Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2022, Vol. 42 Issue (11): 5-17    DOI: 10.13523/j.cb.2209029
生物遗传资源     
基于表型性状的金钗石斛种质资源多样性评价*
张本厚1,2,胡燕花2,牛志韬1,李超1,欧江涛1,薛庆云1,刘薇1,陈集双2,丁小余1,**()
1 南京师范大学生命科学学院 南京 210023
2 南京工业大学大丰海洋产业研究院 盐城 224100
Diversity Evaluation of Dendrobium nobile Germplasm Resources Based on Phenotypic Traits
ZHANG Ben-hou1,2,HU Yan-hua2,NIU Zhi-tao1,LI Chao1,OU Jiang-tao1,XUE Qing-yun1,LIU Wei1,CHEN Ji-shuang2,DING Xiao-yu1,**()
1 College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
2 Dafeng Marine Industrial Institute, Nanjing Tech University, Yancheng 224100, China
 全文: PDF(2251 KB)   HTML
摘要:

金钗石斛是我国重要的经济作物,具有药用和观赏价值。对收集的 17个居群的野生金钗石斛植株形态、花、气孔、有效成分含量等表型性状进行统计分析和多样性评价,并进行亲缘关系的系统聚类分析。结果表明,不同居群金钗石斛在表型性状上存在明显差异,种质资源具有丰富的遗传多样性;以变异系数较低的7个表型性状为参数进一步进行系统聚类分析,当欧式距离为10时,金钗石斛居群分成三组,其中海南白沙居群独立成一组,表明岛屿隔离阻碍了基因交流,对金钗石斛的生物多样性的贡献较大,因此岛屿为金钗石斛种质资源的就地保护和遗传资源有效维护提供了重要场所,为金钗石斛种质资源的保护和利用奠定了理论基础。

关键词: 金钗石斛种质资源表型性状遗传多样性    
Abstract:

Dendrobium nobile Lindl. is an important cash crop in China, which has medicinal and ornamental value. Statistical analysis and diversity evaluation of phenotypic traits such as plant morphology, flowers, stomata and content of active components were carried out on 17 populations of wild D. nobile, and phylogenetic clustering analysis was carried out. The results showed that there were significant differences in phenotypic traits among different populations of D. nobile, and the germplasm resources were rich in genetic diversity. Further, systematic cluster analysis was conducted using 7 phenotypic traits with low coefficient of variation as parameters. When the Euclidean distance was 10, D. nobile populations were divided into 3 groups, of which Hainan Baisha population was an independent group, indicating that island isolation hindered gene exchange and made a great contribution to the biodiversity of D. nobile. The Hainan island provides an important place for the in situ protection of D. nobile germplasm resources and the effective maintenance of genetic resources. This study laid a theoretical foundation for the protection and utilization of D. nobile germplasm resources.

Key words: Dendrobium nobile Lindl.    Germplasm resources    Phenotypic traits    Genetic diversity
收稿日期: 2022-09-14 出版日期: 2022-12-07
ZTFLH:  Q949  
基金资助: *江苏省农业科技自主创新资金[CX(18)3063]资助项目
通讯作者: **电子信箱:dingxynj@263.net   
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
张本厚
胡燕花
牛志韬
李超
欧江涛
薛庆云
刘薇
陈集双
丁小余

引用本文:

张本厚, 胡燕花, 牛志韬, 李超, 欧江涛, 薛庆云, 刘薇, 陈集双, 丁小余. 基于表型性状的金钗石斛种质资源多样性评价*[J]. 中国生物工程杂志, 2022, 42(11): 5-17.

