Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2023, Vol. 43 Issue (5): 76-84    DOI: 10.13523/j.cb.2212035
综述     
间充质干细胞来源细胞外囊泡对肺部疾病作用研究进展*
王泽华,张丽昀,马春燕()
宁夏大学生命科学学院 西部特色生物资源保护与利用教育部重点实验室 银川 750021
Research Progress on the Role of Mesenchymal Stem Cell Extracellular Vesicles in Lung Diseases
WANG Ze-hua,ZHANG Li-yun,MA Chun-yan()
Key Laboratory of Conservation and Utilization of Special Biological Resources in the Western China, Ministry of Education, College of Life Sciences, Ningxia University, Yinchuan 750021, China
 全文: PDF(663 KB)   HTML
摘要:

细胞外囊泡(extracellular vesicles,EVs)是细胞自然分泌的脂质囊泡结构,在生理和病理过程中发挥信息交流作用。间充质干细胞(mesenchymal stromal cell,MSCs)是一种来源广泛的多能基质干细胞,其强大的再生潜能及免疫调节能力在肺部疾病的修复和治疗中显示出广阔前景。间充质干细胞来源细胞外囊泡(mesenchymal stromal cell extracellular vesicles,MSCs-EV)具有类似MSCs的功能特性,其携带的多种活性因子在肺部组织、肺微环境及肺部疾病中展现出良好治疗效果。主要总结了MSCs及MSCs-EV生物特性,深入讨论了MSCs-EV在肺部疾病中的作用机制及临床应用价值。

关键词: 间充质干细胞细胞外囊泡肺部疾病治疗    
Abstract:

Extracellular vesicles (EVs) are lipid vesicles naturally secreted by cells. They play an important role in communication of information in physiological and pathological processes. Mesenchymal stem cells are pluripotent stromal stem cells from a wide range of sources. The potential of mesenchymal stem cell regeneration and its ability of immunomodulation have shown great promise in the repair in and treatment of lung diseases. Mesenchymal stromal cells-EVs (MSCs-EVs) have the same functional characteristics as MSCs, and many active factors carried by MSCs-EVs have shown good therapeutic effects in lung tissue, lung microenvironment and lung diseases. In this paper, the biological characteristics of MSCs and MSCs-EVs were summarized, and the mechanism and clinical application of MSCs-EVs in pulmonary diseases were discussed.

Key words: Mesenchymal stem cell    Extracellular vesicles    Lung disease    Treatment
收稿日期: 2023-01-19 出版日期: 2023-06-01
ZTFLH:  Q819  
基金资助: *国家自然科学基金(31660255)
通讯作者: **电子信箱: machnyan0411@163.com   
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
王泽华
张丽昀
马春燕

引用本文:

王泽华, 张丽昀, 马春燕. 间充质干细胞来源细胞外囊泡对肺部疾病作用研究进展*[J]. 中国生物工程杂志, 2023, 43(5): 76-84.

WANG Ze-hua, ZHANG Li-yun, MA Chun-yan. Research Progress on the Role of Mesenchymal Stem Cell Extracellular Vesicles in Lung Diseases. China Biotechnology, 2023, 43(5): 76-84.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.2212035        https://manu60.magtech.com.cn/biotech/CN/Y2023/V43/I5/76

图1  细胞外囊泡分类
[1] Cruz F F, Rocco P R M. The potential of mesenchymal stem cell therapy for chronic lung disease. Expert Review of Respiratory Medicine, 2020, 14(1): 31-39.
doi: 10.1080/17476348.2020.1679628 pmid: 31608724
[2] Guo H Y, Su Y, Deng F. Effects of mesenchymal stromal cell-derived extracellular vesicles in lung diseases: current status and future perspectives. Stem Cell Reviews and Reports, 2021, 17(2): 440-458.
doi: 10.1007/s12015-020-10085-8 pmid: 33211245
[3] de Abreu R C, Fernandes H, da Costa Martins P A, et al. Native and bioengineered extracellular vesicles for cardiovascular therapeutics. Nature Reviews Cardiology, 2020, 17(11): 685-697.
doi: 10.1038/s41569-020-0389-5
[4] Shi M M, Yang Q Y, Monsel A, et al. Preclinical efficacy and clinical safety of clinical-grade nebulized allogenic adipose mesenchymal stromal cells-derived extracellular vesicles. Journal of Extracellular Vesicles, 2021, 10(10): e12134.
