Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2023, Vol. 43 Issue (6): 69-75    DOI: 10.13523/j.cb.2301003
综述     
疟原虫重组蛋白rVAR2及其在肿瘤靶向治疗中的应用进展*
蒋金露1,2,潘海峰2,3,于思远2,3,李廷栋2,3,葛胜祥2,3,**()
1 厦门大学生命科学学院 厦门大学国家传染病诊断试剂与疫苗工程技术研究中心 厦门 361102
2 厦门大学公共卫生学院 厦门大学分子疫苗学和分子诊断学国家重点实验室 厦门 361102
3 医用生物制品省部共建协同创新中心 厦门 361102
Recombinant Malaria Protein rVAR2 and Its Application in Tumor-targeted Therapy
JIANG Jin-lu1,2,PAN Hai-feng2,3,YU Si-yuan2,3,LI Ting-dong2,3,GE Sheng-xiang2,3,**()
1 School of Life Science, National Institute of Diagnostics and Vaccine Development in Infectious Disease, Xiamen University, Xiamen 361102, China
2 Department of Laboratory Medicine, School of Public Health, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Xiamen University, Xiamen 361102, China
3 Collaborative Innovation Center of Biological Products, Xiamen University, Xiamen 361102, China
 全文: PDF(845 KB)   HTML
摘要:

恶性肿瘤是造成人类死亡的主要原因之一,其发病率和死亡率逐年上升。靶向药物可精确作用于肿瘤,在近年来备受关注。特异性识别和广泛结合肿瘤细胞是实现肿瘤靶向治疗的关键,而目前缺乏高效特异的泛肿瘤靶向工具,这极大地限制了肿瘤靶向治疗的进一步发展。与现有的肿瘤靶向方式相比,疟原虫重组蛋白rVAR2能够特异性结合肿瘤细胞表面广泛表达的癌胚硫酸软骨素(oncofetal chondroitin sulfate,ofCS),具备泛肿瘤靶向的优点,为肿瘤靶向治疗提供了新思路。对rVAR2的特点及其近年来在肿瘤靶向治疗中的应用进展进行分析和总结,并对其未来发展方向进行了展望,以期为临床肿瘤靶向治疗及诊断方法的发展提供参考。

关键词: VAR2CSArVAR2硫酸软骨素癌胚硫酸软骨素肿瘤靶向    
Abstract:

Malignant tumor is considered to be one of the main causes of human death, and its morbidity and mortality are increasing by years. Tumor-targeted drugs can act precisely on tumors and have gained a lot of attention in recent years. Specific identification and extensive binding to tumor cells are key to achieving tumor-targeted therapy, and the lack of effective and specific pan-tumor targeting tools has greatly limited the further development of tumor-targeted therapy. Compared with existing tumor targeting approaches, Plasmodium recombinant protein rVAR2 can specifically bind Oncofetal chondroitin sulfate (ofCS), which is widely expressed on the surface of tumor cells, and has the advantage of pan-tumor targeting, providing a new idea for tumor targeting therapy. In this paper, we analyze and summarize the characteristics of rVAR2 and its progress in tumor-targeted therapy in recent years, and discuss its future development direction, in order to provide a reference for the development of clinical tumor-targeted therapy and diagnosis methods.

Key words: VAR2CSA    rVAR2    Chondroitin sulfate    Oncofetal chondroitin sulfate (ofCS)    Tumor targeting
收稿日期: 2023-01-03 出版日期: 2023-07-04
ZTFLH:  Q819  
基金资助: * 国家自然科学基金(31971369);国家自然科学基金(82204459)
通讯作者: **电子信箱:sxge@xmu.edu.cn   
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
蒋金露
潘海峰
于思远
李廷栋
葛胜祥

引用本文:

蒋金露, 潘海峰, 于思远, 李廷栋, 葛胜祥. 疟原虫重组蛋白rVAR2及其在肿瘤靶向治疗中的应用进展*[J]. 中国生物工程杂志, 2023, 43(6): 69-75.

