properties are designed and analyzed the effect of their mixing on adhesion to lay the foundation for the development of new bionic adhesive materials. Methods: The structural characteristics of mussel foot protein 5 (Mfp5) and cement precursor protein of the phragmatopoma californica 3 (Pc3) were analyzed, according to which the anionic and cationic peptides with adhesion properties were designed and screened. The adhesive force and adsorption capacity of these peptides were tested by tensile strength testing machine, atomic force microscope (AFM) and Quartz crystal microbalance (QCM). Furthermore, their underlying adhesion mechanisms were analyzed in terms of their compositions and interactions. Results: The anionic and cationic peptides with the purity of over 95% were synthesized using the solid phase peptide synthesis method. The tensile test showed that the adhesive forces of anionic and cationic peptides increased with the extension of curing time, with the highest value reaching 174.04 kPa and 180.11 kPa, respectively. In addition, the adhesive force of the mixed anionic and cationic peptides was significantly enhanced compared to their own adhesive forces, and the adhesive force of their mixture mixed in equal proportions reached 347.81 kPa. The QCM results showed that the adsorption capacity of cationic peptide, and the mixture of both anionic and cationic peptides on gold (Au) surface reached 82.67 ng/cm2 and 151.53 ng/cm2, respectively. The average microscopic adhesions of anionic and cationic peptides detected by AFM were 5.43 nN and 4.95 nN, respectively, while the average microscopic adhesion of their mixture mixed in equal proportions reached 18.54 nN. Conclusion: The anionic and cationic peptides designed based on mussel and Phragmatopoma californica had certain adhesion properties, which could be significantly increased by electrostatic force mediated complex condensation. Therefore, our study provides a basis for the development of new bionic adhesion materials.

Key words: Mussel    Phragmatopoma californica    Adhesion peptide    Electrostatic action    Complex condensation
收稿日期: 2023-03-22 出版日期: 2023-10-08
ZTFLH:  Q819  
基金资助: * 国防科技工业局基础科研课题(JCKY2018548C001)
通讯作者: ** 电子信箱:xudg@bmi.ac.cn;fwl86@139.com   
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
安文政
刘青
张超
邢微微
蔡贵玲
付文亮
徐东刚

引用本文:

安文政, 刘青, 张超, 邢微微, 蔡贵玲, 付文亮, 徐东刚. 基于贻贝和沙堡蠕虫的仿生黏附肽构建及评价*[J]. 中国生物工程杂志, 2023, 43(9): 1-8.

AN Wen-zheng, LIU Qing, ZHANG Chao, XING Wei-wei, CAI Gui-ling, FU Wen-liang, XU Dong-gang. Construction and Evaluation of Biomimetic Adhesion Peptides Based on Mussel and Phragmatopoma californica. China Biotechnology, 2023, 43(9): 1-8.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.2303061        https://manu60.magtech.com.cn/biotech/CN/Y2023/V43/I9/1

