Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2023, Vol. 43 Issue (9): 77-92    DOI: 10.13523/j.cb.2302036
综述     
面向生物乙醇生产的酿酒酵母比较基因组序列分析研究进展*
许建韧1,2,3,**(),王岚4,马海军1,2
1 北方民族大学生物科学与工程学院 银川 750021
2 北方民族大学宁夏葡萄与葡萄酒技术创新中心 银川 750021
3 北方民族大学宁夏特殊生境微生物资源开发与利用重点实验室 银川 750021
4 宁夏大学葡萄酒与园艺学院 银川 750021
Research Progress of Sequence Analysis of Comparative Genomes in Saccharomyces cerevisiae for Bioethanol Production
XU Jian-ren1,2,3,**(),WANG Lan4,MA Hai-jun1,2
1 College of Bioscience and Engineering, North Minzu University, Yinchuan 750021, China
2 Ningxia Grape and Wine Technology Innovation Center, North Minzu University, Yinchuan 750021, China
3 Ningxia Key Laboratory for the Development and Application of Microbial Resources in Extreme Environments, North Minzu University, Yinchuan 750021, China
4 School of Food and Wine, Ningxia University, Yinchuan 750021, China
 全文: PDF(1328 KB)   HTML
摘要:

酿酒酵母是生物乙醇领域应用和研究的常用菌。综述了酿酒酵母基因组序列比较在提高基因功能注释准确性、发现不同菌株间分子结构变异、提供遗传育种潜在靶标基因等的相关研究,以及揭示酵母种间遗传进化关系,探究基因型与表型之间关联的研究进展。探讨了面向生物乙醇生产的酵母遗传育种,以满足工业生产需求。展望了随着测序菌株数量增多,酿酒酵母基因组的资源挖掘、重要价值和研究前景。

关键词: 酿酒酵母比较基因组序列分析遗传进化生物乙醇    
Abstract:

Saccharomyces cerevisiae is a common strain used in the field of bioethanol production. This paper reviews recent progress of comparative studies on S. cerevisiae genomic sequences in improving the accuracy of gene functional annotation, discovering molecular variation among different strains, providing potential target genes for genetic breeding, as well as revealing interspecific genetic evolution of yeasts, and exploring the correlation between genotypes and phenotypes. Moreover, yeast genetic breeding for bioethanol production to meet the requirements of industrial production was further discussed, and some insightful views on the bioresource mining of the genome of Saccharomyces cerevisiae with the increasing number of genome-sequenced strains, its important value, and research prospects were also provided.

Key words: Saccharomyces cerevisiae    Comparative genomics    Sequence analysis    Genetic evolution    Bioethanol
收稿日期: 2023-02-21 出版日期: 2023-10-08
ZTFLH:  Q815  
基金资助: * 宁夏重点研发计划(2020BEB04013);宁夏自然科学基金(2021AAC03182)
通讯作者: ** 电子信箱:xujianren@nmu.edu.cn   
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
许建韧
王岚
马海军

引用本文:

许建韧, 王岚, 马海军. 面向生物乙醇生产的酿酒酵母比较基因组序列分析研究进展*[J]. 中国生物工程杂志, 2023, 43(9): 77-92.

XU Jian-ren, WANG Lan, MA Hai-jun. Research Progress of Sequence Analysis of Comparative Genomes in Saccharomyces cerevisiae for Bioethanol Production. China Biotechnology, 2023, 43(9): 77-92.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.2302036        https://manu60.magtech.com.cn/biotech/CN/Y2023/V43/I9/77

菌株名称 基因组大小
/Mb
描述说明 国家 年份 文献
VIN7 23.4 一株释放硫醇的商业葡萄酒酵母种间杂交菌 澳大利亚 2011 [4]
W303-K6001 11.8 一株W303的变种、用以研究衰老机制的模式酵母 英国 2012 [5]
CEN.PK113-7D 11.6 一株实验室常用以代谢改造的菌株,具有工业菌株特征 荷兰 2012 [6]
YJS329 11.5 从土壤样品中分离得到,河南天冠集团用于生物乙醇生产 中国 2012 [7]
CAT-1 约12 一株巴西甘蔗工业的主要燃料乙醇生产菌株 巴西 2012 [8]
M3707 11.5 从蒸馏样本中分离,具有联合生物加工生物燃料潜力 美国 2013 [9]
NAM34-4C 11.5 源自工业酵母菌株KF-7,用于生物乙醇生产 日本 2014 [10]
YHJ7 11.5 一株从中国黄酒(传统酒精饮料)中分离出来菌株 中国 2014 [11]
IR-2 11.4 一株高效生产生物乙醇的工业菌株 日本 2014 [12]
MT1 11.6 一株从复杂的中国茅台白酒酿造环境中分离的菌株 中国 2015 [13]
NCIM3107 11.8 从Microbial Type Culture Collection (MTCC)保藏机构获得,
用于生物乙醇生产
印度 2015 [14]
NCIM3186 11.9 从MTCC机构获得,用于甜高粱为底物的生物乙醇生产 印度 2015 [15]
GSY2239 11.5 一株由工业酿造菌株Wyeast1388衍生来的啤酒发酵菌株 美国 2015 [16]
EBY.VW4000 11.4 一株常见的己糖转运缺乏(研究糖转运功能)酵母菌株 荷兰 2015 [17]
