Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2023, Vol. 43 Issue (8): 100-110    DOI: 10.13523/j.cb.2302037
综述     
中链脂肪酸毒性机制及耐受性菌株构建研究进展*
刘梦晓1,2,郝雪雁1,2,韩紫依1,2,房立霞1,2,**(),曹英秀1,2,**()
1 天津大学化工学院 天津 300072
2 天津大学合成生物学前沿科学中心和系统生物工程教育部重点实验室 天津 300072
Advances in Mechanism of Medium-chain Fatty Acid Toxicity and Construction of Tolerant Strains
LIU Meng-xiao1,2,HAO Xue-yan1,2,HAN Zi-yi1,2,FANG Li-xia1,2,**(),CAO Ying-xiu1,2,**()
1 School of Chemical Engineering and Technology,Tianjin University,Tianjin 300072,China
2 Frontier Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (Ministry of Education),Tianjin 300072,China
 全文: PDF(799 KB)   HTML
摘要:

中链脂肪酸(medium-chain fatty acids,MCFAs)作为一种重要的平台化学品,被广泛应用到能源、食品和医药等行业。工业微生物发酵生产MCFAs是一条绿色环保的路线,但MCFAs会对微生物细胞膜造成损伤,并导致细胞pH、渗透压失衡及氧化应激,从而严重抑制细胞的生长速率和生产能力。因此,构建MCFAs耐受性工业微生物菌株,有助于进一步提高MCFAs的生产效率。以大肠杆菌和酿酒酵母等工业微生物为例,首先简介了MCFAs对微生物细胞的毒性机制。其次综述了运用膜改造、转运体筛选等理性代谢工程手段构建MCFAs耐受性菌株的相关研究进展,并概括了运用适应性进化、代谢通量分析等方法系统性挖掘MCFAs耐受靶点进而增强菌株耐受性的研究进展。最后对后续提高工业微生物MCFAs耐受性和生产能力的研究方向进行了展望。

关键词: 工业微生物中链脂肪酸膜损伤耐受性转运体    
Abstract:

As important platform chemicals, medium-chain fatty acids (MCFAs) are widely used in industries such as energy, food and medicine. The production of MCFAs by industrial microbial fermentation provides a green and environmentally-friendly route, but MCFAs can cause membrane damage, cell pH and osmotic pressure imbalance and oxidative stress, resulting in inhibition of cell growth rate and production capacity. Hence, the construction of MCFA-tolerant industrial microbial strains will improve the production efficiency of MCFAs. In this paper, taking industrial microorganisms such as Escherichia coli and Saccharomyces cerevisiae as examples, the toxicity mechanism of MCFAs to microbial cells is first introduced. Second, the relevant research on using rational metabolic engineering methods such as membrane modification and transporter screening to construct MCFA-tolerant strains is reviewed. Meanwhile, the paper reviews the research progress on the use of such methods as adaptive evolution and metabolic flux analysis to systematically mine MCFA-tolerant targets and improve strain tolerance. Finally, the future research directions for improving the tolerance and production capacity of MCFAs in industrial microorganisms are discussed.

Key words: Industrial microbes    Medium-chain fatty acids(MCFA)    Membrane damage    Tolerance    Transporter
收稿日期: 2023-02-21 出版日期: 2023-09-05
ZTFLH:  Q819  
基金资助: 国家重点研发计划(2021YFC2104400);国家自然科学基金(NSFC22078240)
通讯作者: **电子信箱:caoyingxiu@tju.edu.cn; lxfang@tju.edu.cn   
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
刘梦晓
郝雪雁
韩紫依
房立霞
曹英秀

引用本文:

刘梦晓, 郝雪雁, 韩紫依, 房立霞, 曹英秀. 中链脂肪酸毒性机制及耐受性菌株构建研究进展*[J]. 中国生物工程杂志, 2023, 43(8): 100-110.

