Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2023, Vol. 43 Issue (5): 69-75    DOI: 10.13523/j.cb.2211040
综述     
PLGA作为抗原递送系统的研究进展*
郑蕊1,2,屠叶清2,王慧2,罗德炎2,**()
1 安徽医科大学基础医学院 合肥 230032
2 军事科学院军事医学研究院 微生物流行病研究所 病原微生物生物安全国家重点实验室 北京 100071
Research Progress of PLGA as Antigen Delivery System
ZHENG Rui1,2,TU Ye-qing2,WANG Hui2,LUO De-yan2,**()
1 School of Basic Medical Science, Anhui Medical University, Hefei 230032, China
2 State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medicine, Academy of Military Science, Beijing 100071, China
 全文: PDF(448 KB)   HTML
摘要:

近年来新冠病毒肆虐,单针剂的疫苗研制备受关注。传统疫苗制剂需要在一段时间内多次反复接种才能产生足够的中和抗体。为了降低疫苗接种次数、提高人们的疫苗接种依从性,高分子聚合物材料逐渐走进人们视野,其中聚乳酸-羟基乙酸共聚物(poly lactic-co-glycolic acid, PLGA)是当前研究最多、应用最广泛的高分子聚合物材料。PLGA作为一种人工合成的高分子聚合物材料,易于制备、价格相对较低,且具有良好的缓释特性,以及生物安全性和组织相容性,已经被FDA批准应用于药物递送系统,但在疫苗研发上方兴未艾。总结了PLGA佐剂的基本信息,根据当前疫苗研究趋势分析整理了影响其缓释效果和免疫调节作用的相关因素,以及当前的不足和限制,为后续疫苗制备和研究提供一些思路。

关键词: PLGA缓释免疫调节表面性质    
Abstract:

In recent years, due to the ravages of the COVID-19, the development of single-injection vaccine has attracted much attention. Traditional vaccine preparations need to be inoculated repeatedly for a period of time to produce enough neutralizing antibodies. In order to reduce the number of vaccination shots and improve people’s vaccination compliance, polymer materials have gradually entered people’s field of vision. Among them, Poly lactic-co-glycolic acid (PLGA) is one of the most studied and widely used polymer materials. As a synthetic polymer material, PLGA is easy to prepare and relatively low in price, and it has favorable sustained release characteristics and has good biosafety and histocompatibility. It has been approved by the U.S. Food and Drug Administration (FDA) as a drug delivery system, but it is in the ascendant in vaccine research and development. Based on the current research progress, this article summarizes the basic information of PLGA adjuvants and the related factors affecting their sustained release effect and immunomodulatory effects, so as to provide some ideas for subsequent vaccine preparation and research.

Key words: PLGA    Sustained release    Immunoregulation    Surface property
收稿日期: 2022-11-20 出版日期: 2023-06-01
ZTFLH:  Q819  
基金资助: *国家自然科学基金(31870156)
通讯作者: **电子信箱: ldy612@126.com   
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
郑蕊
屠叶清
王慧
罗德炎

引用本文:

郑蕊, 屠叶清, 王慧, 罗德炎. PLGA作为抗原递送系统的研究进展*[J]. 中国生物工程杂志, 2023, 43(5): 69-75.

ZHENG Rui, TU Ye-qing, WANG Hui, LUO De-yan. Research Progress of PLGA as Antigen Delivery System. China Biotechnology, 2023, 43(5): 69-75.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.2211040        https://manu60.magtech.com.cn/biotech/CN/Y2023/V43/I5/69

[1] Butkovich N, Li E Y, Ramirez A, et al. Advancements in protein nanoparticle vaccine platforms to combat infectious disease. WIREs Nanomedicine and Nanobiotechnology, 2021, 13(3): e1681.