[5] Yang C J, Sun J M, Tian Y P, et al. Immunomodulatory effect of MSCs and MSCs-derived extracellular vesicles in systemic lupus erythematosus. Frontiers in Immunology, 2021, 12: 714832.
doi: 10.3389/fimmu.2021.714832
[6] Aravindhan S, Ejam S S, Lafta M H, et al. Mesenchymal stem cells and cancer therapy: insights into targeting the tumour vasculature. Cancer Cell International, 2021, 21(1): 158.
doi: 10.1186/s12935-021-01836-9 pmid: 33685452
[7] Friedenstein A J, Chailakhjan R K, Lalykina K S. The development of fibroblast colonies in monolayer cultures of Guinea-pig bone marrow and spleen cells. Cell and Tissue Kinetics, 1970, 3(4): 393-403.
doi: 10.1111/j.1365-2184.1970.tb00347.x pmid: 5523063
[8] Caplan A I. Mesenchymal stem cells. Journal of Orthopaedic Research: Official Publication of the Orthopaedic Research Society, 1991, 9(5): 641-650.
doi: 10.1002/(ISSN)1554-527X
[9] Majumdar M K, Thiede M A, Mosca J D, et al. Phenotypic and functional comparison of cultures of marrow-derived mesenchymal stem cells (MSCs) and stromal cells. Journal of Cellular Physiology, 1998, 176(1): 57-66.
doi: 10.1002/(SICI)1097-4652(199807)176:1<57::AID-JCP7>3.0.CO;2-7 pmid: 9618145
[10] Wu R Q, Fan X L, Wang Y, et al. Mesenchymal stem cell-derived extracellular vesicles in liver immunity and therapy. Frontiers in Immunology, 2022, 13: 833878.
doi: 10.3389/fimmu.2022.833878
[11] Keshtkar S, Azarpira N, Ghahremani M H. Mesenchymal stem cell-derived extracellular vesicles: novel frontiers in regenerative medicine. Stem Cell Research & Therapy, 2018, 9(1): 63.
[12] Rezaie J, Nejati V, Mahmoodi M, et al. Mesenchymal stem cells derived extracellular vesicles: a promising nanomedicine for drug delivery system. Biochemical Pharmacology, 2022, 203: 115167.
doi: 10.1016/j.bcp.2022.115167
[13] van Niel G, Carter D R F, Clayton A, et al. Challenges and directions in studying cell-cell communication by extracellular vesicles. Nature Reviews Molecular Cell Biology, 2022, 23(5): 369-382.
doi: 10.1038/s41580-022-00460-3 pmid: 35260831
[14] Yáñez-Mó M, Siljander P R M, Andreu Z, et al. Biological properties of extracellular vesicles and their physiological functions. Journal of Extracellular Vesicles, 2015, 4(1): 27066.
doi: 10.3402/jev.v4.27066
[15] van Niel G, D’Angelo G, Raposo G. Shedding light on the cell biology of extracellular vesicles. Nature Reviews Molecular Cell Biology, 2018, 19(4): 213-228.
doi: 10.1038/nrm.2017.125 pmid: 29339798
[16] Pegtel D M, Gould S J. Exosomes. Annual Review of Biochemistry, 2019, 88: 487-514.