LIU Meng-xiao, HAO Xue-yan, HAN Zi-yi, FANG Li-xia, CAO Ying-xiu. Advances in Mechanism of Medium-chain Fatty Acid Toxicity and Construction of Tolerant Strains. China Biotechnology, 2023, 43(8): 100-110.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.2302037        https://manu60.magtech.com.cn/biotech/CN/Y2023/V43/I8/100

图1  MCFAs对微生物的毒性机制
策略 菌株 方法 胁迫条件 耐受表型及产量 参考文献
膜改造 E.coli MG1655 过表达地芽孢杆菌的硫酯酶GeoTE 细胞存活率比对照菌高33.1%,MCFAs产量比对照菌高41%,653 mg/L [35]
E.coli JW1794 敲除酰基-ACP合成酶基因aas 5 mmol/L月桂酸 细胞存活率提高1倍,MCFAs产量比对照菌高20%,690 mg/L [36]
E.coli MG1655 过表达铜绿假单胞菌的顺反异构酶基因cti 20 mmol/L辛酸 比生长速率提高13%,辛酸产量比对照菌高41%,43.7 mg/L [37]
E.coli MG1655 过表达磷脂酰丝氨酸合酶基因pssA 20 mmol/L辛酸 比生长速率比对照菌高29%,辛酸产量比对照菌高46%,220 mg/L [38]
S. cerevisiae 组合调控膜不对称调节因子Lem3和Sfk1表达水平 0.25 mmol/L癸酸 细胞存活率提高57.5%,MCFAs产量比对照菌高13.3%,273.5 mg/L [39]
E.coli MG1655 敲除多重抗逆性外膜蛋白基因bhsA 10 mmol/L辛酸 比生长速率提高36.3% [40]
S. cerevisiae 过表达突变的乙酰辅酶A羧化酶(1 157位丝氨酸替换为丙氨酸) 0.9 mmol/L辛酸 细胞存活率比对照菌高10倍 [41]
转运体筛选 E.coli MG1655 筛选获得转运体ArcAB并过表达 29 mmol/L 癸酸 癸酸的最小抑制浓度由0.5 g/L提高至5 g/L [42]
E.coli JM109 筛选获得转运体AcrE、MdtE和MdtC并组合过表达 MCFAs产量提高2倍,1.6 g/L [43]
Synechococcus
elongatus PCC 7942
筛选获得转运体RndA1B1并过表达 100 μmol/L月桂酸 工程菌在胁迫条件下生长,对照菌未生长 [44]
S. cerevisiae 转运体Tpo1定向进化 0.47 mmol/L癸酸 最大OD600从3.2提高至4.0,MCFAs产量提高0.8~3.2倍 [13]
E.coli MG1655 过表达外膜蛋白FadL并敲除OmpF 10 mmol/L辛酸 比生长速率比对照菌高18% [18]
E.coli BL21 过表达膜蛋白CAV1 5 mmol/L壬酸 细胞存活率比对照菌高50% [45]
E.coli BL21 筛选获得异源转运蛋白AcrE和AcrF并过表达 MCFAs产量提高2.5倍,2.0 g/L [46]
应激响应调控 S.cerevisiae 动态调控肌动蛋白细胞骨架表达水平 0.20 mmol/L癸酸 最大OD600比对照菌高36%,MCFAs产量比对照菌高37.3%,692.3 mg/L [47]
E.coli BL21 过表达rcsBdsrA基因激活GDAR耐酸系统 5 mmol/L庚酸 细胞存活率比对照菌高28% [48]
表1  理性代谢工程构建MCFAs耐受性菌株策略
图2  膜改造示意图
策略 菌株 方法 胁迫条件 耐受表型及产量 参考文献
适应性进化 E.coli MG1655 基因waaG突变恢复、rpoCbasR突变组合表达 20 mmol/L辛酸 比生长速率比对照菌高2.2倍,MCFAs产量提高近10倍,780 mg/L [59- 60]
S.cerevisiae 敲除基因pdr1和osh2 2.77 mmol/L辛酸 比生长速率提高近5倍,MCFAs产量提高0.3~2.2倍 [13]
E.coli MG1655 敲除基因fadD 19 mmol/L壬酸 能够耐受胁迫条件,并以壬酸为碳源 [61]
E.coli 自然恶劣环境进化 10 mmol/L辛酸 MCFAs产量比对照菌高约5倍,251 mg/L [62]
代谢通量分析 E.coli MG1655 外源补充丙酮酸 25 mmol/L辛酸 生长速率提高25.8% [63]
E.coli MG1655 过表达fabZ并敲除fadEfumACackA 辛酸产量提高82%,500 mg/L [64]
组学分析 S.cerevisiae 外源补充油酸 1 mmol/L辛酸 比生长速率比对照菌高6.9倍 [19]
S.cerevisiae 过表达基因RPL40B 辛酸产量提高40%,50.4 mg/L [65]
E.coli MG1655 敲除基因ompF 15 mmol/L辛酸 耐受前后OD600最大差值从3.1降低至2.7 [66]
S.cerevisiae 挖掘出MCFAs响应型启动子pPDR12、pTDH1和pPHO3 1 mmol/L己酸
或月桂酸
能够响应MCFAs上调基因表达 [67]
表2  系统性靶点挖掘增强MCFAs耐受性策略
图3  适应性进化示意图
[1] Stamatopoulou P, Malkowski J, Conrado L, et al. Fermentation of organic residues to beneficial chemicals: a review of medium-chain fatty acid production. Processes, 2020, 8(12): 1571.