[2] Zhang W F, Wang L Y, Liu Y, et al. Immune responses to vaccines involving a combined antigen-nanoparticle mixture and nanoparticle-encapsulated antigen formulation. Biomaterials, 2014, 35(23): 6086-6097.
doi: 10.1016/j.biomaterials.2014.04.022 pmid: 24780166
[3] Del Giudice G, Rappuoli R, Didierlaurent A M. Correlates of adjuvanticity: a review on adjuvants in licensed vaccines. Seminars in Immunology, 2018, 39: 14-21.
doi: S1044-5323(18)30051-4 pmid: 29801750
[4] Gregory A E, Titball R, Williamson D. Vaccine delivery using nanoparticles. Frontiers in Cellular and Infection Microbiology, 2013, 3: 13.
doi: 10.3389/fcimb.2013.00013 pmid: 23532930
[5] Raponi A, Brewer J M, Garside P, et al. Nanoalum adjuvanted vaccines: small details make a big difference. Seminars in Immunology, 2021, 56: 101544.
doi: 10.1016/j.smim.2021.101544
[6] de Groot A M, Du G S, Mönkäre J, et al. Hollow microneedle-mediated intradermal delivery of model vaccine antigen-loaded PLGA nanoparticles elicits protective T cell-mediated immunity to an intracellular bacterium. Journal of Controlled Release: Official Journal of the Controlled Release Society, 2017, 266: 27-35.
doi: 10.1016/j.jconrel.2017.09.017
[7] Khan R A, Ahmed F, Afroz S, et al. Tetravalent formulation of polymeric nanoparticle-based vaccine induces a potent immune response against dengue virus. Biomaterials Science, 2022, 10(11): 2917-2928.
doi: 10.1039/D2BM00167E
[8] Zhou X Y, Wang H Z, Luo Y, et al. Single-injection COVID-19 subunit vaccine elicits potent immune responses. Acta Biomaterialia, 2022, 151: 491-500.
doi: 10.1016/j.actbio.2022.08.006 pmid: 35948176
[9] Radmehri M, Talebi A, Ameghi Roudsari A, et al. Comparative study on the efficacy of MF 59, ISA 70 VG, and nano-aluminum hydroxide adjuvants, alone and with nano-selenium on humoral immunity induced by a bivalent Newcastle+Avian influenza vaccine in chickens. Archives of Razi Institute, 2021, 76(5): 1213-1220.
doi: 10.22092/ari.2021.356666.1887 pmid: 35355760
[10] Powell B S, Andrianov A K, Fusco P C. Polyionic vaccine adjuvants: another look at aluminum salts and polyelectrolytes. Clinical and Experimental Vaccine Research, 2015, 4(1): 23-45.
doi: 10.7774/cevr.2015.4.1.23 pmid: 25648619
[11] Gherardi R K, Crépeaux G, Authier F J. Myalgia and chronic fatigue syndrome following immunization: macrophagic myofasciitis and animal studies support linkage to aluminum adjuvant persistency and diffusion in the immune system. Autoimmunity Reviews, 2019, 18(7): 691-705.
doi: S1568-9972(19)30109-0 pmid: 31059838
[12] McKee A S, Marrack P. Old and new adjuvants. Current Opinion in Immunology, 2017, 47: 44-51.
doi: S0952-7915(16)30147-9 pmid: 28734174
[13] Liu Q, Jia J L, Yang T Y, et al. Pathogen-mimicking polymeric nanoparticles based on dopamine polymerization as vaccines adjuvants induce robust humoral and cellular immune responses. Small (Weinheim an Der Bergstrasse, Germany), 2016, 12(13): 1744-1757.
doi: 10.1002/smll.v12.13
[14] Priest N D, Newton D, Day J P, et al. Human metabolism of aluminium-26 and gallium-67 injected as citrates. Human & Experimental Toxicology, 1995, 14(3): 287-293.
[15] Kawahara M, Kato-Negishi M. Link between aluminum and the pathogenesis of alzheimer’s disease: the integration of the aluminum and amyloid cascade hypotheses. International Journal of Alzheimer’s Disease, 2011, 2011: 276393.
[16] Khan Z, Combadière C, Authier F J, et al. Slow CCL2-dependent translocation of biopersistent particles from muscle to brain. BMC Medicine, 2013, 11: 99.
doi: 10.1186/1741-7015-11-99 pmid: 23557144
[17] Crépeaux G, Eidi H, David M O, et al. Highly delayed systemic translocation of aluminum-based adjuvant in CD1 mice following intramuscular injections. Journal of Inorganic Biochemistry, 2015, 152: 199-205.
doi: 10.1016/j.jinorgbio.2015.07.004 pmid: 26384437
[18] Bolhassani A, Javanzad S, Saleh T, et al. Polymeric nanoparticles: potent vectors for vaccine delivery targeting cancer and infectious diseases. Human Vaccines & Immunotherapeutics, 2014, 10(2): 321-332.