JIANG Jin-lu, PAN Hai-feng, YU Si-yuan, LI Ting-dong, GE Sheng-xiang. Recombinant Malaria Protein rVAR2 and Its Application in Tumor-targeted Therapy. China Biotechnology, 2023, 43(6): 69-75.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.2301003        https://manu60.magtech.com.cn/biotech/CN/Y2023/V43/I6/69

图1  VAR2CSA蛋白及重组蛋白rVAR2的示意图
图2  rVAR2蛋白可结合胎盘和肿瘤细胞表面特异性表达的CSA
肿瘤靶向元件 靶向原理 优势 局限性 参考文献
iRGD 识别并结合血管整合素 血管整合素在肿瘤组织部位高表达;能够内化到细胞中 由于血管整合素在其他组织广泛表达,iRGD靶向肿瘤的特异性有限 [45-46,48 -49]
抗体 结合肿瘤相关抗原 高特异性和高亲和力 由于肿瘤异质性,抗体靶向的通用性有限 [13,50]
环境响应型元件 根据环境生物化学特性(pH值、温度等)进行靶向 种类多样化 通用性有限;难以大规模制备 [51?-53]
核酸适配体 靶向肿瘤细胞膜上的高表达蛋白质 高特异性和高亲和力 体内稳定性差;存在安全性问题 [54?-56]
rVAR2 识别并结合肿瘤细胞表面的癌胚硫酸软骨素 癌胚硫酸软骨素在肿瘤中表达广泛,rVAR2与其结合具有高特异性;能够内化到细胞中 分子量大;内吞小泡逃逸效率低 [36,57]
表1  不同肿瘤靶向元件的比较
应用 细胞或肿瘤模型 参考文献
rVAR2偶联白喉毒素(DT388) 小鼠黑色素瘤细胞(B16-F10),人前列腺癌细胞(PC-3)荷瘤模型 [36]
rVAR2偶联哈米特林(Hemiasterlin)类似物(KT886) 小鼠乳腺癌细胞(4T1),人间变性大细胞淋巴瘤细胞(Karpas 299)荷瘤模型,人前列腺癌细胞(PC-3)荷瘤模型,人膀胱癌细胞(UM-UC13)荷瘤模型等 [36,58]
rVAR2偶联单甲基耳他汀E(MMAE) 人非小细胞肺癌细胞(A549)及其荷瘤模型 [59]
rVAR2偶联抗CD3抗体 人膀胱移行癌细胞(UM-UC-3)及其荷瘤模型 [60]
rVAR2修饰及血小板膜包被的纳米颗粒(rVAR2-PM /PLGA-ss-HA) 小鼠黑色素瘤细胞(B16- F10)及其荷瘤模型 [61]
表2  rVAR2蛋白在肿瘤靶向治疗中的应用
[1] Sung H, Ferlay J, Siegel R L, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer Journal for Clinicians, 2021, 71(3): 209-249.
doi: 10.3322/caac.21660 pmid: 33538338
[2] McKnight J A. Principles of chemotherapy. Clinical Techniques in Small Animal Practice, 2003, 18(2): 67-72.
pmid: 12831063
[3] Tosti A, Piraccini B M, Vincenzi C, et al. Permanent alopecia after busulfan chemotherapy. British Journal of Dermatology, 2005, 152(5): 1056-1058.
pmid: 15888171
[4] Ray J, Mahmood A, Dogar M, et al. Simultaneous cardiotoxicity and neurotoxicity associated with 5-fluorouracil containing chemotherapy: a case report and literature review. American Journal of Medical Case Reports, 2020, 8(3): 73-75.
pmid: 32149185
[5] Krukiewicz K, Zak J K. Biomaterial-based regional chemotherapy: local anticancer drug delivery to enhance chemotherapy and minimize its side-effects. Materials Science and Engineering: C, 2016, 62: 927-942.
doi: 10.1016/j.msec.2016.01.063
[6] Shadidi M, Sioud M. Selective targeting of cancer cells using synthetic peptides. Drug Resistance Updates, 2003, 6(6): 363-371.
pmid: 14744500
[7] Alshaer W, Hillaireau H, Fattal E. Aptamer-guided nanomedicines for anticancer drug delivery. Advanced Drug Delivery Reviews, 2018, 134: 122-137.