202-3 11.9 从哥伦比亚分离,用于从甘蔗渣水解液来生产生物乙醇 哥伦比亚 2015 [18]
15V-P4 (et al.) 11.6 从Peterhof Genetic Collection (PGC)保存机构获得 俄罗斯 2016 [19]
GLBRCY22-3 12.3 衍生于生物能源领域的一株胁迫耐受野生菌NRRL YB-210 美国 2016 [20]
Kagoshima No. 2 12.3 一株用于日本蒸馏酒(烧酒)酿造工艺的酵母菌 日本 2017 [21]
BG-1 11.7 广泛用于甘蔗乙醇生产的一株巴西工业菌 巴西 2017 [22]
NY1308 11.5 一株用于乙醇发酵工业已有50多年历史的菌种 中国 2018 [23]
N85 12.7 一株用于米酒(传统酒精饮料)生产的工业菌株 中国 2018 [24]
I-328 11.6 用于类似雪利酒的葡萄酒酿造 俄罗斯 2018 [25]
SPSC01 13.5 一株应用于超高浓度乙醇发酵(VHG)的絮凝工业菌株 中国 2018 [26]
FMY097 11.6 从巴西乙醇厂分离到的SA1衍生的单倍体菌株 巴西 2019 [27]
Pf-1 12.4 从梅子中分离,用于生产独特风味的清酒 日本 2019 [28]
BT0510 约12 一株高渗透和乙醇/热胁迫的耐性菌株,用于生产甘蔗烈酒 巴西 2021 [29]
AW101 11.5 一种用于生产蒸馏酒精饮料(泡盛)的工业菌种 日本 2021 [30]
PE-2 (H3 & H4) 11.8 生产甘蔗乙醇优势菌株PE-2的两个单孢分离株H3和H4 巴西 2021 [31]
NYR20 11.5 一株清酒发酵过程中分泌红色素的腺嘌呤营养缺陷突变体 日本 2021 [32]
IMDO 050523 12.1 从可可堆自然发酵过程中分离 比利时 2022 [33]
DJJ01 8.3 从道成寺分离,用于酿造清酒 日本 2022 [34]
表1  2011年至今已完成基因组测序的酿酒酵母菌株
图1  酿酒酵母菌株比较基因组学领域的主要研究路径
测序菌株数
(基因组数)
来源 方法或策略 结果与分析 意义 国家
(年份)
文献
63株 不同大陆位置或不同生境 基因组DNA杂交全基因组平铺微阵列 鉴定出超10万个不同分离位点上189万个SNPs和近4 000个(>200 bp)的序列删除 明晰系统发育关系,了解多重驯化事件,支持种群溯源 美国
(2009)
[40]
超70株 不同地理位置和发酵用途的酿酒酵母及其近亲酵母 基因组测序与变异分析 鉴定出大量SNPs、Indels、CNVs及Ty元件和基因含量变化 酵母种群结构由地理上孤立的明确谱系组成;人类活动影响菌株杂交而产生新变异 英国
(2009)
[41]
83株 来自葡萄酒酿造、工业或自然环境 阵列-比较基因组杂交与全基因组测序 发现种间杂交事件、基因渐渗,CNVs在全部菌株中普遍分布 表明野生菌株和工业菌株存在广泛杂交 美国
(2012)
[42]
102株
(99个基因组)
不同生态或地理环境(数据库SGRP) DNA测序、分子系统发育分析、群落结构分析 中国分离株表现出强大群体结构,综合遗传变异几乎为世界其他地区分离株的2倍 原始森林的酿酒酵母种群早于和独立于驯化菌落,欧洲/葡萄酒菌群可能起源于亚洲 中国
(2012)
[43]
262株 从广泛的地理位置和环境生态位分离 每株菌取1%基因组序列进行简化测序 多序列比对发现菌株的多样性由地理区分 各种发酵菌株表现出高度杂合性,构建起地理分化模型 美国
(2013)
[44]
90株 测序分离菌(数据库NCBI与SGRP) 基因组测序、分子多态性和全基因组系统发育分析 鉴定到工业变异和新的地理划分酵母种群,含一个新的地中海橡树种群 地中海橡树拥有驯化葡萄酒酿造酵母的野生基因库 葡萄牙
(2015)
[45]
100株 采自多个地理环境 基因组测序、种群结构分析、分化表型分析 鉴定出多种类型的序列变异,如染色体重排、CNVs、基因渐渗、重组事件和种群结构等 大多数表型变异是可定量的,可用于鉴定种群和鉴别基因型和表型的关联 美国
(2015)
[46]
212株 葡萄酒酿造分离株 泛基因组比较分析 发现商业菌株和葡萄酒酿造菌株在遗传水平上相似,近亲杂交水平很高 用于葡萄酒酿造的商业酿酒酵母种系群体中有效遗传变异极限正接近饱和 澳大利亚
(2016)
[47]
1 011株 全球收集 基因组深度测序与比较分析 获得物种表型相关的基因组变异进化图;鉴定出某单一起源的几次独立驯化事件 基因组进化由SNPs积累驱动,但CNVs比SNPs具有更强的多样性表型效应 法国
(2018)
[48]
266株 106株野生分离菌和160株发酵菌 基因组重测序、系统基因组学分析 发现一致的基因扩张和收缩,及适应不同环境的谱系特异性基因组变异 揭示中国/远东地区或是酿酒酵母驯化种群起源中心 中国
(2018)
[49]
(239个基因组) 2株PE-2单孢分离菌/42株甘蔗发酵菌及其他195株菌 全基因组序列对比分析 酵母基因组均扩增了维生素B1/B6生物合成SNO2(3)/SNZ2(3)基因簇,醌氧化还原酶、水通道蛋白等编码基因 证明巴西生物燃料生产菌可能筛选于预先适应了甘蔗乙醇发酵过程(朗姆酒)的酵母 巴西
(2021)
[31]
126株 64株来自非洲/52株(白酒)和10株(黄酒)来自中国 基因组重测序、群体基因组比较分析 具有群体特异性等位基因分布模式的基因多富集在功能相似或相关基础代谢过程 说明酵母在非洲有很长的驯化历史 中国
(2021)
[50]
104株
(450个基因组)
新西兰(数据库
SGRP)
基因组测序与序列变异比较 菌种适应性进化与特异性基因拷贝数(CNVs)变化有关,如HXT家族 揭示新西兰酿酒酵母是欧洲/葡萄酒分支的一个亚群 英国
(2021)
[51]
(1 011个
基因组)
全球收集(1002酵母基因组计划) 基因组测序、分析、编辑 基因缺失、CNVs和SNPs等是可关联及追踪酵母驯化和起源的遗传标记 驯化影响酵母发酵、繁殖和胁迫耐受,但世代寿命不受驯化影响,而由进化决定 法国
(2022)
[52]
表2  酿酒酵母菌株的比较(群体)基因组分析典型实例
图2  通过基因组测序分析和基因组工程改造开展酿酒酵母遗传育种研究
名称 载体或策略 底盘菌株 靶向基因 具体方式 实验结果 年份 文献
CRISPRi Cas9介导的
双链断裂(DSBs)
Y1H ADH2 完全敲除
移码突变
乙醇产量
提高74.7%
2018 [95]
CRISPRi Cas9介导的
单步多基因敲除
Y1H ADH2
GPD1
ALD4
单独敲除
组合敲除
乙醇产量
提高1.41倍
2019 [96]
CRISPRa Cas9-TRK1-
crRNA-pRS423
CEN.PK113-7D TRK1 基因突变 增强菌株
丙酸耐受性
2019 [97]
CRISPRa dCas9-VP64 TSH3 OLE1 基因激活
文库筛选
过量表达增强
菌株高温耐性
2019 [98]
CRISPR-Cas DSBs和
基因组重排
YPH499 δ序列 突变株
筛选
突变株耐受性提高
(39℃、低pH和
高浓度乙醇)
2019 [99]
CRSPRa/i dCas9
dCas9-Mxi1
dCas9-VP64
dCas9-VPR
KE6-12 HRK1
SSK2
ISC1
BDH2
基因激活
基因抑制
增强菌株的木质
纤维素水解液
抑制耐受性
2020 [100]
CRISPRi dCas9-Mxi1 9 078株
酿酒酵母
必需基因
和呼吸生长
相关基因
文库筛选 增强菌株
乙酸耐受性
2021 [101]
CRISPRi dCas9-Mxi1 BY4743 YAP1
HAA1
DOT6
基因敲除 改变木质纤维素
水解液中菌株
生长耐受性
2021 [102]
CRISPRi Cas9线性化
共转化载体
EC1118 ECM33 基因敲除 限氮和足氮条件下
发酵速率显著加快