ZHANG Ben-hou, HU Yan-hua, NIU Zhi-tao, LI Chao, OU Jiang-tao, XUE Qing-yun, LIU Wei, CHEN Ji-shuang, DING Xiao-yu. Diversity Evaluation of Dendrobium nobile Germplasm Resources Based on Phenotypic Traits. China Biotechnology, 2022, 42(11): 5-17.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.2209029        https://manu60.magtech.com.cn/biotech/CN/Y2022/V42/I11/5

编码 采样点 样本数/株 经度E 纬度N 海拔/m
GXBS 百色,中国广西壮族自治区 15 106°61' 23°91' 202
GXJX 金秀,中国广西壮族自治区 12 110°19' 24°13' 906
GXBY 宾阳,中国广西壮族自治区 13 108°80' 23°22' 117
GXRX 容县,中国广西壮族自治区 15 110°55' 22°89' 121
YNBS 保山,中国云南省 11 99°14' 25°11' 1 872
YNHH 红河,中国云南省 12 103°36' 23°32' 1 405
YNLC 临沧,中国云南省 15 100°06' 23°87' 1 760
YNPE 普洱,中国云南省 13 100°96' 22°83' 1 378
GZCS 赤水,中国贵州省 14 105°68' 28°59' 289
GZLB 荔波,中国贵州省 13 107°87' 25°41' 475
XZCY 察隅,中国西藏自治区 13 97°46' 28°65' 2 691
XZMT 墨脱,中国西藏自治区 15 95°33' 29°33' 1 008
SCLS 凉山,中国四川省 13 102°32' 27°91' 1 868
SCXC 西昌,中国四川省 16 101°73' 27°20' 2 162
HNBS 白沙,中国海南省 12 109°43' 19°17' 391
LW 老挝国 13 102°49' 19°85' 685
MD 缅甸国 15 95°84' 22°24' 617
表1  金钗石斛17个居群的采集地点及样本数
图1  金钗石斛花结构
图2  17个居群的金钗石斛整株外观形态
编码 叶片长/cm 叶片宽/cm 株高/cm 节间长/cm 茎粗/mm
GXBS 10.32±1.07 2.43±0.18 20.89±1.49 3.31±0.22 9.33±0.91
GXJX 8.38±0.60 2.41±0.21 15.25±1.36 2.58±0.18 9.86±0.61
GXBY 11.42±1.06 1.96±0.18 29.47±2.17 3.67±0.10 6.89±0.52
GXRX 7.63±0.34 2.23±0.31 15.86±1.44 2.88±021 7.74±0.33
YNBS 11.54±1.06 3.02±0.37 31.38±2.94 3.93±0.34 12.82±1.18
YNHH 11.09±0.67 2.29±0.19 28.26±2.62 2.90±0.19 10.94±1.07
YNLC 10.85±0.49 2.57±0.23 30.62±2.74 3.38±0.28 10.70±1.50
YNPE 8.91±0.73 1.98±0.13 19.26±1.25 2.38±0.19 8.60±0.87
GZCS 7.77±0.51 1.82±0.12 21.38±1.29 3.30±0.32 8.03±0.59
GZLB 7.48±0.62 1.71±0.13 38.63±2.63 3.89±0.12 11.05±1.11
XZCY 8.79±0.50 2.27±0.10 17.13±1.42 3.49±0.22 8.88±0.42
XZMT 7.62±0.63 1.54±0.11 30.55±2.28 2.03±0.15 6.30±0.52
SCLS 10.02±1.16 2.21±0.09 16.02±1.41 3.14±0.12 9.03±0.96
SCXC 7.95±0.51 1.84±0.15 19.68±1.55 2.89±0.32 11.76±1.15
HNBS 10.16±0.93 2.04±0.18 40.63±4.46 3.09±0.20 8.08±0.51
LW 11.69±1.04 2.72±0.18 39.39±3.50 3.32±0.16 12.71±0.85
MD 9.37±0.88 1.85±0.12 44.17±3.86 4.09±0.37 10.43±0.92
表2  金钗石斛17个居群的形态数据
编码 叶片长 叶片宽 株高 节间长 茎粗
GXBS 10.37 7.41 7.13 6.65 9.75
