Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2023, Vol. 43 Issue (5): 11-23    DOI: 10.13523/j.cb.2212010
研究报告     
靶向TPBG和EGFR的双特异性抗体偶联药物的构建及其抗肿瘤活性研究*
金美琴1,2,3,尚诚彰3,沈月雷2,3,**()
1 安徽中医药大学药学院 合肥 230012
2 南通市海门长三角药物高等研究院 南通 226133
3 百奥赛图(北京)医药科技股份有限公司 北京 102600
Development and Anti-tumor Study of Bispecific Antibody Drug Conjugate Targeting TPBG and EGFR
JIN Mei-qin1,2,3,SHANG Cheng-zhang3,SHEN Yue-lei2,3,**()
1 College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
2 Nantong Haimen Yangtze Delta Drug Advanced Research Institute, Nantong 226133, China
3 Biocytogen Pharmaceuticals (Beijing), Beijing 102600, China
 全文: PDF(2884 KB)   HTML
摘要:

目的: 构建靶向TPBG和EGFR的双特异性抗体偶联药物(bispecific antibody drug conjugate,BsADC),并探究其在体内外抗肿瘤活性。方法: 通过携带全人抗体重链可变区和共同轻链新型小鼠的RenLite技术平台获得具有共同轻链的靶向胚胎滋养层糖蛋白(trophoblast glycoprotein,TPBG,也称为5T4)和表皮生长因子受体(epidermal growth factor receptor,EGFR)的抗体序列,采用KIH (Knobs-Into-Holes) 技术将其组装成anti-TPBG×EGFR双特异性抗体(bispecific antibody,BsAb),并通过流式细胞术(flow cytometry, FCM)、表面等离子共振技术(surface plasmon resonance,SPR)、高效液相色谱(high performance liquid chromatography,HPLC)等方法进行体外表征,最后采用半胱氨酸偶联技术将其与微管蛋白抑制剂甲基澳瑞他汀 E(MonoMethyl auristatin E,MMAE)偶联成药物抗体偶联比(drug to antibody ration,DAR)为4的anti-TPBG×EGFR BsADC,并研究其体外杀伤作用和在人源肿瘤细胞系异种移植模型(cell derived xenograft,CDX)中的抗肿瘤活性。结果: 根据GEPIA2数据库,TPBG与EGFR在多种肿瘤上具有共表达。通过对5种人源性肿瘤组织异种移植(patient-derived xenografts,PDX)免疫荧光分析也证实TPBG和EGFR在肿瘤细胞中具有不同比例的共表达。通过RenLite平台成功制备高纯度靶向TPBG和EGFR的双抗。经体外实验结果表明,BsAb相较于TPBG母本单抗显著增强了与肿瘤细胞的结合亲和力(avidity)和内吞速率。BsADC相较于TPBG母本单抗ADC明显提高了肿瘤杀伤和抗肿瘤活性。在A431(EGFRhigh/TPBGlow)模型中,anti-TPBG×EGFR BsADC体内抗肿瘤活性强于TPBG和EGFR的母本单抗ADC,表现出协同作用。另外,在NCI-H292(EGFRmoderate /TPBGlow)模型和DU145(EGFRlow /TPBGlow)模型中,anti-TPBG×EGFR BsADC均表现出良好的体内抗肿瘤活性。结论: 实验结果表明,将TPBG与快速内化的ADC靶标EGFR组合是增强靶向TPBG的ADC内化和抗肿瘤活性的强有力策略。

关键词: 表皮生长因子受体胚胎滋养层糖蛋白双特异性抗体偶联药物抗肿瘤活性    
Abstract:

Objective: To develop a bispecific antibody drug conjugate (BsADC) targeting TPBG×EGFR and to investigate its anti-tumor activity in vitro and in vivo. Methods: Fully human antibodies targeting the oncofetal trophoblast glycoprotein (TPBG, also known as 5T4) and the epidermal growth factor receptor (EGFR) were acquired from the RenLite platform, which is a novel mouse model expressing the entire human antibody variable region of the heavy chain and a specific common light chain. Anti-TPBG and EGFR antibodies were assembled into anti-TPBG× EGFR bispecific antibody (BsAb) by the knobs-into-holes (KIH) technique. Structural and functional characterization of anti-TPBG×EGFR BsAb was screened by Flow Cytometry (FCM), Surface Plasmon Resonance (SPR) and High Performance Liquid Chromatography (HPLC). Anti-TPBG×EGFR BsAb and the microtubule protein inhibitor MonoMethyl auristatin E (MMAE) were assembled using the cysteine coupling strategy to generate anti-TPBG×EGFR BsADC with a drug to antibody ration (DAR) of 4. Furthermore, the in vitro cell killing and in vivo anti-tumor activity of TPBG×EGFR BsADC were explored in human-derived tumor cell lines and cell derived xenograft (CDX) models. Results: According to the GEPIA2 database, TPBG is co-expressed with EGFR in a variety of tumours. Immunofluorescence analysis of five Patient-Derived Xenografts (PDX) showed that TPBG and EGFR are co-expressed in tumour cells in varying proportions. The bispecific antibodies targeting TPBG and EGFR with high-purity were successfully developed by the RenLite co-light chain fully human antibody discovery platform. In vitro results showed that by simultaneously targeting both TPBG and EGFR on the surface of tumor cells, the bispecific antibody significantly enhanced the binding affinity (avidity), endocytosis and killing of tumor cells compared to the TPBG parental monoclonal antibody. Moreover, in the A431 (EGFRhigh/TPBGlow) model, anti-TPBG×EGFR BsADC showed stronger anti-tumor activity than the parental ADCs of TPBG and EGFR in vivo, demonstrating synergistic effects. In addition, in the NCI-H292 (EGFRmoderate/TPBGlow) and DU145 (EGFRlow/TPBGlow) models, anti-TPBG×EGFR BsADC also showed strong anti-tumor activity. Conclusion: These results suggest that combining TPBG with EGFR, a rapid internalizing ADC target, is a powerful strategy for enhancing anti-tumor activity of ADCs targeting TPBG.

Key words: Epidermal growth factor receptor(EGFR)    Trophoblast glycoprotein(TPBG)    Bispecific antibody drug conjugate    Antitumor activity
收稿日期: 2022-12-04 出版日期: 2023-06-01
ZTFLH:  Q819  
基金资助: *江苏省科技计划(SBE2021050009)
通讯作者: **电子信箱: yuelei.shen@bbctg.com.cn   
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
金美琴
尚诚彰
沈月雷

引用本文:

金美琴, 尚诚彰, 沈月雷. 靶向TPBG和EGFR的双特异性抗体偶联药物的构建及其抗肿瘤活性研究*[J]. 中国生物工程杂志, 2023, 43(5): 11-23.

JIN Mei-qin, SHANG Cheng-zhang, SHEN Yue-lei. Development and Anti-tumor Study of Bispecific Antibody Drug Conjugate Targeting TPBG and EGFR. China Biotechnology, 2023, 43(5): 11-23.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.2212010        https://manu60.magtech.com.cn/biotech/CN/Y2023/V43/I5/11