doi: 10.3390/pr8121571
[2] Steinbusch K J J, Hamelers H V M, Plugge C M, et al. Biological formation of caproate and caprylate from acetate: fuel and chemical production from low grade biomass. Energy & Environmental Science, 2011, 4(1): 216-224.
[3] Kucek L A, Spirito C M, Angenent L T. High n-caprylate productivities and specificities from dilute ethanol and acetate: chain elongation with microbiomes to upgrade products from syngas fermentation. Energy & Environmental Science, 2016, 9(11): 3482-3494.
[4] Angenent L T, Richter H, Buckel W, et al. Chain elongation with reactor microbiomes: open-culture biotechnology to produce biochemicals. Environmental Science & Technology, 2016, 50(6): 2796-2810.
doi: 10.1021/acs.est.5b04847
[5] Korstanje T J, van der Vlugt J I, Elsevier C J, et al. Hydrogenation of carboxylic acids with a homogeneous cobalt catalyst. Science, 2015, 350(6258): 298-302.
[6] Choi K, Jeon B S, Kim B C, et al. In situ biphasic extractive fermentation for hexanoic acid production from sucrose by Megasphaera elsdenii NCIMB 702410. Applied Biochemistry and Biotechnology, 2013, 171(5): 1094-1107.
doi: 10.1007/s12010-013-0310-3
[7] Wu Q L, Jiang Y, Chen Y, et al. Opportunities and challenges in microbial medium chain fatty acids production from waste biomass. Bioresource Technology, 2021, 340: 125633.
doi: 10.1016/j.biortech.2021.125633
[8] Moscoviz R, Trably E, Bernet N, et al. The environmental biorefinery: state-of-the-art on the production of hydrogen and value-added biomolecules in mixed-culture fermentation. Green Chemistry, 2018, 20(14): 3159-3179.
doi: 10.1039/C8GC00572A
[9] Sarria S, Kruyer N S, Peralta-Yahya P. Microbial synthesis of medium-chain chemicals from renewables. Nature Biotechnology, 2017, 35(12): 1158-1166.
doi: 10.1038/nbt.4022 pmid: 29220020
[10] Yan Q, Pfleger B F. Revisiting metabolic engineering strategies for microbial synthesis of oleochemicals. Metabolic Engineering, 2020, 58: 35-46.
doi: S1096-7176(19)30113-2 pmid: 31022535
[11] Sandoval N R, Papoutsakis E T. Engineering membrane and cell-wall programs for tolerance to toxic chemicals: beyond solo genes. Current Opinion in Microbiology, 2016, 33: 56-66.
doi: S1369-5274(16)30085-6 pmid: 27376665
[12] Jarboe L R, Royce L A, Liu P. Understanding biocatalyst inhibition by carboxylic acids. Frontiers in Microbiology, 2013, 4: 272.
doi: 10.3389/fmicb.2013.00272 pmid: 24027566
[13] Zhu Z W, Hu Y T, Teixeira P G, et al. Multidimensional engineering of Saccharomyces cerevisiae for efficient synthesis of medium-chain fatty acids. Nature Catalysis, 2020, 3(1): 64-74.