GXJX 7.16 8.71 8.92 6.98 6.19
GXBY 9.28 9.18 7.36 2.72 7.55
GXRX 4.46 13.90 9.08 7.29 4.26
YNBS 9.19 12.25 9.37 8.65 9.20
YNHH 6.04 8.30 9.27 6.55 9.78
YNLC 4.52 8.95 8.95 8.28 14.02
YNPE 8.19 6.57 6.49 7.98 10.12
GZCS 6.56 6.59 6.03 9.70 7.35
GZLB 8.29 7.60 6.81 3.08 10.05
XZCY 5.69 4.41 8.29 6.30 4.73
XZMT 8.27 7.14 7.46 7.39 8.25
SCLS 11.58 4.07 8.80 3.82 10.63
SCXC 6.42 8.15 7.88 11.07 9.78
HNBS 9.15 8.82 10.98 6.47 6.31
LW 8.90 6.62 8.89 4.82 6.69
MD 9.39 6.49 8.74 9.05 8.82
均值 7.85 7.95 8.26 6.87 8.44
表3  金钗石斛17个居群的形态数据的变异系数
编码 花径/cm 花梗长/cm 唇瓣长/cm 唇瓣宽/cm 花瓣长/cm 花瓣宽/cm 萼片长/cm 萼片宽/cm
GXBS 8.03±0.62 4.52±0.33 2.41±0.16 2.49±0.12 4.01±0.31 2.25±0.11 4.12±0.21 1.29±0.08
GXJX 8.21±0.84 5.08±0.44 3.13±0.24 3.22±0.31 4.16±0.22 2.25±0.14 4.36±0.33 1.53±0.03
GXBY 7.92±0.84 4.55±0.17 2.91±0.18 2.59±0.25 4.03±0.26 2.15±0.21 4.22±0.33 1.21±0.11
GXRX 7.32±0.88 4.64±0.18 2.88±0.22 2.46±0.20 3.42±0.34 2.18±0.30 3.92±0.50 1.18±0.12
YNBS 8.12±0.92 5.12±0.35 2.93±0.31 2.62±0.19 4.25±0.29 2.26±0.17 3.88±0.41 1.31±0.09
YNHH 8.20±0.78 4.99±0.62 2.68±0.28 2.82±0.17 3.97±0.54 2.21±0.16 3.64±0.32 1.38±0.03
YNLC 8.16±0.66 5.23±0.71 2.38±0.19 2.59±0.33 4.12±0.42 2.19±0.20 3.82±0.18 1.29±0.08
YNPE 8.05±0.92 5.46±0.54 2.73±0.17 2.56±0.21 3.89±0.33 2.27±0.22 4.02±0.26 1.48±0.09
GZCS 7.68±0.91 4.48±0.33 2.93±0.25 3.01±0.15 3.64±0.30 2.22±0.14 3.58±0.35 1.71±0.14
GZLB 7.75±0.75 4.56±0.58 2.95±0.31 2.68±0.22 3.59±0.18 2.18±0.16 3.67±0.34 1.43±0.09
XZCY 7.01±0.63 4.02±0.31 2.12±0.11 2.33±0.18 3.37±0.21 1.53±0.23 3.73±0.21 1.08±0.07
XZMT 6.64±0.77 3.26±0.18 2.36±0.22 2.28±0.12 3.25±0.16 1.78±0.13 3.68±0.24 1.25±0.12
SCLS 7.35±0.76 3.67±0.25 2.32±0.18 1.98±0.10 3.76±0.42 2.16±0.07 3.95±0.39 1.17±0.14
SCXC 7.73±0.89 3.36±0.30 3.08±0.15 2.76±0.20 3.59±0.15 2.34±0.25 4.12±0.12 1.21±0.08
HNBS 7.63±0.81 4.83±0.52 2.38±0.23 2.43±0.19 3.31±0.21 1.75±0.09 4.55±0.25 0.98±0.10
LW 8.05±1.03 5.37±0.48 2.98±0.20 3.10±0.17 3.96±0.31 1.98±0.16 3.62±0.41 1.43±0.14
MD 7.95±0.62 4.32±0.52 2.38±0.19 2.55±0.14 3.67±0.44 2.13±0.18 3.78±0.25 1.62±0.11
表4  金钗石斛17个居群的花形态数据
编码 花径 花梗长 唇瓣长 唇瓣宽 花瓣长 花瓣宽 萼片长 萼片宽
GXBS 7.72 7.30 6.64 4.82 7.73 4.89 5.10 6.20