[17] Battistelli M, Falcieri E. Apoptotic bodies: particular extracellular vesicles involved in intercellular communication. Biology, 2020, 9(1): 21.
doi: 10.3390/biology9010021
[18] Sun H Y, Burrola S, Wu J C, et al. Extracellular vesicles in the development of cancer therapeutics. International Journal of Molecular Sciences, 2020, 21(17): 6097.
doi: 10.3390/ijms21176097
[19] Lo Cicero A, Stahl P D, Raposo G. Extracellular vesicles shuffling intercellular messages: for good or for bad. Current Opinion in Cell Biology, 2015, 35: 69-77.
doi: 10.1016/j.ceb.2015.04.013 pmid: 26001269
[20] Cheng Y W, Cao X, Qin L J. Mesenchymal stem cell-derived extracellular vesicles: a novel cell-free therapy for Sepsis. Frontiers in Immunology, 2020, 11: 647.
doi: 10.3389/fimmu.2020.00647 pmid: 32373121
[21] Jafarinia M, Alsahebfosoul F, Salehi H, et al. Mesenchymal stem cell-derived extracellular vesicles: a novel cell-free therapy. Immunological Investigations, 2020, 49(7): 758-780.
doi: 10.1080/08820139.2020.1712416
[22] Bartel S, Deshane J, Wilkinson T, et al. Extracellular vesicles as mediators of cellular cross talk in the lung microenvironment. Frontiers in Medicine, 2020, 7: 326.
doi: 10.3389/fmed.2020.00326 pmid: 32850874
[23] Doeppner T R, Herz J, Görgens A, et al. Extracellular vesicles improve post-stroke neuroregeneration and prevent postischemic immunosuppression. Stem Cells Translational Medicine, 2015, 4(10): 1131-1143.
doi: 10.5966/sctm.2015-0078 pmid: 26339036
[24] Kamerkar S, LeBleu V S, Sugimoto H, et al. Exosomes facilitate therapeutic targeting of oncogenic KRAS in pancreatic cancer. Nature, 2017, 546(7659): 498-503.
doi: 10.1038/nature22341
[25] Zhu X H, Badawi M, Pomeroy S, et al. Comprehensive toxicity and immunogenicity studies reveal minimal effects in mice following sustained dosing of extracellular vesicles derived from HEK293T cells. Journal of Extracellular Vesicles, 2017, 6(1): 1324730.
doi: 10.1080/20013078.2017.1324730
[26] Martin J D, Cabral H, Stylianopoulos T, et al. Improving cancer immunotherapy using nanomedicines: progress, opportunities and challenges. Nature Reviews Clinical Oncology, 2020, 17(4): 251-266.
doi: 10.1038/s41571-019-0308-z pmid: 32034288
[27] Davidson L M, Berkelhamer S K. Bronchopulmonary dysplasia: chronic lung disease of infancy and long-term pulmonary outcomes. Journal of Clinical Medicine, 2017, 6(1): 4.
doi: 10.3390/jcm6010004
[28] Willis G R, Fernandez-Gonzalez A, Anastas J, et al. Mesenchymal stromal cell exosomes ameliorate experimental bronchopulmonary dysplasia and restore lung function through macrophage immunomodulation. American Journal of Respiratory and Critical Care Medicine, 2018, 197(1): 104-116.
doi: 10.1164/rccm.201705-0925OC pmid: 28853608
[29] Chaubey S, Thueson S, Ponnalagu D, et al. Early gestational mesenchymal stem cell secretome attenuates experimental bronchopulmonary dysplasia in part via exosome-associated factor TSG-6. Stem Cell Research & Therapy, 2018, 9(1): 173.
[30] Abele A N, Taglauer E S, Almeda M, et al. Antenatal mesenchymal stromal cell extracellular vesicle treatment preserves lung development in a model of bronchopulmonary dysplasia due to chorioamnionitis. American Journal of Physiology. Lung Cellular and Molecular Physiology, 2022, 322(2): L179-L190.
