Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2023, Vol. 43 Issue (6): 1-11    DOI: 10.13523/j.cb.2302030
研究报告     
靶向前列腺癌CAR-NK细胞的抗肿瘤活性评价*
苏凌宇1,邹金桃1,牛安娜1,张伟2,张晓鹏1,**(),陈薇1,**()
1 军事科学院军事医学研究院 北京 100071
2 南湖实验室 嘉兴 314001
Anti-tumor Effect of CAR-NK Cells Targeting Prostate Cancer
SU Ling-yu1,ZOU Jin-tao1,NIU An-na1,ZHANG Wei2,ZHANG Xiao-peng1,**(),CHEN Wei1,**()
1 Academy of Military Medical Sciences, Beijing 100071,China
2 Nanhu Laboratory,Jiaxing 314001,China
 全文: PDF(5522 KB)   HTML
摘要:

目的:探索基于DAP12共刺激信号和靶向前列腺干细胞抗原(PSCA)的嵌合抗原受体NK细胞(CAR-NK)对前列腺肿瘤细胞的杀伤作用。方法:使用慢病毒转染系统构建CAR-NK细胞,使用流式细胞术检测前列腺癌细胞DU145 PSCA的表达水平和CAR-NK细胞的阳性率,并经细胞和动物模型评价CAR-NK细胞的抗肿瘤活性。结果:前列腺癌细胞DU145高表达PSCA,阳性率约为98.50%。流式细胞术检测显示CAR-NK细胞CAR分子表达阳性率为(64.07 ± 3.01)%。细胞毒性实验发现,与对照NK细胞相比,携带DAP12共刺激信号的CAR-NK细胞具有较强抗前列腺肿瘤作用,杀伤率提升了约1.5倍。ELISA结果显示,与对照NK细胞相比,CAR-NK细胞杀伤DU145细胞时释放的TNF-α、IFN-γ、CD107α、Granzyme B和Perforin-1等因子水平显著提高。动物实验表明,CAR-NK细胞相对于对照NK细胞,更能有效抑制肿瘤增殖,两者之间有显著性统计学差异(P<0.000 1)。结论:靶向PSCA并提供DAP12共刺激信号的CAR-NK细胞具有较强杀伤前列腺肿瘤的作用,为前列腺癌治疗提供了潜在的细胞药物。

关键词: CAR-NKPSCADAP12前列腺癌    
Abstract:

Objective: To investigate the anti-tumor efficacy of chimeric antigen receptor-nature killing cells (CAR-NK cells) against prostate stem cell antigen (PSCA) via DAP12 co-stimulation signal. Methods: CAR-NK cells were generated via lentiviral transfection and the expression of CAR in NK cells was evaluated using flow cytometry. The anti-tumor activity of CAR-NK cells was further assessed in both cellular and animal models. Results: The prostate cancer cell DU145 expressed PSCA with a positive rate of about 98.50%. Flow cytometry revealed that (64.07 ± 3.01)% of CAR-NK cells were positive. Furthermore, the killing rate of CAR-NK cells was approximately 1.5 times higher than that of control NK cells. ELISA tests showed that CAR-NK cells released significantly higher levels of TNF-α, IFN-γ, CD107α, Granzyme B, and Perforin-1, when compared to control NK cells in the process of killing DU145 cells. Additionally, animal experiments show that CAR-NK cells had a better inhibiting effect in the growth of DU145 tumor cells in mice compared with control NK cells as significant difference was found between the two groups (P<0.000 1). Conclusion: The findings suggested that PSCA-targeting CAR-NK cells with DAP12 had a greater anti-prostate tumor effect, providing a potential cellular therapeutic option for the treatment of prostate cancer.