GXJX 10.62 10.77 9.66 7.82 6.34 5.14 5.49 10.20
GXBY 10.61 3.74 6.19 9.65 6.45 9.77 7.82 9.09
GXRX 12.02 3.88 7.64 8.13 9.94 13.76 12.76 10.17
YNBS 11.33 6.84 10.58 7.25 6.82 7.52 10.57 6.87
YNHH 9.51 12.42 10.45 6.03 13.60 7.24 8.79 2.17
YNLC 8.09 13.58 7.98 12.74 10.19 9.13 4.71 6.20
YNPE 11.43 9.89 6.23 8.20 8.48 9.69 6.47 6.08
GZCS 11.85 7.37 8.53 4.98 8.24 6.31 9.78 8.19
GZLB 9.68 12.72 10.51 8.21 5.01 7.34 9.26 6.29
XZCY 8.99 7.71 5.19 7.73 6.23 15.03 5.63 6.48
XZMT 11.60 5.52 9.32 5.26 4.92 7.30 6.52 9.60
SCLS 10.34 6.81 7.76 5.05 11.17 3.24 9.87 11.97
SCXC 11.51 8.93 4.87 7.25 4.18 10.68 2.91 6.61
HNBS 10.23 8.66 7.67 9.63 5.29 6.22 7.57 1.96
LW 12.80 8.94 6.71 5.48 7.83 8.08 11.33 9.79
MD 7.80 12.04 7.98 5.49 11.99 8.45 6.61 6.79
均值 10.36 8.65 7.88 7.28 7.91 8.22 7.72 7.33
表5  金钗石斛17个居群花形态数据的变异系数
图3  金钗石斛17个居群的花形态
图4  金钗石斛17个居群的气孔显微观察(10×40倍显微镜)
编码 气孔长/μm 气孔宽/μm 气孔比 气孔面积/μm2 气孔密度/(个/mm2)
GXBS 30.05±1.22 25.06±1.18 1.20±0.08 591.15±40.15 35.20±2.26
GXJX 28.12±1.56 18.98±0.91 1.48±0.11 418.97±33.25 39.80±3.82
GXBY 31.34±2.24 24.12±1.88 1.30±0.09 593.40±25.60 27.60±2.48
GXRX 36.22±1.88 28.68±1.36 1.26±0.08 815.45±68.12 25.00±3.12
YNBS 32.65±1.35 26.18±2.21 1.25±0.12 671.00±55.85 36.20±3.28
YNHH 33.29±0.88 28.39±0.89 1.17±0.06 741.91±63.21 28.40±2.29
YNLC 30.31±2.21 24.33±0.33 1.25±0.08 578.89±50.26 29.80±1.95
YNPE 29.85±0.80 21.93±2.08 1.36±0.11 513.87±45.98 32.60±3.18
GZCS 25.67±1.33 18.66±1.09 1.38±0.10 376.02±33.28 51.20±3.68
GZLB 26.54±1.86 21.23±1.56 1.25±0.05 442.30±22.09 48.80±4.32
XZCY 31.56±3.12 25.52±0.58 1.24±0.04 632.25±48.92 63.60±4.59
XZMT 24.39±1.68 17.39±0.98 1.40±0.06 332.95±30.28 61.20±5.56
SCLS 24.28±1.75 19.33±1.21 1.26±0.03 368.43±29.85 63.60±5.48
SCXC 21.35±2.18 16.96±0.68 1.26±0.11 284.25±23.38 65.60±3.56
HNBS 39.47±2.58 32.37±0.96 1.22±0.13 1002.95±88.31 20.80±2.25
LW 35.09±0.95 30.08±3.01 1.17±0.05 828.57±65.33 26.40±2.30
MD 38.62±1.29 34.02±2.05 1.14±0.06 1031.37±81.69 22.60±2.20
表6  金钗石斛17个居群气孔的指标数据
编码 气孔长 气孔宽 气孔比 气孔面积 气孔密度
GXBS 4.06 4.71 7.43 7.94 6.42
GXJX 5.55 4.79 6.92 4.31 9.60
GXBY 7.15 7.79 6.35 8.35 8.99
GXRX 5.19 4.74 9.60 8.32 12.48
YNBS 4.13 8.44 5.13 8.52 9.06