肿瘤类型 EGFR (T) TPBG (T)
ACC(adrenocortical carcinoma 肾上腺皮质癌) 4.1 3.3
BLCA(bladder Urothelial carcinoma 膀胱移行细胞癌) 12.2 16.6
BRCA(breast invasive carcinoma 乳腺浸润性癌) 3.0 32.0
CESC(cervical squamous cell carcinoma and endocervical adenocarcinoma 宫颈鳞状细胞癌和宫颈内腺癌) 17.8 25.4
CHOL(cholangio carcinoma 胆管癌) 11.2 9.2
COAD(colon adenocarcinoma 结肠癌) 7.9 6.8
ESCA(esophageal carcinoma 食管癌) 38.4 23.1
GBM(glioblastoma multiforme 多形性成胶质细胞瘤) 82.3 1.6
HNSC(head and neck squamous cell carcinoma 头颈部鳞状细胞癌) 38.0 33.5
KICH(kidney chromophobe 肾嫌色细胞癌) 7.9 4.2
KIRC(kidney renal clear cell carcinoma 肾透明细胞癌) 38.7 5.6
KIRP(kidney renal papillary cell carcinoma 肾乳头状细胞癌) 12.1 8.6
LGG(brain lower grade glioma 脑低级别胶质瘤) 49.1 0.9
LUAD(lung adenocarcinoma 肺腺癌) 15.5 14.8
LUSC(lung squamous cell carcinoma 肺鳞状细胞癌) 29.0 24.4
OV(ovarian serous cystadenocarcinoma 卵巢浆液性囊腺癌) 3.7 10.0
PAAD(pancreatic adenocarcinoma 胰腺癌) 9.4 17.1
PRAD(prostatic adenocarcinoma 前列腺腺癌) 12.5 5.9
READ(rectum adenocarcinoma 直肠腺癌) 8.9 6.4
SARC(sarcoma 肉瘤) 8.7 14.3
SKCM(skin cutaneous melanoma皮肤黑色素瘤) 0.5 2.7
STAD(stomach adenocarcinoma 胃腺癌) 13.1 9.1
TGCT(testicular germ cell tumors 睾丸生殖细胞肿瘤) 1.6 9
THCA(thyroid carcinoma 甲状腺癌) 15.0 8.8
THYM(thymoma 胸腺瘤) 12.3 7.4
UCEC(uterine corpus endometrial carcinoma 子宫内膜癌) 4.0 15.1
表1  TPBG和EGFR在肿瘤中的共表达情况(GEPIA2,表中数据为中位log值)
图1  TPBG和EGFR在PDX中的表达及共表达情况
图2  anti-TPBG×EGFR双抗蛋白组装表达流程及表征
图3  anti-TPBG×EGFR双抗与TPBG和EGFR人抗原的亲和力
图4  anti-TPBG×EGFR BsADC的HIC-HPLC及SEC-HPLC检测
图5  anti-TPBG×EGFR双抗与多肿瘤细胞系的结合活性
图6  anti-TPBG×EGFR双抗在A431、NCI-H226、NCI-H292中的内吞活性
图7  anti-TPBG×EGFR BsADC在NCI-H292和A431中的杀伤活性
名称 NCI-H292 IC50值/(μg/mL) A431 IC50值/(μg/mL)
anti-TPBG×EGFR BsADC 0.076 0.011
anti-TPBG ADC 0.810 0.185
5T4-PF06263507-analog ADC 0.865 0.189
表2  体外杀伤IC50值
图8  anti-TPBG×EGFR BsADC在CDX小鼠模型中的体内药效数据
[1] Chau C H, Steeg P S, Figg W D. Antibody-drug conjugates for cancer. The Lancet, 2019, 394(10200): 793-804.
doi: 10.1016/S0140-6736(19)31774-X
[2] Hammood M, Craig A W, Leyton J V. Impact of endocytosis mechanisms for the receptors targeted by the currently approved antibody-drug conjugates (ADCs): a necessity for future ADC research and development. Pharmaceuticals (Basel, Switzerland), 2021, 14(7): 674.
[3] Tong J T W, Harris P W R, Brimble M A, et al. An insight into FDA approved antibody-drug conjugates for cancer therapy. Molecules (Basel, Switzerland), 2021, 26(19): 5847.
doi: 10.3390/molecules26195847
[4] Zhao Y, Wang Y X. 5T 4 oncotrophoblast glycoprotein: Janus molecule in life and a novel potential target against tumors. Cellular & Molecular Immunology, 2007, 4(2): 99-104.
[5] Alam S M K, Jasti S, Kshirsagar S K, et al. Trophoblast glycoprotein (TPBG/5T4) in human placenta: expression, regulation, and presence in extracellular microvesicles and exosomes. Reproductive Sciences (Thousand Oaks, Calif.), 2018, 25(2): 185-197.
[6] Wan Y, Sapra P, Bolton J, et al. Combination treatment with an antibody-drug conjugate (A1mcMMAF) targeting the oncofetal glycoprotein 5T4 and carboplatin improves survival in a xenograft model of ovarian cancer. Targeted Oncology, 2019, 14: 465-477.
doi: 10.1007/s11523-019-00650-8 pmid: 31332693
[7] Shor B, Kahler J, Dougher M, et al. Enhanced antitumor activity of an anti-5T 4 antibody-drug conjugate in combination with PI3K/mTOR inhibitors or taxanes. Clinical Cancer Research: An Official Journal of the American Association for Cancer Research, 2016, 22(2): 383-394.
doi: 10.1158/1078-0432.CCR-15-1166
[8] Shapiro G I, Vaishampayan U N, LoRusso P, et al. First-in-human trial of an anti-5T 4 antibody-monomethylauristatin conjugate, PF-06263507, in patients with advanced solid tumors. Investigational New Drugs, 2017, 35(3): 315-323.
doi: 10.1007/s10637-016-0419-7