2021 [103]
CRSPRa nCas9(D10A)-
PmCDA1
BY4741
BY4741a
SPT15 基因突变 突变株耐受性提高(高
渗、高温和乙醇胁迫)且
发酵性能增强1.5倍以上
2021 [104]
CRISPRi Cas9-NTC 野生型
酿酒酵母
GPD2
FPS1
GDH2
基因敲除 乙醇生产
性能提高
2022 [105]
CRISPRi Cas9-NTC S288c ADH2
FPS1
GPD2
DLD3
基因敲除 乙醇产量提高,副产物
(甘油、乙酸和乳酸)
含量减少
2022 [106]
表3  CRISPR/Cas9基因编辑提高酿酒酵母乙醇产量或耐受性的研究
图3  酵母比较基因组序列分析呈现不同层次的研究维度
[1] Hutkins R W. Microbiology and technology of fermented foods. Ames, Iowa, USA: Blackwell Publishing, 2006.
[2] 郑道琼. 酿酒酵母的比较功能基因组学研究和遗传育种. 杭州: 浙江大学, 2012.
Zheng D Q. Comparative functional genomics and genetic breeding of Saccharomyces cerevisiae strains. Hangzhou: Zhejiang University, 2012.
[3] Engel S R, Cherry J M. The new modern era of yeast genomics: community sequencing and the resulting annotation of multiple Saccharomyces cerevisiae strains at the Saccharomyces Genome Database. Database, 2013, 2013: bat012.
[4] Borneman A R, Desany B A, Riches D, et al. The genome sequence of the wine yeast VIN7 reveals an allotriploid hybrid genome with Saccharomyces cerevisiae and Saccharomyces kudriavzevii origins. FEMS Yeast Research, 2012, 12(1): 88-96.
doi: 10.1111/j.1567-1364.2011.00773.x pmid: 22136070
[5] Ralser M, Kuhl H, Ralser M, et al. The Saccharomyces cerevisiae W303-K 6001 cross-platform genome sequence: insights into ancestry and physiology of a laboratory mutt. Open Biology, 2012, 2(8): 120093.
doi: 10.1098/rsob.120093
[6] Nijkamp J F, van den Broek M, Datema E, et al. De novo sequencing, assembly and analysis of the genome of the laboratory strain Saccharomyces cerevisiae CEN.PK113-7D, a model for modern industrial biotechnology. Microbial Cell Factories, 2012, 11: 36.
doi: 10.1186/1475-2859-11-36 pmid: 22448915
[7] Zheng D Q, Wang P M, Chen J, et al. Genome sequencing and genetic breeding of a bioethanol Saccharomyces cerevisiae strain YJS329. BMC Genomics, 2012, 13: 479.
doi: 10.1186/1471-2164-13-479
[8] Babrzadeh F, Jalili R, Wang C L, et al. Whole-genome sequencing of the efficient industrial fuel-ethanol fermentative Saccharomyces cerevisiae strain CAT-1. Molecular Genetics and Genomics, 2012, 287: 485-494.
doi: 10.1007/s00438-012-0695-7 pmid: 22562254
[9] Brown S D, Klingeman D M, Johnson C M, et al. Genome sequences of industrially relevant Saccharomyces cerevisiae strain M3707, isolated from a sample of distillers yeast and four haploid derivatives. Genome Announcements, 2013, 1(3): e00323-13.
[10] Sahara T, Fujimori K E, Nezuo M, et al. Draft genome sequence of Saccharomyces cerevisiae NAM34-4C, a lactic acid-assimilating industrial yeast strain. Genome Announcements, 2014, 2(1): e01145-13.
[11] Li Y D, Zhang W P, Zheng D Q, et al. Genomic evolution of Saccharomyces cerevisiae under Chinese rice wine fermentation. Genome Biology and Evolution, 2014, 6(9): 2516-2526.
doi: 10.1093/gbe/evu201
[12] Sahara T, Fujimori K E, Nezuo M, et al. Draft genome sequence of Saccharomyces cerevisiae IR-2, a useful industrial strain for highly efficient production of bioethanol. Genome Announcements, 2014, 2(1): e01160-13.
[13] Lu X W, Wu Q, Zhang Y, et al. Genomic and transcriptomic analyses of the Chinese Maotai-flavored liquor yeast MT 1 revealed its unique multi-carbon co-utilization. BMC Genomics, 2015, 16: 1064.
doi: 10.1186/s12864-015-2263-0
[14] Ulaganathan K, Sravanthi Goud B, Reddy M M, et al. Genome sequence of Saccharomyces cerevisiae NCIM3107, used in bioethanol production. Genome Announcements, 2015, 3(1): e01557-14.