doi: 10.1038/s41929-019-0409-1
[14] Royce L A, Boggess E, Fu Y, et al. Transcriptomic analysis of carboxylic acid challenge in Escherichia coli: beyond membrane damage. PLoS One, 2014, 9(2): e89580.
doi: 10.1371/journal.pone.0089580
[15] Sawant N, Singh H, Appukuttan D. Overview of the cellular stress responses involved in fatty acid overproduction in E. coli. Molecular Biotechnology, 2022, 64(4): 373-387.
doi: 10.1007/s12033-021-00426-4
[16] Borrull A, López-Martínez G, Poblet M, et al. New insights into the toxicity mechanism of octanoic and decanoic acids on Saccharomyces cerevisiae. Yeast, 2015, 32(5): 451-460.
doi: 10.1002/yea.3071
[17] Royce L A, Liu P, Stebbins M J, et al. The damaging effects of short chain fatty acids on Escherichia coli membranes. Applied Microbiology and Biotechnology, 2013, 97(18): 8317-8327.
doi: 10.1007/s00253-013-5113-5 pmid: 23912117
[18] Tan Z G, Black W, Yoon J M, et al. Improving Escherichia coli membrane integrity and fatty acid production by expression tuning of FadL and OmpF. Microbial Cell Factories, 2017, 16(1): 38.
doi: 10.1186/s12934-017-0650-8
[19] Liu P, Chernyshov A, Najdi T, et al. Membrane stress caused by octanoic acid in Saccharomyces cerevisiae. Applied Microbiology and Biotechnology, 2013, 97(7): 3239-3251.
doi: 10.1007/s00253-013-4773-5
[20] Lennen R M, Kruziki M A, Kumar K, et al. Membrane stresses induced by overproduction of free fatty acids in Escherichia coli. Applied and Environmental Microbiology, 2011, 77(22): 8114-8128.
doi: 10.1128/AEM.05421-11
[21] Guan N Z, Liu L. Microbial response to acid stress: mechanisms and applications. Applied Microbiology and Biotechnology, 2020, 104(1): 51-65.
doi: 10.1007/s00253-019-10226-1 pmid: 31773206
[22] Roe A J, McLaggan D, Davidson I, et al. Perturbation of anion balance during inhibition of growth of Escherichia coli by weak acids. Journal of Bacteriology, 1998, 180(4): 767-772.
doi: 10.1128/JB.180.4.767-772.1998 pmid: 9473028
[23] He L, Xiao Y, Gebreselassie N, et al. Central metabolic responses to the overproduction of fatty acids in Escherichia coli based on 13C-metabolic flux analysis. Biotechnology and Bioengineering, 2014, 111(3): 575-585.
doi: 10.1002/bit.25124
[24] Ricke S. Perspectives on the use of organic acids and short chain fatty acids as antimicrobials. Poultry Science, 2003, 82(4): 632-639.
doi: 10.1093/ps/82.4.632 pmid: 12710485
[25] Warnecke T, Gill R T. Organic acid toxicity, tolerance, and production in Escherichia coli biorefining applications. Microbial Cell Factories, 2005, 4: 25.
pmid: 16122392
[26] Yung T W, Jonnalagadda S, Balagurunathan B, et al. Transcriptomic analysis of 3-hydroxypropanoic acid stress in Escherichia coli. Applied Biochemistry and Biotechnology, 2016, 178(3): 527-543.
doi: 10.1007/s12010-015-1892-8
[27] Gough D R, Cotter T G. Hydrogen peroxide: a Jekyll and Hyde signalling molecule. Cell Death & Disease, 2011, 2(10): e213.
[28] Ezraty B, Gennaris A, Barras F, et al. Oxidative stress, protein damage and repair in bacteria. Nature Reviews Microbiology, 2017, 15(7): 385-396.
doi: 10.1038/nrmicro.2017.26 pmid: 28420885
[29] Imlay J A. The molecular mechanisms and physiological consequences of oxidative stress: lessons from a model bacterium. Nature Reviews Microbiology, 2013, 11(7): 443-454.
doi: 10.1038/nrmicro3032 pmid: 23712352
[30] Pradenas G A, Paillavil B A, Reyes-Cerpa S, et al. Reduction of the monounsaturated fatty acid content of Escherichia coli results in increased resistance to oxidative damage. Microbiology, 2012, 158(5): 1279-1283.