[19] Jin S E, Xia X, Huang J H, et al. Recent advances in PLGA-based biomaterials for bone tissue regeneration. Acta Biomaterialia, 2021, 127: 56-79.
doi: 10.1016/j.actbio.2021.03.067 pmid: 33831569
[20] Danyuo Y, Oberaifo O E, Obayemi J D, et al. Extended pulsated drug release from PLGA-based minirods. Journal of Materials Science: Materials in Medicine, 2017, 28(4): 61.
doi: 10.1007/s10856-017-5866-y pmid: 28251469
[21] Gu P F, Wusiman A, Zhang Y, et al. Rational design of PLGA nanoparticle vaccine delivery systems to improve immune responses. Molecular Pharmaceutics, 2019, 16(12): 5000-5012.
doi: 10.1021/acs.molpharmaceut.9b00860 pmid: 31621331
[22] Anderson C F, Grimmett M E, Domalewski C J, et al. Inhalable nanotherapeutics to improve treatment efficacy for common lung diseases. WIREs Nanomedicine and Nanobiotechnology, 2020, 12(1): e1586.
[23] Chen X M, Liu Y Y, Wang L Y, et al. Enhanced humoral and cell-mediated immune responses generated by cationic polymer-coated PLA microspheres with adsorbed HBsAg. Molecular Pharmaceutics, 2014, 11(6): 1772-1784.
doi: 10.1021/mp400597z pmid: 24738485
[24] Morris W, Steinhoff M C, Russell P K. Potential of polymer microencapsulation technology for vaccine innovation. Vaccine, 1994, 12(1): 5-11.
pmid: 8303941
[25] Preis I, Langer R S. A single-step immunization by sustained antigen release. Journal of Immunological Methods, 1979, 28(1-2): 193-197.
pmid: 469267
[26] Bhardwaj P, Bhatia E, Sharma S, et al. Advancements in prophylactic and therapeutic nanovaccines. Acta Biomaterialia, 2020, 108: 1-21.
doi: S1742-7061(20)30161-6 pmid: 32268235
[27] Gutjahr A, Phelip C, Coolen A L, et al. Biodegradable polymeric nanoparticles-based vaccine adjuvants for lymph nodes targeting. Vaccines, 2016, 4(4): 34.
doi: 10.3390/vaccines4040034
[28] Hiremath J, Kang K I, Ming X, et al. Entrapment of H1N1 influenza virus derived conserved peptides in PLGA nanoparticles enhances T cell response and vaccine efficacy in pigs. PLoS One, 2016, 11(4): e0151922.
doi: 10.1371/journal.pone.0151922
[29] Pati R, Shevtsov M, Sonawane A. Nanoparticle vaccines against infectious diseases. Frontiers in Immunology, 2018, 9: 2224.
doi: 10.3389/fimmu.2018.02224 pmid: 30337923
[30] Ho N I, Huis In’t Veld L G M, Raaijmakers T K, et al. Adjuvants enhancing cross-presentation by dendritic cells: the key to more effective vaccines? Frontiers in Immunology, 2018, 9: 2874.
[31] Kheirollahpour M, Mehrabi M, Dounighi N M, et al. Nanoparticles and vaccine development. Pharmaceutical Nanotechnology, 2020, 8(1): 6-21.
doi: 10.2174/2211738507666191024162042 pmid: 31647394
[32] Zhao L, Seth A, Wibowo N, et al. Nanoparticle vaccines. Vaccine, 2014, 32(3): 327-337.
doi: 10.1016/j.vaccine.2013.11.069 pmid: 24295808
[33] Muddineti O S, Omri A. Current trends in PLGA based long-acting injectable products: the industry perspective. Expert Opinion on Drug Delivery, 2022, 19(5): 559-576.