doi: S0169-409X(18)30247-3 pmid: 30267743
[8] Yoo J, Park C, Yi G, et al. Active targeting strategies using biological ligands for nanoparticle drug delivery systems. Cancers, 2019, 11(5): 640.
doi: 10.3390/cancers11050640
[9] Kutova O, Guryev E, Sokolova E, et al. Targeted delivery to tumors: multidirectional strategies to improve treatment efficiency. Cancers, 2019, 11(1): 68.
doi: 10.3390/cancers11010068
[10] Liu X S, Jiang J H, Ji Y, et al. Targeted drug delivery using iRGD peptide for solid cancer treatment. Molecular Systems Design & Engineering, 2017, 2(4): 370-379.
[11] Patel A, Sant S. Hypoxic tumor microenvironment: opportunities to develop targeted therapies. Biotechnology Advances, 2016, 34(5): 803-812.
doi: S0734-9750(16)30048-9 pmid: 27143654
[12] Lim Z F, Ma P C. Emerging insights of tumor heterogeneity and drug resistance mechanisms in lung cancer targeted therapy. Journal of Hematology & Oncology, 2019, 12(1): 1-18.
[13] Marusyk A, Janiszewska M, Polyak K. Intratumor heterogeneity: the Rosetta stone of therapy resistance. Cancer Cell, 2020, 37(4): 471-484.
doi: S1535-6108(20)30147-1 pmid: 32289271
[14] Agerbæk M Ø, Bang-Christensen S, Salanti A. Fighting cancer using an oncofetal glycosaminoglycan-binding protein from malaria parasites. Trends in Parasitology, 2019, 35(3): 178-181.
doi: S1471-4922(18)30242-3 pmid: 30551869
[15] Fried M, Duffy P E. Adherence of Plasmodium falciparum to chondroitin sulfate A in the human placenta. Science, 1996, 272(5267): 1502-1504.
doi: 10.1126/science.272.5267.1502 pmid: 8633247
[16] Salanti A, Dahlbäck M, Turner L, et al. Evidence for the involvement of VAR2CSA in pregnancy-associated malaria. Journal of Experimental Medicine, 2004, 200(9): 1197-1203.
doi: 10.1084/jem.20041579 pmid: 15520249
[17] Khunrae P, Higgins M. Structural insights into chondroitin sulfate binding in pregnancy-associated malaria. Biochemical Society Transactions, 2010, 38(5): 1337-1341.
doi: 10.1042/BST0381337 pmid: 20863310
[18] Shulman C E, Graham W J, Jilo H, et al. Malaria is an important cause of anaemia in Primigravidae: evidence from a district hospital in coastal Kenya. Transactions of the Royal Society of Tropical Medicine and Hygiene, 1996, 90(5): 535-539.
doi: 10.1016/s0035-9203(96)90312-0 pmid: 8944266
[19] Verhoeff F H, Brabin B J, Chimsuku L, et al. An analysis of the determinants of anaemia in pregnant women in rural Malawi:a basis for action. Annals of Tropical Medicine & Parasitology, 1999, 93(2): 119-133.
[20] Desai M, ter Kuile F O, Nosten F, et al. Epidemiology and burden of malaria in pregnancy. The Lancet Infectious Diseases, 2007, 7(2): 93-104.
doi: 10.1016/S1473-3099(07)70021-X
[21] Akuze J, Blencowe H, Waiswa P, et al. Randomised comparison of two household survey modules for measuring stillbirths and neonatal deaths in five countries: the Every Newborn-INDEPTH study. The Lancet Global Health, 2020, 8(4): e555-e566.
doi: 10.1016/S2214-109X(20)30044-9
[22] Clausen T M, Christoffersen S, Dahlbäck M, et al. Structural and functional insight into how the Plasmodium falciparum VAR2CSA protein mediates binding to chondroitin sulfate A in placental malaria. Journal of Biological Chemistry, 2012, 287(28): 23332-23345.