Key words: CAR-NK    PSCA    DAP12    Prostate cancer
收稿日期: 2023-02-17 出版日期: 2023-07-04
ZTFLH:  Q819  
基金资助: * 国家自然科学基金(82173787)
通讯作者: **电子信箱:zxp8565@aliyun.com;cw0226@foxmail.com   
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
苏凌宇
邹金桃
牛安娜
张伟
张晓鹏
陈薇

引用本文:

苏凌宇, 邹金桃, 牛安娜, 张伟, 张晓鹏, 陈薇. 靶向前列腺癌CAR-NK细胞的抗肿瘤活性评价*[J]. 中国生物工程杂志, 2023, 43(6): 1-11.

SU Ling-yu, ZOU Jin-tao, NIU An-na, ZHANG Wei, ZHANG Xiao-peng, CHEN Wei. Anti-tumor Effect of CAR-NK Cells Targeting Prostate Cancer. China Biotechnology, 2023, 43(6): 1-11.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.2302030        https://manu60.magtech.com.cn/biotech/CN/Y2023/V43/I6/1

图1  基于DAP12信号域的CAR质粒的设计与构建
图2  慢病毒滴度检测
图3  流式细胞术检测CAR的表达水平
图4  流式细胞术检测DU145细胞PSCA表达水平
图5  CAR-NK细胞的杀伤能力
图6  ELISA法测定细胞因子含量
图7  小鼠体内肿瘤负荷检测
图8  CAR-NK与NK细胞浸润情况
[1] Baxevanis C N, Perez S A, Papamichail M. Cancer immunotherapy. Critical Reviews in Clinical Laboratory Sciences, 2009, 46(4): 167-189.
doi: 10.1080/10408360902937809 pmid: 19650714
[2] Gross G, Waks T, Eshhar Z. Expression of immunoglobulin-T-cell receptor chimeric molecules as functional receptors with antibody-type specificity. Proceedings of the National Academy of Sciences of the United States of America, 1989, 86(24): 10024-10028.
[3] Barrett D M, Singh N, Porter D L, et al. Chimeric antigen receptor therapy for cancer. Annual Review of Medicine, 2014, 65: 333-347.
doi: 10.1146/annurev-med-060512-150254 pmid: 24274181
[4] Anagnostou T, Riaz I B, Hashmi S K, et al. Anti-CD19 chimeric antigen receptor T-cell therapy in acute lymphocytic leukaemia: a systematic review and meta-analysis. The Lancet Haematology, 2020, 7(11): e816-e826.
doi: 10.1016/S2352-3026(20)30277-5
[5] Fesnak A D, June C H, Levine B L. Engineered T cells: the promise and challenges of cancer immunotherapy. Nature Reviews Cancer, 2016, 16(9): 566-581.
doi: 10.1038/nrc.2016.97 pmid: 27550819
[6] Guillerey C, Huntington N D, Smyth M J. Targeting natural killer cells in cancer immunotherapy. Nature Immunology, 2016, 17(9): 1025-1036.
doi: 10.1038/ni.3518 pmid: 27540992
[7] Morvan M G, Lanier L L. NK cells and cancer: you can teach innate cells new tricks. Nature Reviews Cancer, 2016, 16(1): 7-19.
doi: 10.1038/nrc.2015.5 pmid: 26694935
[8] Rezvani K, Rouce R, Liu E L, et al. Engineering natural killer cells for cancer immunotherapy. Molecular Therapy, 2017, 25(8): 1769-1781.
doi: S1525-0016(17)30274-5 pmid: 28668320
[9] Xia J F, Minamino S, Kuwabara K. CAR-expressing NK cells for cancer therapy: a new hope. BioScience Trends, 2020, 14(5): 354-359.
doi: 10.5582/bst.2020.03308
[10] Wang W X, Jiang J T, Wu C P. CAR-NK for tumor immunotherapy: clinical transformation and future prospects. Cancer Letters, 2020, 472: 175-180.