doi: 10.1099/mic.0.056903-0
[31] Cabiscol E, Tamarit J, Ros J. Oxidative stress in bacteria and protein damage by reactive oxygen species. Int Microbiol, 2000, 3(1): 3-8.
pmid: 10963327
[32] Chen Y Y, Gänzle M G. Influence of cyclopropane fatty acids on heat, high pressure, acid and oxidative resistance in Escherichia coli. International Journal of Food Microbiology, 2016, 222: 16-22.
doi: 10.1016/j.ijfoodmicro.2016.01.017
[33] Janβen H J, Steinbüchel A. Fatty acid synthesis in Escherichia coli and its applications towards the production of fatty acid based biofuels. Biotechnology for Biofuels, 2014, 7(1): 7.
doi: 10.1186/1754-6834-7-7
[34] Avery S. Molecular targets of oxidative stress. Biochemical Journal, 2011, 434(2): 201-210.
doi: 10.1042/BJ20101695 pmid: 21309749
[35] Lennen R M, Pfleger B F. Modulating membrane composition alters free fatty acid tolerance in Escherichia coli. PLoS One, 2013, 8(1): e54031.
doi: 10.1371/journal.pone.0054031
[36] Sherkhanov S, Korman T P, Bowie J U. Improving the tolerance of Escherichia coli to medium-chain fatty acid production. Metabolic Engineering, 2014, 25: 1-7.
doi: 10.1016/j.ymben.2014.06.003 pmid: 24932721
[37] Tan Z G, Yoon J M, Nielsen D R, et al. Membrane engineering via trans unsaturated fatty acids production improves Escherichia coli robustness and production of biorenewables. Metabolic Engineering, 2016, 35: 105-113.
doi: 10.1016/j.ymben.2016.02.004
[38] Tan Z G, Khakbaz P, Chen Y X, et al. Engineering Escherichia coli membrane phospholipid head distribution improves tolerance and production of biorenewables. Metabolic Engineering, 2017, 44: 1-12.
doi: 10.1016/j.ymben.2017.08.006
[39] Liu H, Yuan W J, Zhou P, et al. Engineering membrane asymmetry to increase medium-chain fatty acid tolerance in Saccharomyces cerevisiae. Biotechnology and Bioengineering, 2022, 119(1): 277-286.
doi: 10.1002/bit.v119.1
[40] Santoscoy M C, Jarboe L R. Streamlined assessment of membrane permeability and its application to membrane engineering of Escherichia coli for octanoic acid tolerance. Journal of Industrial Microbiology & Biotechnology, 2019, 46(6): 843-853.
[41] Besada-Lombana P B, Fernandez-Moya R, Fenster J, et al. Engineering Saccharomyces cerevisiae fatty acid composition for increased tolerance to octanoic acid. Biotechnology and Bioengineering, 2017, 114(7): 1531-1538.
doi: 10.1002/bit.26288 pmid: 28294288
[42] Lennen R M, Politz M G, Kruziki M A, et al. Identification of transport proteins involved in free fatty acid efflux in Escherichia coli. Journal of Bacteriology, 2013, 195(1): 135-144.
doi: 10.1128/JB.01477-12
[43] Wu J J, Wang Z, Zhang X, et al. Improving medium chain fatty acid production in Escherichia coli by multiple transporter engineering. Food Chemistry, 2019, 272: 628-634.
doi: 10.1016/j.foodchem.2018.08.102
[44] Kato A, Takatani N, Use K, et al. Identification of a cyanobacterial RND-type efflux system involved in export of free fatty acids. Plant and Cell Physiology, 2015, 56(12): 2467-2477.
doi: 10.1093/pcp/pcv150 pmid: 26468506
[45] Shin J, Yu J, Park M, et al. Endocytosing Escherichia coli as a whole-cell biocatalyst of fatty acids. ACS Synthetic Biology, 2019, 8(5): 1055-1066.
doi: 10.1021/acssynbio.8b00519
[46] Peng H, Zhou L, Duan X G, et al. A multi-layer genome mining and phylogenomic analysis to construct efficient and autonomous efflux system for medium chain fatty acids. Food Materials Research, 2022, 2(1): 1-14.