doi: 10.1080/17425247.2022.2075845
[34] Han S L, Ma W Y, Jiang D W, et al. Intracellular signaling pathway in dendritic cells and antigen transport pathway in vivo mediated by an OVA@DDAB/PLGA nano-vaccine. Journal of Nanobiotechnology, 2021, 19(1): 394.
doi: 10.1186/s12951-021-01116-8
[35] Cappellano G, Abreu H, Casale C, et al. Nano-microparticle platforms in developing next-generation vaccines. Vaccines, 2021, 9(6): 606.
doi: 10.3390/vaccines9060606
[36] MacKerracher A, Sommershof A, Groettrup M. PLGA particle vaccination elicits resident memory CD8 T cells protecting from tumors and infection. European Journal of Pharmaceutical Sciences, 2022, 175: 106209.
doi: 10.1016/j.ejps.2022.106209
[37] Lu X G, Miao L, Gao W T, et al. Engineered PLGA microparticles for long-term, pulsatile release of STING agonist for cancer immunotherapy. Science Translational Medicine, 2020, 12(556): eaaz6606.
doi: 10.1126/scitranslmed.aaz6606
[38] McHugh K J, Nguyen T D, Linehan A R, et al. Fabrication of fillable microparticles and other complex 3D microstructures. Science, 2017, 357(6356): 1138-1142.
doi: 10.1126/science.aaf7447 pmid: 28912242
[39] Guarecuco R, Lu J, McHugh K J, et al. Immunogenicity of pulsatile-release PLGA microspheres for single-injection vaccination. Vaccine, 2018, 36(22): 3161-3168.
doi: S0264-410X(17)30764-8 pmid: 28625520
[40] Sadeghi I, Byrne J, Shakur R, et al. Engineered drug delivery devices to address Global Health challenges. Journal of Controlled Release: Official Journal of the Controlled Release Society, 2021, 331: 503-514.
doi: 10.1016/j.jconrel.2021.01.035
[41] Cirelli K M, Carnathan D G, Nogal B, et al. Slow delivery immunization enhances HIV neutralizing antibody and germinal center responses via modulation of immunodominance. Cell, 2019, 177(5): 1153-1171.e28.
doi: S0092-8674(19)30398-8 pmid: 31080066
[42] Xia Y F, Wu J, Du Y Q, et al. Bridging systemic immunity with gastrointestinal immune responses via oil-in-polymer capsules. Advanced Materials (Deerfield Beach, Fla), 2018, 30(31): e1801067.
[43] Yu D H, Zhang Y Y, Zou G Y, et al. Influence of surface coatings of poly(d, l-lactide-co-glycolide) particles on HepG 2 cell behavior and particle fate. Biointerphases, 2014, 9(3): 031015.
doi: 10.1116/1.4894531
[44] Cruz L J, Rosalia R A, Kleinovink J W, et al. Targeting nanoparticles to CD40, DEC-205 or CD11c molecules on dendritic cells for efficient CD8(+) T cell response: a comparative study. Journal of Controlled Release: Official Journal of the Controlled Release Society, 2014, 192: 209-218.
doi: 10.1016/j.jconrel.2014.07.040
[45] Mintern J D, Percival C, Kamphuis M M J, et al. Targeting dendritic cells: the role of specific receptors in the internalization of polymer capsules. Advanced Healthcare Materials, 2013, 2(7): 940-944.
doi: 10.1002/adhm.201200441 pmid: 23335448
[46] Joshi V B, Geary S M, Salem A K. Biodegradable particles as vaccine delivery systems: size matters. The AAPS Journal, 2013, 15(1): 85-94.
doi: 10.1208/s12248-012-9418-6
[47] Zhao Z M, Ukidve A, Krishnan V, et al. Effect of physicochemical and surface properties on in vivo fate of drug nanocarriers. Advanced Drug Delivery Reviews, 2019, 143: 3-21.
doi: 10.1016/j.addr.2019.01.002
[48] Beugeling M, Grasmeijer N, Born P A, et al. The mechanism behind the biphasic pulsatile drug release from physically mixed poly(dl-lactic (-co-glycolic) acid)-based compacts. International Journal of Pharmaceutics, 2018, 551(1-2): 195-202.