doi: S0304-3835(19)30588-9 pmid: 31790761
[11] Eshhar Z, Waks T, Gross G, et al. Specific activation and targeting of cytotoxic lymphocytes through chimeric single chains consisting of antibody-binding domains and the gamma or zeta subunits of the immunoglobulin and T-cell receptors. Proceedings of the National Academy of Sciences of the United States of America, 1993, 90(2): 720-724.
[12] Maher J, Brentjens R J, Gunset G, et al. Human T-lymphocyte cytotoxicity and proliferation directed by a single chimeric TCRζ/CD28 receptor. Nature Biotechnology, 2002, 20(1): 70-75.
doi: 10.1038/nbt0102-70 pmid: 11753365
[13] Morgan R A, Yang J C, Kitano M, et al. Case report of a serious adverse event following the administration of T cells transduced with a chimeric antigen receptor recognizing ERBB2. Molecular Therapy, 2010, 18(4): 843-851.
[14] Lanier L L. DAP10- and DAP12-associated receptors in innate immunity. Immunological Reviews, 2009, 227(1): 150-160.
doi: 10.1111/j.1600-065X.2008.00720.x pmid: 19120482
[15] Tomasello E, Vivier E. KARAP/DAP12/TYROBP: three names and a multiplicity of biological functions. European Journal of Immunology, 2005, 35(6): 1670-1677.
pmid: 15884055
[16] Turnbull I R, Colonna M. Activating and inhibitory functions of DAP12. Nature Reviews Immunology, 2007, 7(2): 155-161.
doi: 10.1038/nri2014 pmid: 17220916
[17] Tessarz A S, Cerwenka A. The TREM-1/DAP12 pathway. Immunology Letters, 2008, 116(2): 111-116.
doi: 10.1016/j.imlet.2007.11.021 pmid: 18192027
[18] Paradowska-Gorycka A, Jurkowska M. Structure, expression pattern and biological activity of molecular complex TREM-2/DAP12. Human Immunology, 2013, 74(6): 730-737.
doi: 10.1016/j.humimm.2013.02.003 pmid: 23459077
[19] Xia C F, Dong X S, Li H, et al. Cancer statistics in China and United States, 2022: profiles, trends, and determinants. Chinese Medical Journal, 2022, 135(5): 584-590.
doi: 10.1097/CM9.0000000000002108 pmid: 35143424
[20] Xiao L, Cen D Z, Gan H N, et al. Adoptive transfer of NKG2D CAR mRNA-engineered natural killer cells in colorectal cancer patients. Molecular Therapy, 2019, 27(6): 1114-1125.
doi: S1525-0016(19)30097-8 pmid: 30962163
[21] ChiaIng J, Huang S W, Peter C, et al. Targeting human leukocyte antigen G with chimeric antigen receptors of natural killer cells convert immunosuppression to ablate solid tumors. Journal for Immunotherapy of Cancer, 2021, 9(10): e003050.
doi: 10.1136/jitc-2021-003050
[22] Töpfer K, Cartellieri M, Michen S, et al. DAP12-based activating chimeric antigen receptor for NK cell tumor immunotherapy. The Journal of Immunology, 2015, 194(7): 3201-3212.
doi: 10.4049/jimmunol.1400330