[47] Liu H, Zhou P, Qi M Y, et al. Enhancing biofuels production by engineering the actin cytoskeleton in Saccharomyces cerevisiae. Nature Communications, 2022, 13(1): 1-14.
doi: 10.1038/s41467-021-27699-2
[48] Woo J M, Kim J W, Song J W, et al. Activation of the glutamic acid-dependent acid resistance system in Escherichia coli BL21(DE3) leads to increase of the fatty acid biotransformation activity. PLoS One, 2016, 11(9): e0163265.
[49] Mohedano M T, Konzock O, Chen Y. Strategies to increase tolerance and robustness of industrial microorganisms. Synthetic and Systems Biotechnology, 2022, 7(1): 533-540.
doi: 10.1016/j.synbio.2021.12.009 pmid: 35024480
[50] Guo L, Pang Z X, Gao C, et al. Engineering microbial cell morphology and membrane homeostasis toward industrial applications. Current Opinion in Biotechnology, 2020, 66: 18-26.
doi: S0958-1669(20)30059-8 pmid: 32569960
[51] Salvador López J M, Van Bogaert I N A. Microbial fatty acid transport proteins and their biotechnological potential. Biotechnology and Bioengineering, 2021, 118(6): 2184-2201.
doi: 10.1002/bit.27735 pmid: 33638355
[52] Wu X, Liu J Y, Liu Z Q, et al. Microbial cell surface engineering for high-level synthesis of bio-products. Biotechnology Advances, 2022, 55: 107912.
doi: 10.1016/j.biotechadv.2022.107912
[53] Kültz D. Molecular and evolutionary basis of the cellular stress response. Annual Review of Physiology, 2005, 67: 225-257.
pmid: 15709958
[54] Thevissen K, Ayscough K R, Aerts A M, et al. Miconazole induces changes in actin cytoskeleton prior to reactive oxygen species induction in yeast. Journal of Biological Chemistry, 2007, 282(30): 21592-21597.
doi: 10.1074/jbc.M608505200 pmid: 17553796
[55] Kanjee U, Houry W A. Mechanisms of acid resistance in Escherichia coli. Annual Review of Microbiology, 2013, 67: 65-81.
doi: 10.1146/micro.2013.67.issue-1
[56] Zhu C C, Chen J Z, Wang Y, et al. Enhancing 5-aminolevulinic acid tolerance and production by engineering the antioxidant defense system of Escherichia coli. Biotechnology and Bioengineering, 2019, 116(8): 2018-2028.
doi: 10.1002/bit.v116.8
[57] Ye C, Wei X Y, Shi T Q, et al. Genome-scale metabolic network models: from first-generation to next-generation. Applied Microbiology and Biotechnology, 2022, 106(13): 4907-4920.
doi: 10.1007/s00253-022-12066-y
[58] Chen Y, Banerjee D, Mukhopadhyay A, et al. Systems and synthetic biology tools for advanced bioproduction hosts. Current Opinion in Biotechnology, 2020, 64: 101-109.
doi: S0958-1669(19)30145-4 pmid: 31927061
[59] Royce L A, Yoon J M, Chen Y X, et al. Evolution for exogenous octanoic acid tolerance improves carboxylic acid production and membrane integrity. Metabolic Engineering, 2015, 29: 180-188.
doi: S1096-7176(15)00040-3 pmid: 25839166
[60] Chen Y X, Boggess E E, Ocasio E R, et al. Reverse engineering of fatty acid-tolerant Escherichia coli identifies design strategies for robust microbial cell factories. Metabolic Engineering, 2020, 61: 120-130.
doi: 10.1016/j.ymben.2020.05.001
[61] Lee Y, Sathesh-Prabu C, Kwak G H, et al. Enhanced production of nonanedioic acid from nonanoic acid by engineered Escherichia coli. Biotechnology Journal, 2022, 17(3): 2000416.
[62] Chen Y X, Reinhardt M, Neris N, et al. Lessons in membrane engineering for octanoic acid production from environmental Escherichia coli isolates. Applied and Environmental Microbiology, 2018, 84(19): 01285-18.