doi: 10.1074/jbc.M112.348839 pmid: 22570492
[23] Salanti A, Staalsoe T, Lavstsen T, et al. Selective upregulation of a single distinctly structured var gene in chondroitin sulphate A-adhering Plasmodium falciparum involved in pregnancy-associated malaria. Molecular Microbiology, 2003, 49(1): 179-191.
pmid: 12823820
[24] Viebig N K, Gamain B, Scheidig C, et al. A single member of the Plasmodium falciparum var multigene family determines cytoadhesion to the placental receptor chondroitin sulphate A. EMBO Reports, 2005, 6(8): 775-781.
doi: 10.1038/sj.embor.7400466
[25] Esko J D, Kimata K, Lindahl U. Proteoglycans and sulfated glycosaminoglycans: essentials of glycobiology. 2nd. New York: Cold Spring Harbor Laboratory Press, 2009.
[26] Kawashima H, Atarashi K, Hirose M, et al. Oversulfated chondroitin/dermatan sulfates containing GlcAβ1/IdoAα1-3GalNAc(4, 6-O-disulfate) interact with L- and P-selectin and chemokines. Journal of Biological Chemistry, 2002, 277(15): 12921-12930.
doi: 10.1074/jbc.M200396200 pmid: 11821431
[27] Asimakopoulou A, Theocharis A, Tzanakakis G, et al. The biological role of chondroitin sulfate in cancer and chondroitin-based anticancer agents. In Vivo, 2008, 22(3): 385-389.
pmid: 18610752
[28] Zhou Z H, Karnaukhova E, Rajabi M, et al. Oversulfated chondroitin sulfate binds to chemokines and inhibits stromal cell-derived factor-1 mediated signaling in activated T cells. PLoS One, 2014, 9(4): e94402.
doi: 10.1371/journal.pone.0094402
[29] Mizumoto S, Yamada S, Sugahara K. Molecular interactions between chondroitin-dermatan sulfate and growth factors/receptors/matrix proteins. Current Opinion in Structural Biology, 2015, 34: 35-42.
doi: 10.1016/j.sbi.2015.06.004 pmid: 26164146
[30] Maurel P, Rauch U, Flad M, et al. Phosphacan, a chondroitin sulfate proteoglycan of brain that interacts with neurons and neural cell-adhesion molecules, is an extracellular variant of a receptor-type protein tyrosine phosphatase. Proceedings of the National Academy of Sciences of the United States of America, 1994, 91(7): 2512-2516.
[31] Mikami T, Kitagawa H. Biosynthesis and function of chondroitin sulfate. Biochimica et Biophysica Acta (BBA) - General Subjects, 2013, 1830(10): 4719-4733.
doi: 10.1016/j.bbagen.2013.06.006
[32] Volpi N. Chondroitin sulfate safety and quality. Molecules, 2019, 24(8): 1447.
doi: 10.3390/molecules24081447
[33] Gama C I, Tully S E, Sotogaku N, et al. Sulfation patterns of glycosaminoglycans encode molecular recognition and activity. Nature Chemical Biology, 2006, 2(9): 467-473.
doi: 10.1038/nchembio810 pmid: 16878128
[34] Holtan S G, Creedon D J, Haluska P, et al. Cancer and pregnancy: parallels in growth, invasion, and immune modulation and implications for cancer therapeutic agents. Mayo Clinic Proceedings, 2009, 84(11): 985-1000.
[35] Ma Y L, Zhang P, Wang F, et al. The relationship between early embryo development and tumourigenesis. Journal of Cellular and Molecular Medicine, 2010, 14(12): 2697-2701.
doi: 10.1111/j.1582-4934.2010.01191.x pmid: 21029369
[36] Salanti A, Clausen T, Agerbæk M, et al. Targeting human cancer by a glycosaminoglycan binding malaria protein. Cancer Cell, 2015, 28(4): 500-514.
doi: S1535-6108(15)00334-7 pmid: 26461094
[37] Bang-Christensen, Pedersen, Pereira, et al. Capture and detection of circulating glioma cells using the recombinant VAR2CSA malaria protein. Cells, 2019, 8(9): 998.
doi: 10.3390/cells8090998
[38] Bang-Christensen S R, Katerov V, Jørgensen A M, et al. Detection of VAR2CSA-captured colorectal cancer cells from blood samples by real-time reverse transcription PCR. Cancers, 2021, 13(23): 5881.