[15] Sravanthi Goud B, Ulaganathan K. Draft genome sequence of Saccharomyces cerevisiae strain NCIM3186 used in the production of bioethanol from sweet sorghum. Genome Announcements, 2015, 3(4): e00813-15.
[16] U’Ren J M, Wisecaver J H, Paek A L, et al. Draft genome sequence of the ale-fermenting Saccharomyces cerevisiae strain GSY2239. Genome Announcements, 2015, 3(4): e00776-15.
[17] Solis-Escalante D, van den Broek M, Kuijpers N G A, et al. The genome sequence of the popular hexose-transport-deficient Saccharomyces cerevisiae strain EBY.VW 4000 reveals LoxP/Cre-induced translocations and gene loss. FEMS Yeast Research, 2015, 15(2): fou004.
[18] Cifuentes Y, Latorre S, Pinzón A, et al. Draft genome sequence of a natural isolated Saccharomyces cerevisiae from Colombia. IEEE 5th International Conference on Computational Advances in Bio and Medical Sciences (ICCABS). Miami, FL, USA: IEEE, 2015: 1-2.
[19] Drozdova P B, Tarasov O V, Matveenko A G, et al. Genome sequencing and comparative analysis of Saccharomyces cerevisiae strains of the Peterhof genetic collection. PLoS One, 2016, 11(5): e0154722.
doi: 10.1371/journal.pone.0154722
[20] McIlwain S J, Peris D, Sardi M, et al. Genome sequence and analysis of a stress-tolerant, wild-derived strain of Saccharomyces cerevisiae used in biofuels research. G3-Genes Genomes Genetics, 2016, 6(6): 1757-1766.
doi: 10.1534/g3.116.029389 pmid: 27172212
[21] Mori K, Kadooka C, Masuda C, et al. Genome sequence of Saccharomyces cerevisiae strain Kagoshima No. 2, used for brewing the Japanese distilled spirit shōchū. Genome Announcements, 2017, 5(41): e01126-17.
[22] Coutouné N, Mulato A T N, Riaño-Pachón D M, et al. Draft genome sequence of Saccharomyces cerevisiae Barra Grande (BG-1), a Brazilian industrial bioethanol-producing strain. Genome Announcements, 2017, 5(13): e00111-17.
[23] Zhang K, Di Y N, Qi L, et al. Genetic characterization and modification of a bioethanol-producing yeast strain. Applied Microbiology and Biotechnology, 2018, 102(5): 2213-2223.
doi: 10.1007/s00253-017-8727-1 pmid: 29333587
[24] Zhang W P, Li Y D, Chen Y W, et al. Complete genome sequence and analysis of the industrial Saccharomyces cerevisiae strain N85 used in Chinese rice wine production. DNA Research, 2018, 25(3): 297-306.
doi: 10.1093/dnares/dsy002
[25] Mardanov A V, Beletsky A V, Eldarov M A, et al. Draft genome sequence of the wine yeast strain Saccharomyces cerevisiae I-328. Genome Announcements, 2018, 6(5): e01520-17.
[26] Xu J R, He L Y, Liu C G, et al. Genome sequence of the self-flocculating strain Saccharomyces cerevisiae SPSC01. Genome Announcements, 2018, 6(20): e00367-18.
[27] Nagamatsu S T, Teixeira G S, de Mello F D S B, et al. Genome assembly of a highly aldehyde-resistant Saccharomyces cerevisiae SA1-derived industrial strain. Microbiology Resource Announcements, 2019, 8(13): e00071-19.
[28] Kanamasa S, Yamaguchi D, Machida C, et al. Draft genome sequence of Saccharomyces cerevisiae strain Pf-1, isolated from Prunus mume. Microbiology Resource Announcements, 2019, 8(46): e01169-19.
[29] Costa A C T, Hornick J, Antunes T F S, et al. Complete genome sequence and analysis of a Saccharomyces cerevisiae strain used for sugarcane spirit production. Brazilian Journal of Microbiology, 2021, 52(3): 1087-1095.
doi: 10.1007/s42770-021-00444-z
[30] Tsukahara M, Ise K, Nezuo M, et al. Draft genome sequence of Saccharomyces cerevisiae strain Awamori number 101, commonly used to make Awamori, a traditional spirit, in Okinawa, Japan. Microbiology Resource Announcements, 2021, 10(25): e01414-20.
[31] Jacobus A P, Stephens T G, Youssef P, et al. Comparative genomics supports that Brazilian bioethanol Saccharomyces cerevisiae comprise a unified group of domesticated strains related to cachaça spirit yeasts. Frontiers in Microbiology, 2021, 12: 644089.
doi: 10.3389/fmicb.2021.644089
[32] Takahashi H, Iwaguchi S I, Kondo H, et al. Draft genome sequence of NYR20, a red pigment-secreting mutant of Saccharomyces cerevisiae. Microbiology Resource Announcements, 2021, 10(1): e01161-20.
[33] Díaz-Muñoz C, Verce M, De Vuyst L, et al. Phylogenomics of a Saccharomyces cerevisiae cocoa strain reveals adaptation to a West African fermented food population. iScience, 2022, 25(11): 105309.
doi: 10.1016/j.isci.2022.105309
[34] Okuhama S, Nakasone K, Yamanaka K, et al. Draft genome sequence of Saccharomyces cerevisiae DJJ01, isolated from Dojoji Temple in Gobo, Wakayama, Japan. Microbiology Resource Announcements, 2022, 11(8): e0011322.
doi: 10.1128/mra.00113-22
[35] 陈碧燕, 文李. 酿酒酵母全基因组学及其应用研究进展. 食品与机械, 2020, 36(11): 223-227, 232.
Chen B Y, Wen L. Progress in Saccharomyces cerevisiae genome research and relative application. Food & Machinery, 2020, 36(11): 223-227, 232.