[9] Smith R A, Zammit D J, Damle N K, et al. ASN004, A 5T4-targeting scFv-fc antibody-drug conjugate with high drug-to-antibody ratio, induces complete and durable tumor regressions in preclinical models. Molecular Cancer Therapeutics, 2021, 20(8): 1327-1337.
doi: 10.1158/1535-7163.MCT-20-0565 pmid: 34045226
[10] Andreev J, Thambi N, Perez Bay A E, et al. Bispecific antibodies and antibody-drug conjugates (ADCs) bridging HER2 and prolactin receptor improve efficacy of HER2 ADCs. Molecular Cancer Therapeutics, 2017, 16(4): 681-693.
doi: 10.1158/1535-7163.MCT-16-0658 pmid: 28108597
[11] Burgess A W. EGFR family: structure physiology signalling and therapeutic targets. Growth Factors (Chur, Switzerland), 2008, 26(5): 263-274.
doi: 10.1080/08977190802312844
[12] Wang Z X. ErbB receptors and cancer. Methods in Molecular Biology (Clifton, N J), 2017, 1652: 3-35.
[13] Kazan J M, Pollato-Blanco A, Lukacs G L, et al. Measuring EGFR plasma membrane density, stability, internalization, and recycling in alive adherent cells by cell surface ELISA. STAR Protocols, 2022, 3(3): 101475.
doi: 10.1016/j.xpro.2022.101475
[14] Xu Y R, Lee J, Tran C, et al. Production of bispecific antibodies in “knobs-into-holes” using a cell-free expression system. mAbs, 2015, 7(1): 231-242.
doi: 10.4161/19420862.2015.989013
[15] Kozuki T. Skin problems and EGFR-tyrosine kinase inhibitor. Japanese Journal of Clinical Oncology, 2016, 46(4): 291-298.
doi: 10.1093/jjco/hyv207 pmid: 26826719
[16] Southall P J, Boxer G M, Bagshawe K D, et al. Immunohistological distribution of 5T 4 antigen in normal and malignant tissues. British Journal of Cancer, 1990, 61(1): 89-95.
doi: 10.1038/bjc.1990.20 pmid: 2404511
[17] 李谦, 梁晓莹, 李国柱, 等. 双特异性抗体副产物去除策略. 中国生物工程杂志, 2022, 42(10): 60-69.
Li Q, Liang X Y, Li G Z, et al. Insight into the purification strategies for removing the byproducts of bispecific antibodies. China Biotechnology, 2022, 42(10): 60-69.
[18] Schunselaar L M, Monkhorst K, van der Noort V, et al. Trophoblast glycoprotein is associated with a favorable outcome for mesothelioma and a target for antibody drug conjugates. Journal of Thoracic Oncology: Official Publication of the International Association for the Study of Lung Cancer, 2018, 13(10): 1577-1587.
doi: 10.1016/j.jtho.2018.06.008
[19] Stern P L, Harrop R. 5T 4 oncofoetal antigen: an attractive target for immune intervention in cancer. Cancer Immunology, Immunotherapy, 2017, 66(4): 415-426.
doi: 10.1007/s00262-016-1917-3
[20] Shim H. Bispecific antibodies and antibody-drug conjugates for cancer therapy: technological considerations. Biomolecules, 2020, 10(3): 360.
doi: 10.3390/biom10030360
[21] Yu J F, Fang T, Yun C Y, et al. Antibody-drug conjugates targeting the human epidermal growth factor receptor family in cancers. Frontiers in Molecular Biosciences, 2022, 9: 847835.
doi: 10.3389/fmolb.2022.847835
[1] 王璐,陈梦丽,何芳,项建,尹斌成,叶邦策. 工程化外泌体介导巨噬细胞清除肿瘤外泌体*[J]. 中国生物工程杂志, 2022, 42(6): 1-11.
[2] 邓蕊,曾佳利,卢雪梅. 基于Musca domestica cecropin的抗肿瘤小分子衍生肽筛选及构效关系解析*[J]. 中国生物工程杂志, 2021, 41(11): 14-22.
[3] 李文,陈洁,胡伟男,漆亚云,付毅红,刘佳敏,王贞超,欧阳贵平. EGFR耐药突变及其小分子抑制剂研究进展 *[J]. 中国生物工程杂志, 2019, 39(10): 97-104.
[4] 高鑫,韦攀健,闫卓红,易玲,王小珏,杨斌,张洪涛. 一株针对人EGFR的单链抗体克隆与哺乳细胞表达 *[J]. 中国生物工程杂志, 2018, 38(5): 73-78.
[5] 王世奇, 刘婧莹, 刘晨浪, 李纯, 胡晓凤, 夏立秋, 张友明. sTRAIL蛋白原核表达载体的构建、表达及抗肿瘤活性研究[J]. 中国生物工程杂志, 2015, 35(12): 1-7.
[6] 王志明, 高健, 李耿. 治疗性单克隆抗体药物的现状及发展趋势[J]. 中国生物工程杂志, 2013, 33(6): 117-124.
[7] 赵健烽, 辛兴, 卫培培, 骞爱荣, Akateh Tazifua Alfred, 商澎, 杨树林. 强磁场重力环境对Pseudomonas aeruginosa N1207的影响[J]. 中国生物工程杂志, 2013, 33(2): 27-33.
[8] 李荣锋, 于华华, 邢荣娥, 刘松, 李鹏程. 沙蜇(Stomolophus meleagris)刺丝囊毒素生物活性的初步分析[J]. 中国生物工程杂志, 2012, 32(6): 43-47.
[9] 周敏 石必枝 顾健人 李宗海. 抗EGFRvIII噬菌体抗体库的构建和筛选[J]. 中国生物工程杂志, 2010, 30(04): 1-7.
[10] 曹小红,闫乐,王春玲,焦润芝,鲁梅芳. γ-聚谷氨酸与D-半乳糖酯化衍生物-顺铂复合物的制备及其生物活性[J]. 中国生物工程杂志, 2009, 29(03): 41-46.
[11] 缪辉南, 戴建凉. 海洋生物抗肿瘤活性物质的研究进展[J]. 中国生物工程杂志, 1995, 15(1): 8-14.