doi: 10.3390/cancers13235881
[39] Wang W W, Wang Z N, Yang X N, et al. The molecular mechanism of cytoadherence to placental or tumor cells through VAR2CSA from Plasmodium falciparum. Cell Discovery, 2021, 7: 94.
doi: 10.1038/s41421-021-00324-8
[40] Xu Y Y, Shi L R, Qin Y, et al. A mutated glycosaminoglycan-binding domain functions as a novel probe to selectively target heparin-like epitopes on tumor cells. Journal of Biological Chemistry, 2022, 298(12): 102609.
doi: 10.1016/j.jbc.2022.102609
[41] Clausen T M, Kumar G, Ibsen E K, et al. A simple method for detecting oncofetal chondroitin sulfate glycosaminoglycans in bladder cancer urine. Cell Death Discovery, 2020, 6(1): 1-7.
[42] Zhang J Z, Sun B N, Zhang K, et al. Screening and surveillance of multiple solid tumours using plasma placental-like chondroitin sulfate A (pl-CSA). International Journal of Medical Sciences, 2020, 17(2): 161-169.
doi: 10.7150/ijms.39444 pmid: 32038099
[43] Zhang P F, Wu Z Y, Zhang W B, et al. Establishment and validation of a plasma oncofetal chondroitin sulfated proteoglycan for pan-cancer detection. Nature Communications, 2023, 14: 645.
doi: 10.1038/s41467-023-36374-7
[44] Clausen T M, Pereira M A, Oo H Z, et al. Real-time and label free determination of ligand binding-kinetics to primary cancer tissue specimens; a novel tool for the assessment of biomarker targeting. Sensing and Bio-Sensing Research, 2016, 9: 23-30.
pmid: 27441183
[45] Sugahara K N, Teesalu T, Karmali P P, et al. Coadministration of a tumor-penetrating peptide enhances the efficacy of cancer drugs. Science, 2010, 328(5981): 1031-1035.
doi: 10.1126/science.1183057 pmid: 20378772
[46] Kang S J, Lee S, Park S. iRGD peptide as a tumor-penetrating enhancer for tumor-targeted drug delivery. Polymers, 2020, 12(9): 1906.
doi: 10.3390/polym12091906
[47] Thakkar S, Sharma D, Kalia K, et al. Tumor microenvironment targeted nanotherapeutics for cancer therapy and diagnosis: a review. Acta Biomaterialia, 2020, 101: 43-68.
doi: S1742-7061(19)30621-X pmid: 31518706
[48] Davoodi Z, Shafiee F. Internalizing RGD, a great motif for targeted peptide and protein delivery: a review article. Drug Delivery and Translational Research, 2022, 12(10): 2261-2274.
doi: 10.1007/s13346-022-01116-7 pmid: 35015253
[49] Kim S, Bell K, Mousa S A, et al. Regulation of angiogenesis in vivo by ligation of integrin alpha5beta 1 with the central cell-binding domain of fibronectin. The American Journal of Pathology, 2000, 156(4): 1345-1362.
doi: 10.1016/S0002-9440(10)65005-5
[50] Birrer M J, Moore K N, Betella I, et al. Antibody-drug conjugate-based therapeutics: state of the science. JNCI: Journal of the National Cancer Institute, 2019, 111(6): 538-549.
doi: 10.1093/jnci/djz035
[51] Du J Z, Sun T M, Song W J, et al. A tumor-acidity-activated charge-conversional nanogel as an intelligent vehicle for promoted tumoral-cell uptake and drug delivery. Angewandte Chemie International Edition, 2010, 49(21): 3621-3626.
[52] Im S, Lee J, Park D, et al. Hypoxia-triggered transforming immunomodulator for cancer immunotherapy via photodynamically enhanced antigen presentation of dendritic cell. ACS Nano, 2019, 13(1): 476-488.
doi: 10.1021/acsnano.8b07045 pmid: 30563320
[53] Xiao Y, Yu D H. Tumor microenvironment as a therapeutic target in cancer. Pharmacology & Therapeutics, 2021, 221: 107753.