[36] Engel S R, Dietrich F S, Fisk D G, et al. The reference genome sequence of Saccharomyces cerevisiae: then and now. G3-Genes Genomes Genetics, 2014, 4(3): 389-398.
doi: 10.1534/g3.113.008995
[37] Engel S R, Wong E D, Nash R S, et al. New data and collaborations at the Saccharomyces Genome Database: updated reference genome, alleles, and the Alliance of Genome Resources. Genetics, 2022, 220(4): iyab224.
doi: 10.1093/genetics/iyab224
[38] Kawashima T. Comparative and evolutionary genomics.2nd ed. Amsterdam, Netherlands: Elsevier, 2019, 257-267.
[39] Zarin T, Moses A M. Insights into molecular evolution from yeast genomics. Yeast, 2014, 31(7): 233-241.
doi: 10.1002/yea.v31.7
[40] Schacherer J, Shapiro J A, Ruderfer D M, et al. Comprehensive polymorphism survey elucidates population structure of Saccharomyces cerevisiae. Nature, 2009, 458(7236): 342-345.
doi: 10.1038/nature07670
[41] Liti G, Carter D M, Moses A M, et al. Population genomics of domestic and wild yeasts. Nature, 2009, 458(7236): 337-341.
doi: 10.1038/nature07743
[42] Dunn B, Richter C, Kvitek D J, et al. Analysis of the Saccharomyces cerevisiae pan-genome reveals a pool of copy number variants distributed in diverse yeast strains from differing industrial environments. Genome Research, 2012, 22(5): 908-924.
doi: 10.1101/gr.130310.111
[43] Wang Q M, Liu W Q, Liti G, et al. Surprisingly diverged populations of Saccharomyces cerevisiae in natural environments remote from human activity. Molecular Ecology, 2012, 21(22): 5404-5417.
doi: 10.1111/j.1365-294X.2012.05732.x
[44] Cromie G A, Hyma K E, Ludlow C L, et al. Genomic sequence diversity and population structure of Saccharomyces cerevisiae assessed by RAD-seq. G3-Genes Genomes Genetics, 2013, 3(12): 2163-2171.
doi: 10.1534/g3.113.007492
[45] Almeida P, Barbosa R, Zalar P, et al. A population genomics insight into the Mediterranean origins of wine yeast domestication. Molecular Ecology, 2015, 24(21): 5412-5427.
doi: 10.1111/mec.13341 pmid: 26248006
[46] Strope P K, Skelly D A, Kozmin S G, et al. The 100-genomes strains, an S. cerevisiae resource that illuminates its natural phenotypic and genotypic variation and emergence as an opportunistic pathogen. Genome Research, 2015, 25(5): 762-774.
doi: 10.1101/gr.185538.114 pmid: 25840857
[47] Borneman A R, Forgan A H, Kolouchova R, et al. Whole genome comparison reveals high levels of inbreeding and strain redundancy across the spectrum of commercial wine strains of Saccharomyces cerevisiae. G3-Genes Genomes Genetics, 2016, 6(4): 957-971.
doi: 10.1534/g3.115.025692 pmid: 26869621
[48] Peter J, De Chiara M, Friedrich A, et al. Genome evolution across 1,011 Saccharomyces cerevisiae isolates. Nature, 2018, 556(7701): 339-344.
doi: 10.1038/s41586-018-0030-5
[49] Duan S F, Han P J, Wang Q M, et al. The origin and adaptive evolution of domesticated populations of yeast from Far East Asia. Nature Communications, 2018, 9: 2690.
doi: 10.1038/s41467-018-05106-7
[50] Han D Y, Han P J, Rumbold K, et al. Adaptive gene content and allele distribution variations in the wild and domesticated populations of Saccharomyces cerevisiae. Frontiers in Microbiology, 2021, 12: 631250.
doi: 10.3389/fmicb.2021.631250
[51] Higgins P, Grace C A, Lee S A, et al. Whole-genome sequencing from the New Zealand Saccharomyces cerevisiae population reveals the genomic impacts of novel microbial range expansion. G3-Genes Genomes Genetics, 2021, 11(8): jkab135.
doi: 10.1093/g3journal/jkab135
[52] De Chiara M, Barré B P, Persson K, et al. Domestication reprogrammed the budding yeast life cycle. Nature Ecology & Evolution, 2022, 6: 448-460.
[53] Marsit S, Dequin S. Diversity and adaptive evolution of Saccharomyces wine yeast: a review. FEMS Yeast Research, 2015, 15(7): fov067.
doi: 10.1093/femsyr/fov067
[54] Hou J, Friedrich A, de Montigny J, et al. Chromosomal rearrangements as a major mechanism in the onset of reproductive isolation in Saccharomyces cerevisiae. Current Biology, 2014, 24(10): 1153-1159.
doi: 10.1016/j.cub.2014.03.063
[55] Bai F Y, Han D Y, Duan S F, et al. The ecology and evolution of the baker’s yeast Saccharomyces cerevisiae. Genes, 2022, 13(2): 230.
doi: 10.3390/genes13020230
[56] Sharma K K. Yeast genome sequencing:basic biology, human biology, and biotechnology. developments in fungal biology and applied mycology. Singapore: Springer, 2017: 201-226.
[57] Kellis M, Patterson N, Endrizzi M, et al. Sequencing and comparison of yeast species to identify genes and regulatory elements. Nature, 2003, 423(6937): 241-254.
doi: 10.1038/nature01644
[58] Kellis M, Patterson N, Birren B, et al. Methods in comparative genomics: genome correspondence, gene identification and regulatory motif discovery. Journal of Computational Biology, 2004, 11(2-3): 319-355.
pmid: 15285895
[59] Dujon B, Sherman D, Fischer G, et al. Genome evolution in yeasts. Nature, 2004, 430(6995): 35-44.
doi: 10.1038/nature02579
[60] Cliften P, Sudarsanam P, Desikan A, et al. Finding functional features in Saccharomyces genomes by phylogenetic footprinting. Science, 2003, 301(5629): 71-76.
doi: 10.1126/science.1084337 pmid: 12775844
[61] Wei W, McCusker J H, Hyman R W, et al. Genome sequencing and comparative analysis of Saccharomyces cerevisiae strain YJM789. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(31): 12825-12830.