[31] Ahn S Y, Park W S, Kim Y E, et al. Vascular endothelial growth factor mediates the therapeutic efficacy of mesenchymal stem cell-derived extracellular vesicles against neonatal hyperoxic lung injury. Experimental & Molecular Medicine, 2018, 50(4): 1-12.
[32] Lopes-Pacheco M, Robba C, Rocco P, et al. Current understanding of the therapeutic benefits of mesenchymal stem cells in acute respiratory distress syndrome. Cell Biol Toxicol, 2019, 36: 83.
doi: 10.1007/s10565-019-09493-5
[33] Abraham A, Krasnodembskaya A. Mesenchymal stem cell-derived extracellular vesicles for the treatment of acute respiratory distress syndrome. Stem Cells Translational Medicine, 2020, 9(1): 28-38.
doi: 10.1002/sctm.19-0205 pmid: 31647191
[34] Khatri M, Richardson L A, Meulia T. Mesenchymal stem cell-derived extracellular vesicles attenuate influenza virus-induced acute lung injury in a pig model. Stem Cell Research & Therapy, 2018, 9(1): 17.
[35] Hu S, Park J, Liu A, et al. Mesenchymal stem cell microvesicles restore protein permeability across primary cultures of injured human lung microvascular endothelial cells. Stem Cells Translational Medicine, 2018, 7(8): 615-624.
doi: 10.1002/sctm.17-0278 pmid: 29737632
[36] Li J W, Wei L, Han Z, et al. Mesenchymal stromal cells-derived exosomes alleviate ischemia/reperfusion injury in mouse lung by transporting anti-apoptotic miR-21-5p. European Journal of Pharmacology, 2019, 852: 68-76.
doi: S0014-2999(19)30055-X pmid: 30682335
[37] Yi X, Wei X, Lv H, et al. Exosomes derived from microRNA-30b-3p-overexpressing mesenchymal stem cells protect against lipopolysaccharide-induced acute lung injury by inhibiting SAA3. Experimental Cell Research, 2019, 383(2): 111454.
doi: 10.1016/j.yexcr.2019.05.035
[38] Chen W X, Zhou J, Zhou S S, et al. Microvesicles derived from human Wharton’s jelly mesenchymal stem cells enhance autophagy and ameliorate acute lung injury via delivery of miR-100. Stem Cell Research & Therapy, 2020, 11(1): 113.
[39] Hao Q, Gudapati V, Monsel A, et al. Mesenchymal stem cell-derived extracellular vesicles decrease lung injury in mice. Journal of Immunology (Baltimore, Md. : 1950), 2019, 203(7): 1961-1972.
doi: 10.4049/jimmunol.1801534
[40] Song Y, Dou H, Li X, et al. Exosomal miR-146a contributes to the enhanced therapeutic efficacy of interleukin-1β-primed mesenchymal stem cells against sepsis. Stem Cells (Dayton, Ohio), 2017, 35(5): 1208-1221.
doi: 10.1002/stem.2564
[41] Wang J, Huang R, Xu Q, et al. Mesenchymal stem cell-derived extracellular vesicles alleviate acute lung injury via transfer of miR-27a-3p. Critical Care Medicine, 2020, 48(7): e599-e610.
[42] Morrison T J, Jackson M V, Cunningham E K, et al. Mesenchymal stromal cells modulate macrophages in clinically relevant lung injury models by extracellular vesicle mitochondrial transfer. American Journal of Respiratory and Critical Care Medicine, 2017, 196(10): 1275-1286.
doi: 10.1164/rccm.201701-0170OC pmid: 28598224
[43] Moss B J, Ryter S W, Rosas I O. Pathogenic mechanisms underlying idiopathic pulmonary fibrosis. Annual Review of Pathology, 2022, 17: 515-546.
doi: 10.1146/pathmechdis.2022.17.issue-1
[44] Schäfer S, Funke-Chambour M, Berezowska S. Idiopathic pulmonary fibrosis-epidemiology, causes, and clinical course. Der Pathologe, 2020, 41(1): 46-51.