图1  阴离子肽(a)及阳离子肽(b)的MS鉴定
图2  阴离子肽(a)及阳离子肽(b)的HPLC鉴定
图3  阴、阳离子肽的接触角图(a)及平均值(b)
图4  未Dopa修饰的阴(a)、阳(b)离子肽亲疏水性检测
图5  黏附力测试
图6  阴、阳离子肽的吸附量检测
图7  单分子力谱检测
[1] Zhao H, Sun C J, Stewart R J, et al. Cement proteins of the tube-building polychaete Phragmatopoma californica. Journal of Biological Chemistry, 2005, 280(52): 42938-42944.
doi: 10.1074/jbc.M508457200 pmid: 16227622
[2] Zhang L H, Lipik V, Miserez A. Complex coacervates of oppositely charged co-polypeptides inspired by the sandcastle worm glue. Journal of Materials Chemistry B, 2016, 4(8): 1544-1556.
doi: 10.1039/c5tb02298c pmid: 32263121
[3] Wang J, Scheibel T. Recombinant production of mussel Byssus inspired proteins. Biotechnology Journal, 2018, 13(12): 1800146.
doi: 10.1002/biot.v13.12
[4] DeMartini D G, Errico J M, Sjoestroem S, et al. A cohort of new adhesive proteins identified from transcriptomic analysis of mussel foot glands. Journal of the Royal Society, Interface, 2017, 14(131): 20170151.
doi: 10.1098/rsif.2017.0151
[5] Li N N, Tan L, Yang L, et al. Purification, cDNA clone and recombinant expression of foot protein-3 from Mytilus coruscus. Protein and Peptide Letters, 2011, 18(12): 1265-1272.
doi: 10.2174/092986611797642779
[6] Hwang D S, Gim Y, Yoo H J, et al. Practical recombinant hybrid mussel bioadhesive fp-151. Biomaterials, 2007, 28(24): 3560-3568.
doi: 10.1016/j.biomaterials.2007.04.039 pmid: 17507090
[7] Guo Q, Chen J S, Wang J L, et al. Recent progress in synthesis and application of mussel-inspired adhesives. Nanoscale, 2020, 12(3): 1307-1324.
doi: 10.1039/c9nr09780e pmid: 31907498
[8] Li Y R, Cao Y. The molecular mechanisms underlying mussel adhesion. Nanoscale Advances, 2019, 1(11): 4246-4257.
doi: 10.1039/c9na00582j pmid: 36134404
[9] Danner E W, Kan Y J, Hammer M U, et al. Adhesion of mussel foot protein Mefp-5 to mica: an underwater superglue. Biochemistry, 2012, 51(33): 6511-6518.
doi: 10.1021/bi3002538 pmid: 22873939
[10] Lv Y W, Zhang Y J, Gao W Y, et al. Expression and functional evaluation of Mytilus galloprovincialis foot protein type 5 (Mgfp-5), the recombinant mussel adhesive protein. African Journal of Biotechnology, 2017, 16(36): 1840-1848.
doi: 10.5897/AJB
[11] Stewart R J. Protein-based underwater adhesives and the prospects for their biotechnological production. Applied Microbiology and Biotechnology, 2011, 89(1): 27-33.
doi: 10.1007/s00253-010-2913-8 pmid: 20890598
[12] Silverman H G, Roberto F F. Understanding marine mussel adhesion. Marine Biotechnology, 2007, 9(6): 661-681.
doi: 10.1007/s10126-007-9053-x pmid: 17990038
[13] Shin M, Shin J Y, Kim K, et al. The position of lysine controls the catechol-mediated surface adhesion and cohesion in underwater mussel adhesion. Journal of Colloid and Interface Science, 2020, 563: 168-176.
doi: S0021-9797(19)31550-4 pmid: 31874305
[14] Maier Greg P, Rapp Michael V, Herbert W J, et al. Adaptive synergy between catechol and lysine promotes wet adhesion by surface salt displacement. Science, 2015, 349(6248): 628-632.
doi: 10.1126/science.aab0556 pmid: 26250681
[15] Li Y R, Cheng J, Delparastan P, et al. Molecular design principles of Lysine-DOPA wet adhesion. Nature Communications, 2020, 11(1): 1-8.
doi: 10.1038/s41467-019-13993-7
[16] Dompé M, Cedano-Serrano F J, Heckert O, et al. Thermoresponsive complex coacervate-based underwater adhesive. Advanced Materials, 2019, 31(21): 1808179.
doi: 10.1002/adma.v31.21
[17] Stewart R J, Wang C S, Song I T, et al. The role of coacervation and phase transitions in the sandcastle worm adhesive system. Advances in Colloid and Interface Science, 2017, 239: 88-96.
doi: S0001-8686(16)30109-9 pmid: 27393642
[18] Wang C S, Stewart R J. Localization of the bioadhesive precursors of the sandcastle worm, Phragmatopoma californica (Fewkes). Journal of Experimental Biology, 2012, 215(2): 351-361.
doi: 10.1242/jeb.065011
[1] 薛瑞,姚林,王瑞,罗正山,徐虹,李莎. 重组贻贝足蛋白的研究进展与应用*[J]. 中国生物工程杂志, 2020, 40(11): 82-89.
[2] 卢燕 石屹峰. 利用噬菌体表面展示技术筛选转铁蛋白黏附肽的研究[J]. 中国生物工程杂志, 2010, 30(04): 89-94.