[63] Fu Y F, Yoon J M, Jarboe L, et al. Metabolic flux analysis of Escherichia coli MG1655 under octanoic acid (C8) stress. Applied Microbiology and Biotechnology, 2015, 99(10): 4397-4408.
doi: 10.1007/s00253-015-6387-6
[64] Tan Z G, Yoon J M, Chowdhury A, et al. Engineering of E. coli inherent fatty acid biosynthesis capacity to increase octanoic acid production. Biotechnology for Biofuels, 2018, 11(1): 1-15.
doi: 10.1186/s13068-017-1003-x
[65] Baumann L, Doughty T, Siewers V, et al. Transcriptomic response of Saccharomyces cerevisiae to octanoic acid production. FEMS Yeast Research, 2021, 21(2): foab011.
[66] Rodríguez-Moyá M, Gonzalez R. Proteomic analysis of the response of Escherichia coli to short-chain fatty acids. Journal of Proteomics, 2015, 122: 86-99.
doi: 10.1016/j.jprot.2015.03.033 pmid: 25845584
[67] Han L, Han D Y, Li L, et al. Discovery and identification of medium-chain fatty acid responsive promoters in Saccharomyces cerevisiae. Engineering in Life Sciences, 2020, 20(5-6): 186-196.
doi: 10.1002/elsc.201900093 pmid: 32874182
[68] Zheng Y Y, Hong K Q, Wang B W, et al. Genetic diversity for accelerating microbial adaptive laboratory evolution. ACS Synthetic Biology, 2021, 10(7): 1574-1586.
doi: 10.1021/acssynbio.0c00589 pmid: 34129323
[69] Sandberg T E, Salazar M J, Weng L L, et al. The emergence of adaptive laboratory evolution as an efficient tool for biological discovery and industrial biotechnology. Metabolic Engineering, 2019, 56: 1-16.
doi: S1096-7176(19)30153-3 pmid: 31401242
[70] Balzi E, Chen W, Ulaszewski S, et al. The multidrug resistance gene PDR1 from Saccharomyces cerevisiae. Journal of Biological Chemistry, 1987, 262(35): 16871-16879.
pmid: 3316228
[71] Tong J S, Manik M K, Yang H, et al. Structural insights into nonvesicular lipid transport by the oxysterol binding protein homologue family. Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids, 2016, 1861(8): 928-939.
doi: 10.1016/j.bbalip.2016.01.008
[72] Rosenberg S M, Thulin C, Harris R S. Transient and heritable mutators in adaptive evolution in the lab and in nature. Genetics, 1998, 148(4): 1559-1566.
doi: 10.1093/genetics/148.4.1559 pmid: 9560375
[73] Qi Y L, Liu H, Chen X L, et al. Engineering microbial membranes to increase stress tolerance of industrial strains. Metabolic Engineering, 2019, 53: 24-34.
doi: S1096-7176(18)30400-2 pmid: 30605774
[74] Ghosh A, Ando D, Gin J, et al. 13C metabolic flux analysis for systematic metabolic engineering of S. cerevisiae for overproduction of fatty acids. Frontiers in Bioengineering and Biotechnology, 2016, 4: 76.
pmid: 27761435
[75] Xu P. Production of chemicals using dynamic control of metabolic fluxes. Current Opinion in Biotechnology, 2018, 53: 12-19.
doi: S0958-1669(17)30190-8 pmid: 29145021
[76] Guo Y F, Su L Q, Liu Q, et al. Dissecting carbon metabolism of Yarrowia lipolytica type strain W29 using genome-scale metabolic modelling. Computational and Structural Biotechnology Journal, 2022, 20: 2503-2511.
doi: 10.1016/j.csbj.2022.05.018
[77] Kim H U, Kim T Y, Lee S Y. Metabolic flux analysis and metabolic engineering of microorganisms. Molecular BioSystems, 2008, 4(2): 113-120.
doi: 10.1039/b712395g pmid: 18213404
[78] Rau M H, Calero P, Lennen R M, et al. Genome-wide Escherichia coli stress response and improved tolerance towards industrially relevant chemicals. Microbial Cell Factories, 2016, 15(1): 176.
doi: 10.1186/s12934-016-0577-5
[79] Chubukov V, Mukhopadhyay A, Petzold C J, et al. Synthetic and systems biology for microbial production of commodity chemicals. Npj Systems Biology and Applications, 2016, 2(1): 1-11.