doi: 10.1007/s00292-019-00747-x
[45] Mansouri N, Willis G R, Fernandez-Gonzalez A, et al. Mesenchymal stromal cell exosomes prevent and revert experimental pulmonary fibrosis through modulation of monocyte phenotypes. JCI Insight, 2019, 4(21): e128060.
doi: 10.1172/jci.insight.128060
[46] Xu C, Zhao J, Li Q, et al. Exosomes derived from three-dimensional cultured human umbilical cord mesenchymal stem cells ameliorate pulmonary fibrosis in a mouse silicosis model. Stem Cell Research & Therapy, 2020, 11(1): 503.
[47] Zhang E, Geng X, Shan S, et al. Exosomes derived from bone marrow mesenchymal stem cells reverse epithelial-mesenchymal transition potentially via attenuating Wnt/β-catenin signaling to alleviate silica-induced pulmonary fibrosis. Toxicology Mechanisms and Methods, 2021, 31(9): 655-666.
doi: 10.1080/15376516.2021.1950250
[48] Sun L, Zhu M, Feng W, et al. Exosomal miRNA Let-7 from menstrual blood-derived endometrial stem cells alleviates pulmonary fibrosis through regulating mitochondrial DNA damage. Oxidative Medicine and Cellular Longevity, 2019, 2019: 4506303.
[49] Gao Y, Sun J, Dong C, et al. Extracellular vesicles derived from adipose mesenchymal stem cells alleviate PM2.5-induced lung injury and pulmonary fibrosis. Medical Science Monitor : International Medical Journal of Experimental and Clinical Research, 2020, 26: e922782.
[50] Wan X, Chen S, Fang Y, et al. Mesenchymal stem cell-derived extracellular vesicles suppress the fibroblast proliferation by downregulating FZD 6 expression in fibroblasts via micrRNA-29b-3p in idiopathic pulmonary fibrosis. Journal of Cellular Physiology, 2020, 235(11): 8613-8625.
doi: 10.1002/jcp.v235.11
[51] Zhou J, Lin Y, Kang X, et al. microRNA-186 in extracellular vesicles from bone marrow mesenchymal stem cells alleviates idiopathic pulmonary fibrosis via interaction with SOX4 and DKK1. Stem Cell Research & Therapy, 2021, 12(1): 96.
[52] Villamizar O, Waters S A, Scott T, et al. Mesenchymal stem cell exosome delivered zinc finger protein activation of cystic fibrosis transmembrane conductance regulator. Journal of Extracellular Vesicles, 2021, 10(3): e12053.
[53] Agustí A, Hogg J C. Update on the pathogenesis of chronic obstructive pulmonary disease. The New England Journal of Medicine, 2019, 381(13): 1248-1256.
doi: 10.1056/NEJMra1900475 pmid: 31553836
[54] Rovina N, Koutsoukou A, Koulouris N G. Inflammation and immune response in COPD: where do we stand? Mediators of Inflammation, 2013, 2013: 413735.
[55] Harrell C R, Miloradovic D, Sadikot R, et al. Molecular and cellular mechanisms responsible for beneficial effects of mesenchymal stem cell-derived product “Exo-d-MAPPS” in attenuation of chronic airway inflammation. Analytical Cellular Pathology (Amsterdam), 2020, 2020: 3153891.
[56] Kim Y S, Kim J Y, Cho R, et al. Adipose stem cell-derived nanovesicles inhibit emphysema primarily via an FGF2-dependent pathway. Experimental & Molecular Medicine, 2017, 49(1): e284.