[54] Duo Y H, Yang M, Du Z Y, et al. CX-5461-loaded nucleolus-targeting nanoplatform for cancer therapy through induction of pro-death autophagy. Acta Biomaterialia, 2018, 79: 317-330.
doi: S1742-7061(18)30502-6 pmid: 30172068
[55] He X, Chen X L, Liu L S, et al. Sequentially triggered nanoparticles with tumor penetration and intelligent drug release for pancreatic cancer therapy. Advanced Science, 2018, 5(5): 1701070.
doi: 10.1002/advs.v5.5
[56] Xie S T, Wang Z M, Fu T, et al. Engineering aptamers with selectively enhanced biostability in the tumor microenvironment. Angewandte Chemie International Edition, 2022, 61(31): e202201220.
[57] Wang C K, Nelepcu I, Hui D, et al. Internalization and trafficking of CSPG-bound recombinant VAR2CSA lectins in cancer cells. Scientific Reports, 2022, 12: 3075.
doi: 10.1038/s41598-022-07025-6 pmid: 35197518
[58] Seiler R, Oo H Z, Tortora D, et al. An oncofetal glycosaminoglycan modification provides therapeutic access to cisplatin-resistant bladder cancer. European Urology, 2017, 72(1): 142-150.
doi: S0302-2838(17)30232-4 pmid: 28408175
[59] Oo H Z, Lohinai Z, Khazamipour N, et al. Oncofetal chondroitin sulfate is a highly expressed therapeutic target in non-small cell lung cancer. Cancers, 2021, 13(17): 4489.
doi: 10.3390/cancers13174489
[60] Middelburg J, Kemper K, Engelberts P, et al. Overcoming challenges for CD3-bispecific antibody therapy in solid tumors. Cancers, 2021, 13(2): 287.
doi: 10.3390/cancers13020287
[61] Nordmaj M A, Roberts M E, Sachse E S, et al. Development of a bispecific immune engager using a recombinant malaria protein. Cell Death & Disease, 2021, 12(4): 353.
[62] Zhou M, Lai W J, Li G B, et al. Platelet membrane-coated and VAR2CSA malaria protein-functionalized nanoparticles for targeted treatment of primary and metastatic cancer. ACS Applied Materials & Interfaces, 2021, 13(22): 25635-25648.
[63] Clausen T M, Pereira M A, Al Nakouzi N, et al. Oncofetal chondroitin sulfate glycosaminoglycans are key players in integrin signaling and tumor cell motility. Mol Cancer Res, 2016, 14(12): 1288-1299.
pmid: 27655130
[64] Yu S Y, Yang H, Li T D, et al. Efficient intracellular delivery of proteins by a multifunctional chimaeric peptide in vitro and in vivo. Nature Communications, 2021, 12: 5131.
doi: 10.1038/s41467-021-25448-z
[1] 李雨桐, 崔天琦, 张海林, 于广乐, 栾霁, 王海龙. 肿瘤靶向细菌Escherichia coli Nissle 1917在癌症治疗中的研究进展*[J]. 中国生物工程杂志, 2023, 43(6): 54-68.
[2] 陈坤, 曹雪玮, 张琴, 赵健, 王富军. EGF类生长因子来源的新型靶向肽在抗肿瘤药物蛋白中的应用[J]. 中国生物工程杂志, 2017, 37(3): 1-9.
[3] 何敏瑜, 冉海涛. 核酸适配体结合纳米材料用于肿瘤靶向治疗[J]. 中国生物工程杂志, 2015, 35(4): 86-91.
[4] 李炳娟, 李玉霞, 李北平, 凌焱, 周围, 李伟东, 林海龙, 梁龙, 刘刚, 张景海, 陈惠鹏. 应用改构的炭疽毒素作为靶向肿瘤细胞的药物递送系统及其效果评价[J]. 中国生物工程杂志, 2013, 33(4): 1-8.
[5] 杜娟,胡红刚,侯玲玲. IL-13Rα2介导的毒素融合蛋白在肿瘤治疗中的应用[J]. 中国生物工程杂志, 2009, 29(04): 98-103.