[80] Liu H H, Zhang J, Yuan J, et al. Omics-based analyses revealed metabolic responses of Clostridium acetobutylicum to lignocellulose-derived inhibitors furfural, formic acid and phenol stress for butanol fermentation. Biotechnology for Biofuels, 2019, 12(1): 1-20
doi: 10.1186/s13068-018-1346-y
[81] Li Y D, Wu Z F, Li R Y, et al. Integrated transcriptomic and proteomic analysis of the acetic acid stress in Issatchenkia orientalis. Journal of Food Biochemistry, 2020, 44(6): e13203.
[82] Baumann L, Bruder S, Kabisch J, et al. High-throughput screening of an octanoic acid producer strain library enables detection of new targets for increasing titers in Saccharomyces cerevisiae. ACS Synthetic Biology, 2021, 10(5): 1077-1086.
doi: 10.1021/acssynbio.0c00600 pmid: 33979526
[1] 高小朋,何猛超,许可,李春. 工业微生物发酵过程中pH调控研究进展 *[J]. 中国生物工程杂志, 2020, 40(6): 93-99.
[2] 戴奇男,张景红. 肿瘤多药耐药与自噬、DNA修复和肿瘤干细胞相关的分子机制研究进展 *[J]. 中国生物工程杂志, 2020, 40(4): 69-77.
[3] 唐馨,毛新芳,马彬云,苟萍. 抗菌肽的研究现状和挑战 *[J]. 中国生物工程杂志, 2019, 39(8): 86-94.
[4] 战春君, 李翔, 刘国强, 刘秀霞, 杨艳坤, 白仲虎. 巴斯德毕赤酵母甘油转运体的发现及功能研究[J]. 中国生物工程杂志, 2017, 37(7): 48-55.
[5] 马泽林, 刘家亨, 黄序, 财音青格乐, 朱宏吉. 微生物利用木质纤维素的研究进展[J]. 中国生物工程杂志, 2017, 37(6): 124-133.
[6] 程可利, 刘晓, 李素霞. 对SDS稳定的V8(V125T)蛋白酶突变体的高效表达及性质研究[J]. 中国生物工程杂志, 2017, 37(4): 56-67.
[7] 张震阳, 杨艳坤, 战春君, 李翔, 刘秀霞, 白仲虎. Pichia pastoris X-33 ΔGT2缓解甘油对AOX1的阻遏并用于外源蛋白的高效表达[J]. 中国生物工程杂志, 2017, 37(1): 38-45.
[8] 曹莹莹, 邓盾, 张云, 孙爱君, 夏方亮, 胡云峰. 南海深海新颖低温脂肪酶的克隆、表达及酶学性质鉴定[J]. 中国生物工程杂志, 2016, 36(3): 43-52.
[9] 公颜慧, 马三梅, 张云, 王永飞, 胡云峰. 新颖微生物低温酯酶EstP8的酶学性质研究与在手性催化中的应用[J]. 中国生物工程杂志, 2016, 36(10): 35-44.
[10] 刘石雪, 王乔平, 唐丽薇, 严金平, 伊日布斯. 酿酒酵母乙醇耐受性的研究进展[J]. 中国生物工程杂志, 2013, 33(6): 105-110.
[11] 徐文娜, 马义, 叶祖禄, 罗天杰, 饶磊, 洪岸. 垂体腺苷酸环化酶激活肽衍生多肽RHMP的重组制备及促角膜损伤修复的初步研究[J]. 中国生物工程杂志, 2013, 33(2): 65-69.
[12] 毛绍名, 章怀云. 丙酮丁醇梭菌丁醇耐受性[J]. 中国生物工程杂志, 2012, 32(09): 118-124.
[13] 曹孟德, 丁洪, 王君健. 流体切力对植物细胞的影响[J]. 中国生物工程杂志, 1996, 16(4): 51-54.
[14] 周兆斓, 朱祯. 植物抗虫基因工程研究进展[J]. 中国生物工程杂志, 1994, 14(4): 18-24.
[15] LeRudulierD, valentineRC, 王业勤. 遗传工程在农业上的应用:渗透调节[J]. 中国生物工程杂志, 1983, 3(4): 41-45.