[57] Maremanda k P, Sundar I K, Rahman I. Protective role of mesenchymal stem cells and mesenchymal stem cell-derived exosomes in cigarette smoke-induced mitochondrial dysfunction in mice. Toxicology and Applied Pharmacology, 2019, 385: 114788.
doi: 10.1016/j.taap.2019.114788
[58] Hoy R F, Chambers D C. Silica-related diseases in the modern world. Allergy, 2020, 75(11): 2805-2817.
doi: 10.1111/all.v75.11
[59] Li X, An G, Wang Y, et al. Targeted migration of bone marrow mesenchymal stem cells inhibits silica-induced pulmonary fibrosis in rats. Stem Cell Research & Therapy, 2018, 9(1): 335.
[60] Choi M, Ban T, Rhim T. Therapeutic use of stem cell transplantation for cell replacement or cytoprotective effect of microvesicle released from mesenchymal stem cell. Molecules and Cells, 2014, 37(2): 133-139.
doi: 10.14348/molcells.2014.2317 pmid: 24598998
[61] Phinney D G, Di Giuseppe M, Njah J, et al. Mesenchymal stem cells use extracellular vesicles to outsource mitophagy and shuttle microRNAs. Nature Communications, 2015, 6: 8472.
doi: 10.1038/ncomms9472 pmid: 26442449
[62] Bandeira E, Oliveira H, Silva J D, et al. Therapeutic effects of adipose-tissue-derived mesenchymal stromal cells and their extracellular vesicles in experimental silicosis. Respiratory Research, 2018, 19(1): 104.
doi: 10.1186/s12931-018-0802-3 pmid: 29843724
[63] Papi A, Brightling C, Pedersen S E, et al. Asthma. Lancet (London, England), 2018, 391(10122): 783-800.
[64] Boldrini-Leite L M, Michelotto P V Jr, de Moura S A B, et al. Lung tissue damage associated with allergic asthma in BALB/c mice could be controlled with a single injection of mesenchymal stem cells from human bone marrow up to 14 d after transplantation. Cell Transplantation, 2020, 29: 963689720913254.
[65] Du Y M, Zhuansun Y X, Chen R, et al. Mesenchymal stem cell exosomes promote immunosuppression of regulatory T cells in asthma. Experimental Cell Research, 2018, 363(1): 114-120.
doi: 10.1016/j.yexcr.2017.12.021
[66] de Castro L L, Xisto D G, Kitoko J Z, et al. Human adipose tissue mesenchymal stromal cells and their extracellular vesicles act differentially on lung mechanics and inflammation in experimental allergic asthma. Stem Cell Research & Therapy, 2017, 8(1): 151.
[67] Fang S B, Zhang H Y, Wang C, et al. Small extracellular vesicles derived from human mesenchymal stromal cells prevent group 2 innate lymphoid cell-dominant allergic airway inflammation through delivery of miR-146a-5p. Journal of Extracellular Vesicles, 2020, 9(1): 1723260.
doi: 10.1080/20013078.2020.1723260
[68] Dong L Y, Wang Y, Zheng T T, et al. Hypoxic hUCMSC-derived extracellular vesicles attenuate allergic airway inflammation and airway remodeling in chronic asthma mice. Stem Cell Research & Therapy, 2021, 12(1): 4.
[69] Guazzi M, Naeije R. Pulmonary hypertension in heart failure: pathophysiology, pathobiology, and emerging clinical perspectives. Journal of the American College of Cardiology, 2017, 69(13): 1718-1734.
doi: S0735-1097(17)30566-1 pmid: 28359519
[70] Lee C J, Alex Mitsialis S, Aslam M, et al. Exosomes mediate the cytoprotective action of mesenchymal stromal cells on hypoxia-induced pulmonary hypertension. Circulation, 2012, 126(22): 2601-2611.
doi: 10.1161/CIRCULATIONAHA.112.114173 pmid: 23114789
[71] Chen J Y, An R, Liu Z J, et al. Therapeutic effects of mesenchymal stem cell-derived microvesicles on pulmonary arterial hypertension in rats. Acta Pharmacologica Sinica, 2014, 35(9): 1121-1128.
doi: 10.1038/aps.2014.61
[72] Aliotta J M, Pereira M, Wen S C, et al. Exosomes induce and reverse monocrotaline-induced pulmonary hypertension in mice. Cardiovascular Research, 2016, 110(3): 319-330.
doi: 10.1093/cvr/cvw054 pmid: 26980205
[73] Zhang C, Wang P, Mohammed A, et al. Function of adipose-derived mesenchymal stem cells in monocrotaline-induced pulmonary arterial hypertension through miR-191 via regulation of BMPR2. BioMed Research International, 2019, 2019: 2858750.