doi: S0378-5173(18)30676-8 pmid: 30223077
[49] Ryu S, Park S, Lee H Y, et al. Biodegradable nanoparticles-loaded PLGA microcapsule for the enhanced encapsulation efficiency and controlled release of hydrophilic drug. International Journal of Molecular Sciences, 2021, 22(6): 2792.
doi: 10.3390/ijms22062792
[50] Zhang J, Zheng Y J, Lee J, et al. A pulsatile release platform based on photo-induced imine-crosslinking hydrogel promotes scarless wound healing. Nature Communications, 2021, 12(1): 1-13.
doi: 10.1038/s41467-020-20314-w
[51] Braz Gomes K, D’Souza B, Vijayanand S, et al. A dual-delivery platform for vaccination using antigen-loaded nanoparticles in dissolving microneedles. International Journal of Pharmaceutics, 2022, 613: 121393.
doi: 10.1016/j.ijpharm.2021.121393
[1] 胡微,吴颉,中西秀树. 形貌调控与镀层修饰结合制备口服疫苗载体*[J]. 中国生物工程杂志, 2022, 42(8): 40-51.
[2] 毛慧,吕玉华,朱丽慧,林月霞,廖荣荣. 外泌体在病毒感染诊断和治疗中的作用研究 *[J]. 中国生物工程杂志, 2020, 40(3): 104-110.
[3] 宋奕,张翠云,李奕,张素素,潘舜,陶云云,许璐摇,何华成,吴疆. 利用静电纺丝技术制备聚己内酯-胶原复合包载碱性成纤维细胞生长因子手术缝纫线及其缓释性能的研究 *[J]. 中国生物工程杂志, 2019, 39(1): 55-62.
[4] 康肸,邓爱鹏,杨树林. 壳聚糖基温敏水凝胶的研究进展[J]. 中国生物工程杂志, 2018, 38(5): 79-84.
[5] 吴剑荣,彭星桥,詹晓北. 聚唾液酸,一种非GAGs、非免疫原性生物材料的应用研究进展 *[J]. 中国生物工程杂志, 2017, 37(12): 96-102.
[6] 姚梅, 崔颖, 胡晶, 李俊霞, 王宇. 转基因细胞片复合PLGA支架修复兔软骨缺损的研究[J]. 中国生物工程杂志, 2014, 34(3): 18-25.
[7] 武延格, 孙学峰, 杨林, 王正. PLGA支架降解对血管化功能影响的体外研究[J]. 中国生物工程杂志, 2012, 32(07): 16-19.
[8] 李玲玲, 周伟, 代方银, 梅枭雄, 范承启, 杨霞, 吴玉章. 不同钙-醇溶解体系丝素蛋白的制备及表征研究[J]. 中国生物工程杂志, 2012, 32(04): 28-32.
[9] 焦国慧,代红胜,张灼寒,曾彬,刘昱,张园,杨荣存. MyD88aa155-171功能区缺失对免疫相关细胞共刺激分子和细胞因子表达的影响[J]. 中国生物工程杂志, 2008, 28(9): 1-6.
[10] 赵莉,何晨光,高永娟,崔磊,曹谊林. PLGA的不同组成对支架材料性能的影响研究[J]. 中国生物工程杂志, 2008, 28(5): 22-28.
[11] 徐灵龙 王云峰 石星明 童光志. 抗菌肽及其功能研究[J]. 中国生物工程杂志, 2007, 27(1): 115-118.
[12] 龚平, 吴锦霞, 谭天伟. 免疫球蛋白缓释微囊的制备、结构表征与性能研究[J]. 中国生物工程杂志, 2005, 25(12): 15-19.
[13] 戴双双, 杨朝辉, 李蓉芬, 何凤田. 增殖诱导配体(APRIL)研究进展[J]. 中国生物工程杂志, 2004, 24(3): 7-11.
[14] 崔旻, 赵勇. FoxO转录因子[J]. 中国生物工程杂志, 2004, 24(3): 40-43.
[15] 冯兴军, 王建华, 杨雅麟, 滕达, 刘立恒. 乳铁蛋白肽(Lactoferricin)作用机制研究进展[J]. 中国生物工程杂志, 2004, 24(1): 23-26.