[62] Borneman A R, Forgan A H, Pretorius I S, et al. Comparative genome analysis of a Saccharomyces cerevisiae wine strain. FEMS Yeast Research, 2008, 8(7): 1185-1195.
doi: 10.1111/j.1567-1364.2008.00434.x pmid: 18778279
[63] Doniger S W, Kim H S, Swain D, et al. A catalog of neutral and deleterious polymorphism in yeast. PLoS Genetics, 2008, 4(8): e1000183.
doi: 10.1371/journal.pgen.1000183
[64] Dowell R D, Ryan O, Jansen A, et al. Genotype to phenotype: a complex problem. Science, 2010, 328(5977): 469.
doi: 10.1126/science.1189015 pmid: 20413493
[65] Akao T, Yashiro I, Hosoyama A, et al. Whole-genome sequencing of sake yeast Saccharomyces cerevisiae Kyokai no. 7. DNA Research, 2011, 18(6): 423-434.
doi: 10.1093/dnares/dsr029
[66] Basile A, De Pascale F, Bianca F, et al. Large-scale sequencing and comparative analysis of oenological Saccharomyces cerevisiae strains supported by nanopore refinement of key genomes. Food Microbiology, 2021, 97: 103753.
doi: 10.1016/j.fm.2021.103753
[67] Argueso J L, Carazzolle M F, Mieczkowski P A, et al. Genome structure of a Saccharomyces cerevisiae strain widely used in bioethanol production. Genome Research, 2009, 19(12): 2258-2270.
doi: 10.1101/gr.091777.109 pmid: 19812109
[68] Wohlbach D J, Rovinskiy N, Lewis J A, et al. Comparative genomics of Saccharomyces cerevisiae natural isolates for bioenergy production. Genome Biology and Evolution, 2014, 6(9): 2557-2566.
pmid: 25364804
[69] Franco-Duarte R, Bigey F, Carreto L, et al. Intrastrain genomic and phenotypic variability of the commercial Saccharomyces cerevisiae strain Zymaflore VL 1 reveals microevolutionary adaptation to vineyard environments. FEMS Yeast Research, 2015, 15(6): fov063.
doi: 10.1093/femsyr/fov063
[70] Zhao Z, Xian M, Liu M, et al. Biochemical routes for uptake and conversion of xylose by microorganisms. Biotechnology for Biofuels, 2020, 13: 21.
doi: 10.1186/s13068-020-1662-x pmid: 32021652
[71] García-Ríos E, Guillamón J M. Genomic adaptations of Saccharomyces genus to wine niche. Microorganisms, 2022, 10(9): 1811.
doi: 10.3390/microorganisms10091811
[72] Dujon B A, Louis E J. Genome diversity and evolution in the budding yeasts (Saccharomycotina). Genetics, 2017, 206(2): 717-750.
doi: 10.1534/genetics.116.199216 pmid: 28592505
[73] Borneman A R, Desany B A, Riches D, et al. Whole-genome comparison reveals novel genetic elements that characterize the genome of industrial strains of Saccharomyces cerevisiae. PLoS Genetics, 2011, 7(2): e1001287.
doi: 10.1371/journal.pgen.1001287
[74] Novo M, Bigey F, Beyne E, et al. Eukaryote-to-eukaryote gene transfer events revealed by the genome sequence of the wine yeast Saccharomyces cerevisiae EC1118. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(38): 16333-16338.
[75] Nakao Y, Kanamori T, Itoh T, et al. Genome sequence of the lager brewing yeast, an interspecies hybrid. DNA Research, 2009, 16(2): 115-129.
doi: 10.1093/dnares/dsp003 pmid: 19261625
[76] Treu L, Toniolo C, Nadai C, et al. The impact of genomic variability on gene expression in environmental Saccharomyces cerevisiae strains. Environmental Microbiology, 2014, 16(5): 1378-1397.
doi: 10.1111/emi.2014.16.issue-5
[77] Förster J, Famili I, Fu P, et al. Genome-scale reconstruction of the Saccharomyces cerevisiae metabolic network. Genome Research, 2003, 13(2): 244-253.
pmid: 12566402
[78] Kvitek D J, Will J L, Gasch A P. Variations in stress sensitivity and genomic expression in diverse S. cerevisiae isolates. PLoS Genetics, 2008, 4(10): e1000223.
doi: 10.1371/journal.pgen.1000223
[79] Steenwyk J, Rokas A. Extensive copy number variation in fermentation-related genes among Saccharomyces cerevisiae wine strains. G3-Genes Genomes Genetics, 2017, 7(5): 1475-1485.
doi: 10.1534/g3.117.040105 pmid: 28292787
[80] Swinnen S, Schaerlaekens K, Pais T, et al. Identification of novel causative genes determining the complex trait of high ethanol tolerance in yeast using pooled-segregant whole-genome sequence analysis. Genome Research, 2012, 22(5): 975-984.
doi: 10.1101/gr.131698.111 pmid: 22399573
[81] Wallace-Salinas V, Brink D P, Ahrén D, et al. Cell periphery-related proteins as major genomic targets behind the adaptive evolution of an industrial Saccharomyces cerevisiae strain to combined heat and hydrolysate stress. BMC Genomics, 2015, 16: 514.
doi: 10.1186/s12864-015-1737-4 pmid: 26156140
[82] Nagamatsu S T, Coutouné N, José J, et al. Ethanol production process driving changes on industrial strains. FEMS Yeast Research, 2021, 21(1): foaa071.
doi: 10.1093/femsyr/foaa071
[83] Pinel D, Colatriano D, Jiang H, et al. Deconstructing the genetic basis of spent sulphite liquor tolerance using deep sequencing of genome-shuffled yeast. Biotechnology for Biofuels, 2015, 8: 53.
doi: 10.1186/s13068-015-0241-z pmid: 25866561
[84] Adebami G E, Kuila A, Ajunwa O M, et al. Genetics and metabolic engineering of yeast strains for efficient ethanol production. Journal of Food Process Engineering, 2022, 45(7): e13798.
doi: 10.1111/jfpe.v45.7
[85] Cámara E, Olsson L, Zrimec J, et al. Data mining of Saccharomyces cerevisiae mutants engineered for increased tolerance towards inhibitors in lignocellulosic hydrolysates. Biotechnology Advances, 2022, 57: 107947.
doi: 10.1016/j.biotechadv.2022.107947
[86] Steensels J, Snoek T, Meersman E, et al. Improving industrial yeast strains: exploiting natural and artificial diversity. FEMS Microbiology Reviews, 2014, 38(5): 947-995.
doi: 10.1111/1574-6976.12073 pmid: 24724938
[87] da Silva Fernandes F, Carneiro L M, et al. Current ethanol production requirements for the yeast Saccharomyces cerevisiae. International Journal of Microbiology, 2022, 2022: 7878830.