[74] Hogan S E, Rodriguez Salazar M P, Cheadle J, et al. Mesenchymal stromal cell-derived exosomes improve mitochondrial health in pulmonary arterial hypertension. American Journal of Physiology. Lung Cellular and Molecular Physiology, 2019, 316(5): L723-L737.
[1] 靖金鹏, 朱朝军, 张朝晖. 人羊膜来源干细胞的生物学特性及应用潜力*[J]. 中国生物工程杂志, 2023, 43(4): 79-91.
[2] 张鑫, 张瑞, 唐景峰. AMOT家族成员的功能研究及在癌症治疗中的潜在应用*[J]. 中国生物工程杂志, 2023, 43(2/3): 104-119.
[3] 郝东霞, 田梦园, 刘洋, 李星, 张媛. 乳外泌体的基本性质及其应用*[J]. 中国生物工程杂志, 2023, 43(2/3): 26-42.
[4] 梁帆,程洪伟,张俊河. 人源性食管癌异种移植模型的建立及应用进展*[J]. 中国生物工程杂志, 2022, 42(8): 74-84.
[5] 武志杰,马文豪,董哲岳,吴小兵,杨怡姝,盛望. AAV载体介导的蓬佩病模型小鼠体内基因治疗研究*[J]. 中国生物工程杂志, 2022, 42(7): 24-34.
[6] 姚芷昕,李婉明. 核酸适配体在三阴性乳腺癌诊疗中的研究进展*[J]. 中国生物工程杂志, 2022, 42(7): 62-68.
[7] 杨换连,邱飞,王国权,刁勇. 肿瘤类器官在药物筛选和个性化用药中的研究进展*[J]. 中国生物工程杂志, 2022, 42(6): 47-53.
[8] 毛露珈,史恩宇,王瀚平,单天贺,王银松,王悦. 细菌外膜囊泡在抗肿瘤治疗方面的研究进展*[J]. 中国生物工程杂志, 2022, 42(5): 100-105.
[9] 邓嘉强, 李韦瑶, 钟丽君, 余树民. 自噬与间充质干细胞衰老的关系研究进展[J]. 中国生物工程杂志, 2022, 42(3): 55-61.
[10] 林宏伟,刘珺懿,罗文新. CAR-T联合疗法治疗实体瘤的研究进展[J]. 中国生物工程杂志, 2022, 42(12): 37-51.
[11] 王彧,白岳丘,田易晓,王新月,黄庆生. mRNA疫苗在疾病预防与治疗中的研究进展与展望[J]. 中国生物工程杂志, 2022, 42(10): 51-59.
[12] 韩春丽,王汉杰. 工程生物活药在肿瘤免疫治疗中的应用[J]. 中国生物工程杂志, 2022, 42(10): 39-50.
[13] 张慧,陈华宁,库德莱迪·库尔班,王松娜,刘嘉扬,赵缜,叶丽. Wnt/β-catenin信号通路与癌症发生发展及其免疫治疗*[J]. 中国生物工程杂志, 2022, 42(1/2): 104-111.
[14] 赵晓煜,徐祺玲,赵晓东,安云飞. 基因治疗慢病毒载体的转导增强策略*[J]. 中国生物工程杂志, 2021, 41(8): 52-58.
[15] 李开秀,司维. 间充质干细胞来源的外泌体治疗炎症性肠病研究进展*[J]. 中国生物工程杂志, 2021, 41(7): 66-73.