[23] Abate-Daga D, Lagisetty K H, Tran E, et al. A novel chimeric antigen receptor against prostate stem cell antigen mediates tumor destruction in a humanized mouse model of pancreatic cancer. Human Gene Therapy, 2014, 25(12): 1003-1012.
doi: 10.1089/hum.2013.209 pmid: 24694017
[24] Yang X L, Guo Z, Liu Y, et al. Prostate stem cell antigen and cancer risk, mechanisms and therapeutic implications. Expert Review of Anticancer Therapy, 2014, 14(1): 31-37.
doi: 10.1586/14737140.2014.845372 pmid: 24308679
[25] de la Luz Garcia-Hernandez M, Gray A, Hubby B, et al. Prostate stem cell antigen vaccination induces a long-term protective immune response against prostate cancer in the absence of autoimmunity. Cancer Research, 2008, 68(3): 861-869.
doi: 10.1158/0008-5472.CAN-07-0445 pmid: 18245488
[26] Wu D, Lv J, Zhao R, et al. PSCA is a target of chimeric antigen receptor T cells in gastric cancer. Biomarker Research, 2020, 8: 1-11.
doi: 10.1186/s40364-019-0180-0
[27] Montagner I M, Penna A, Fracasso G, et al. Anti-PSMA CAR-engineered NK-92 cells: an off-the-shelf cell therapy for prostate cancer. Cells, 2020, 9(6): 1382.
doi: 10.3390/cells9061382
[28] Teng K Y, Mansour A G, Zhu Z, et al. Off-the-shelf prostate stem cell antigen-directed chimeric antigen receptor natural killer cell therapy to treat pancreatic cancer. Gastroenterology, 2022, 162(4): 1319-1333.
doi: 10.1053/j.gastro.2021.12.281
[29] Zhao A, Chen F H, Ning C H, et al. Use of real-time cellular analysis and Plackett-Burman design to develop the serum-free media for PC-3 prostate cancer cells. PLoS One, 2017, 12(9): e0185470.
doi: 10.1371/journal.pone.0185470
[30] Stefanowicz-Hajduk J, Adamska A, Bartoszewski R, et al. Reuse of E-plate cell sensor arrays in the xCELLigence real-time cell analyzer. BioTechniques, 2016, 61(3): 117-122.
doi: 10.2144/000114450 pmid: 27625205
[1] 鲍奕恺,洪皓飞,施杰,周志昉,吴志猛. 靶向PSMA多价纳米抗体的制备及其生物学活性表征*[J]. 中国生物工程杂志, 2022, 42(5): 37-45.
[2] 张赛,叶纪伟,沈远径,穆克飞,郭新武. miR-324-3p靶向GPX4对前列腺癌细胞铁死亡的影响*[J]. 中国生物工程杂志, 2022, 42(1/2): 72-79.
[3] 潘卫兵,朱鹏,曾启昂,王凯,刘松. 5例前列腺癌T细胞受体β链CDR3的多样性分析 *[J]. 中国生物工程杂志, 2019, 39(3): 7-12.
[4] 段李梅,杨锦潇,刘佳渝,郑永波,吴小候,罗春丽. shPLCε通过YAP抑制前列腺癌细胞的丝氨酸/甘氨酸代谢和增殖 *[J]. 中国生物工程杂志, 2019, 39(11): 1-12.
[5] 盛彬, 杨帆, 孙心旖, 陈瑶, 李莉, 杨建一, 杜圣家, 刘铭. GPRC6A过表达前列腺癌细胞株构建及EMT相关研究[J]. 中国生物工程杂志, 2017, 37(3): 18-26.
[6] 曹荣月, 俞敏霞, 张昕黎, 李曼曼, 苗梓韬, 金亮. VEGFⅡ/GRP融合蛋白的构建、表达、纯化及其抗小鼠RM-1前列腺癌的作用研究[J]. 中国生物工程杂志, 2016, 36(8): 9-15.
[7] 陈娥, 欧俐苹, 唐敏, 刘南京, 吴小候, 罗春丽. 帕比司他逆转前列腺癌细胞hepaCAM基因表达机制研究[J]. 中国生物工程杂志, 2016, 36(6): 9-17.
[8] 万里川, 周建光, 李杰之, 孙玉龙, 刘春丽. 小鼠PC-1蛋白兔多克隆抗体的制备及初步应用[J]. 中国生物工程杂志, 2003, 23(12): 95-98.
[9] 刘建香, 刘丽, 刘立忠, 王颖, 谢宝树, 冷爱军, 苏旭, 刘树铮. PSP94融合蛋白在大肠杆菌中的表达及其抗前列腺癌活性分析[J]. 中国生物工程杂志, 2000, 20(1): 8-12.
[10] 睿中. Cetus公司推出两项诊断试验[J]. 中国生物工程杂志, 1986, 6(3): 73-73.