[88] Hasunuma T, Kondo A. Development of yeast cell factories for consolidated bioprocessing of lignocellulose to bioethanol through cell surface engineering. Biotechnology Advances, 2012, 30(6): 1207-1218.
doi: 10.1016/j.biotechadv.2011.10.011 pmid: 22085593
[89] Sharma J, Kumar V, Prasad R, et al. Engineering of Saccharomyces cerevisiae as a consolidated bioprocessing host to produce cellulosic ethanol: recent advancements and current challenges. Biotechnology Advances, 2022, 56: 107925.
doi: 10.1016/j.biotechadv.2022.107925
[90] 夏思杨, 江丽红, 蔡谨, 等. 酿酒酵母基因组进化的研究进展. 合成生物学, 2020, 1(5): 556-569.
doi: 10.12211/2096-8280.2020-044
Xia S Y, Jiang L H, Cai J, et al. Advances in genome evolution of Saccharomyces cerevisiae. Synthetic Biology Journal, 2020, 1(5): 556-569.
doi: 10.12211/2096-8280.2020-044
[91] 李宏彪, 梁晓琳, 周景文. 酿酒酵母基因编辑技术研究进展. 生物工程学报, 2021, 37(3): 950-965.
Li H B, Liang X L, Zhou J W. Progress in gene editing technologies for Saccharomyces cerevisiae. Chinese Journal of Biotechnology, 2021, 37(3): 950-965.
[92] Mitsui R, Yamada R, Ogino H. CRISPR system in the yeast Saccharomyces cerevisiae and its application in the bioproduction of useful chemicals. World Journal of Microbiology and Biotechnology, 2019, 35(7): 111.
doi: 10.1007/s11274-019-2688-8
[93] Yao Z, Wang Q H, Dai Z J. Recent advances in directed yeast genome evolution. Journal of Fungi, 2022, 8(6): 635.
doi: 10.3390/jof8060635
[94] Malcı K, Walls L E, Rios-Solis L. Multiplex genome engineering methods for yeast cell factory development. Frontiers in Bioengineering and Biotechnology, 2020, 8: 589468.
doi: 10.3389/fbioe.2020.589468
[95] Xue T, Liu K, Chen D, et al. Improved bioethanol production using CRISPR/Cas 9 to disrupt the ADH2 gene in Saccharomyces cerevisiae. World Journal of Microbiology and Biotechnology, 2018, 34(10): 154.
doi: 10.1007/s11274-018-2518-4
[96] Liu K, Yuan X, Liang L M, et al. Using CRISPR/Cas9 for multiplex genome engineering to optimize the ethanol metabolic pathway in Saccharomyces cerevisiae. Biochemical Engineering Journal, 2019, 145: 120-126.
doi: 10.1016/j.bej.2019.02.017
[97] Xu X, Williams T C, Divne C, et al. Evolutionary engineering in Saccharomyces cerevisiae reveals a TRK1-dependent potassium influx mechanism for propionic acid tolerance. Biotechnology for Biofuels, 2019, 12: 97.
doi: 10.1186/s13068-019-1427-6
[98] Li P S, Fu X F, Zhang L, et al. CRISPR/Cas-based screening of a gene activation library in Saccharomyces cerevisiae identifies a crucial role of OLE 1 in thermotolerance. Microbial Biotechnology, 2019, 12(6): 1154-1163.
doi: 10.1111/mbt2.v12.6
[99] Mitsui R, Yamada R, Ogino H. Improved stress tolerance of Saccharomyces cerevisiae by CRISPR-Cas-mediated genome evolution. Applied Biochemistry and Biotechnology, 2019, 189(3): 810-821.
doi: 10.1007/s12010-019-03040-y
[100] Cámara E, Lenitz I, Nygård Y. A CRISPR activation and interference toolkit for industrial Saccharomyces cerevisiae strain KE6-12. Scientific Reports, 2020, 10(1): 14605.
doi: 10.1038/s41598-020-71648-w pmid: 32884066
[101] Mukherjee V, Lind U, St Onge R P, et al. A CRISPR interference screen of essential genes reveals that proteasome regulation dictates acetic acid tolerance in Saccharomyces cerevisiae. mSystems, 2021, 6(4): e0041821.
doi: 10.1128/mSystems.00418-21
[102] Gutmann F, Jann C, Pereira F, et al. CRISPRi screens reveal genes modulating yeast growth in lignocellulose hydrolysate. Biotechnology for Biofuels, 2021, 14: 41.
doi: 10.1186/s13068-021-01880-7 pmid: 33568224
[103] Lang T A, Walker M E, Jiranek V. Disruption of ECM33 in diploid wine yeast EC1118: cell morphology and aggregation and their influence on fermentation performance. FEMS Yeast Research, 2021, 21(5): foab044.
doi: 10.1093/femsyr/foab044
[104] Liu Y F, Lin Y P, Guo Y F, et al. Stress tolerance enhancement via SPT15 base editing in Saccharomyces cerevisiae. Biotechnology for Biofuels, 2021, 14: 155.
doi: 10.1186/s13068-021-02005-w
[105] Yang P Z, Jiang S Y, Jiang S W, et al. CRISPR-Cas9 approach constructed engineered Saccharomyces cerevisiae with the deletion of GPD2, FPS1, and ADH2 to enhance the production of ethanol. Journal of Fungi, 2022, 8(7): 703.
doi: 10.3390/jof8070703
[106] Yang P Z, Jiang S Y, Lu S H, et al. Ethanol yield improvement in Saccharomyces cerevisiae GPD2 Delta FPS1 Delta ADH2 Delta DLD3 Delta mutant and molecular mechanism exploration based on the metabolic flux and transcriptomics approaches. Microbial Cell Factories, 2022, 21: 160.
doi: 10.1186/s12934-022-01885-3
[107] Kurtzman C P, Fell J W, Boekhout T. The yeasts, a taxonomic study. 5th ed. Amsterdam: Elsevier Science Publishers B.V, 2011: 554-555.
[108] Borneman A R, Pretorius I S. Genomic insights into the Saccharomyces sensu stricto complex. Genetics, 2015, 199(2): 281-291.
doi: 10.1534/genetics.114.173633 pmid: 25657346
[109] Libkind D, Peris D, Cubillos F A, et al. Into the wild: new yeast genomes from natural environments and new tools for their analysis. FEMS Yeast Research, 2020, 20(2): foaa008.
doi: 10.1093/femsyr/foaa008
[110] Mitsui R, Yamada R. Saccharomyces cerevisiae as a microbial cell factory. Microbial Cell Factories Engineering for Production of Biomolecules. Amsterdam: Elsevier, 2021: 319-333.
[111] Wang S, Zhao F G, Yang M L, et al. Metabolic engineering of Saccharomyces cerevisiae for the synthesis of valuable chemicals. Critical Reviews in Biotechnology.[2023-08-25]. https://doi.org/10.1080/07388551.2022.2153008.
[112] 张耀, 邱晓曼, 孙浩, 等. 酿酒酵母的工业化应用. 中国生物工程杂志, 2022, 42(Z1): 26-36.
Zhang Y, Qiu X M, Sun H, et al. The industrial applications of Saccharomyces cerevisiae. China Biotechnology, 2022, 42(Z1): 26-36.
[113] 何秀萍. 国内酿酒酵母分子遗传与育种研究40年. 微生物学通报, 2014, 41(3): 450-458.
He X P. Research progress of molecular genetics and breeding of Saccharomyces cerevisiae in China in the past 40 years. Microbiology China, 2014, 41(3): 450-458.
[114] 田方方, 何博, 吴毅. 基于酿酒酵母的大片段DNA组装与转移技术进展. 中国生物工程杂志, 2022, 42(7): 101-112.
Tian F F, He B, Wu Y. Advances in large DNA assembly and transfer based on Saccharomyces cerevisiae. China Biotechnology, 2022, 42(7): 101-112.
[115] 陈涛, 刘志华, 李霞, 等. 抑制剂耐受性酵母底盘细胞的设计与构建. 中国生物工程杂志, 2022, 42(Z1): 1-13.
Chen T, Liu Z H, Li X, et al. Design and construction of inhibitor-tolerant yeast chassis cells. China Biotechnology, 2022, 42(Z1): 1-13.
[1] 田方方,何博,吴毅. 基于酿酒酵母的大片段DNA组装与转移技术进展*[J]. 中国生物工程杂志, 2022, 42(7): 101-112.
[2] 吴静, 王珍珍, 王晓宇, 罗丹, 蒋增良, 沙如意, 毛建卫, 崔艳丽. 酿酒酵母发酵与自然发酵过程中霍山石斛酵素的代谢物及抗氧化变化*[J]. 中国生物工程杂志, 2022, 42(11): 73-87.
[3] 陈涛,刘志华,李霞,谢泽雄. 抑制剂耐受性酵母底盘细胞的设计与构建*[J]. 中国生物工程杂志, 2022, 42(1/2): 1-13.
[4] 李然,闫晓光,李伟国,梁冬梅,财音青格乐,乔建军. 高效合成倍半萜酿酒酵母的构建策略*[J]. 中国生物工程杂志, 2022, 42(1/2): 14-25.
[5] 张耀,邱晓曼,孙浩,郭蕾,洪厚胜. 酿酒酵母的工业化应用[J]. 中国生物工程杂志, 2022, 42(1/2): 26-36.
[6] 董曙馨,秦磊,李春,李珺. 利用转录因子工程重塑代谢网络实现细胞工厂高效生产[J]. 中国生物工程杂志, 2021, 41(4): 55-63.
[7] 张巧珍,吴雯婷,李紫萱,赵心博,胡兵,刘聪,隋正伟,刘宏图,章乐. 采用数据挖掘技术对湖北省人类狂犬病开展生物信息学研究 *[J]. 中国生物工程杂志, 2021, 41(2/3): 14-29.
[8] 薛志勇,代红生,张显元,孙艳颖,黄志伟. 表达透明颤菌血红蛋白基因对酿酒酵母生长及细胞内氧化状态的影响*[J]. 中国生物工程杂志, 2021, 41(11): 32-39.
[9] 明玥,赵自通,王鸿磊,梁志宏. 基于序列和结构分析的酶热稳定性改造策略*[J]. 中国生物工程杂志, 2021, 41(10): 100-108.
[10] 石鹏程, 纪晓俊. 酵母系统表达人表皮生长因子研究进展 *[J]. 中国生物工程杂志, 2021, 41(1): 72-79.
[11] 岑黔鸿,高彤,任怡,雷涵. 重组酿酒酵母表达幽门螺杆菌VacA蛋白及其免疫原性分析*[J]. 中国生物工程杂志, 2020, 40(5): 15-21.
[12] 姜吉喆, 潘航, 乐敏, 章乐. 基于比较基因组学方法的世界范围的犬布鲁氏菌系统发育群研究 *[J]. 中国生物工程杂志, 2020, 40(3): 38-47.
[13] 章小毛,郭敬涵,洪解放,陆海燕,丁娟娟,邹少兰,范寰. UPRE-lac Z为报告基因评价酵母UPR响应初步研究 *[J]. 中国生物工程杂志, 2020, 40(10): 1-9.
[14] 胡妍,李辉,何承文,朱婧,谢志平. 酵母亚细胞结构分离效率评估菌株的构建 *[J]. 中国生物工程杂志, 2020, 40(10): 10-23.
[15] 张正坦,朱婧,谢志平. 酿酒酵母全基因组SNARE蛋白的亚细胞定位研究 *[J]. 中国生物工程杂志, 2019, 39(10): 44-57.