YNHH 2.64 3.13 6.40 8.68 8.06
YNLC 7.29 1.36 8.09 8.95 6.54
YNPE 2.68 9.48 7.25 8.85 9.75
GZCS 5.18 5.84 4.00 4.99 7.19
GZLB 7.01 7.35 3.23 7.74 8.85
XZCY 9.89 2.27 4.29 9.09 7.22
XZMT 6.89 5.64 2.38 8.10 9.08
SCLS 7.21 6.26 8.73 8.23 8.62
SCXC 10.21 4.01 10.66 8.81 5.43
HNBS 6.54 2.97 4.27 7.88 10.82
LW 2.71 10.01 5.26 7.92 8.71
MD 3.34 6.03 6.67 6.79 9.73
均值 5.74 5.58 6.27 7.85 8.62
表7  金钗石斛17个居群气孔数据的变异系数
编码 总生物碱 多糖
含量/(mg/g DW) 变异系数 含量/(g/g DW) 变异系数
GXBS 11.13±0.75 6.74 0.1134±0.0055 4.85
GXBY 17.48±0.40 2.29 0.0928±0.0029 3.13
GXJX 10.74±1.03 9.59 0.0428±0.0063 14.72
GXRX 6.46±0.78 12.07 0.0800±0.0069 8.63
YNBS 8.59±0.40 4.66 0.0808±0.0061 7.55
YNHH 9.84±0.34 3.46 0.0814±0.0071 8.72
YNLC 8.45±0.42 4.97 0.0876±0.0034 3.88
YNPE 18.38±0.72 3.92 0.0530±0.0039 7.36
GZCS 19.41±1.24 6.39 0.0865±0.0069 7.98
GZLB 17.25±0.95 5.51 0.1030±0.0079 7.67
XZCY 6.30±0.24 3.81 0.1350±0.0037 2.74
XZMT 5.36±0.43 8.02 0.1425±0.0087 6.11
SCLS 5.96±0.85 14.26 0.0736±0.0054 7.34
SCXC 13.17±1.20 9.11 0.0864±0.0075 8.68
HNBS 23.71±0.74 3.12 0.1220±0.0065 5.33
LW 4.96±0.31 6.25 0.1135±0.0054 4.76
MD 12.82±0.98 7.64 0.0960±0.0062 6.46
均值 6.58 6.82
表8  金钗石斛17个居群的总生物碱和多糖含量及变异系数
图5  金钗石斛17个居群基于性状的系统聚类分析图
分组 节间长/cm 唇瓣宽/cm 萼片宽/cm 气孔长/μm 气孔宽/μm 总生物碱含量
/(mg/g DW)
多糖含量
/(g/g DW)
I 2.99 2.64 1.37 26.44 19.83 13.47 0.085 1
II 3.49 2.59 1.31 33.50 27.70 8.39 0.100 9
III 3.09 2.43 0.98 39.47 32.37 23.71 0.122 0
表9  各类群金钗石斛的主要性状平均值
[1] Zhu S Y, Niu Z T, Xue Q Y, et al. Accurate authentication of Dendrobium officinale and its closely related species by comparative analysis of complete plastomes. Acta Pharmaceutica Sinica B, 2018, 8(6): 969-980.
doi: 10.1016/j.apsb.2018.05.009
[2] Cheng X F, Chen W, Zhou Z H, et al. Functional characterization of a novel tropinone reductase-like gene in Dendrobium nobile lindl. Journal of Plant Physiology, 2013, 170(10): 958-964.
doi: 10.1016/j.jplph.2013.02.007
[3] Wen Z Z, Lin Y, Liu Y Q, et al. Effects of paclobutrazol in vitro on transplanting efficiency and root tip development of Dendrobium nobile. Biologia Plantarum, 2013, 57(3): 576-580.
doi: 10.1007/s10535-013-0319-z
[4] 周威, 夏杰, 孙文博, 等. 金钗石斛的化学成分和药理作用研究现状. 中国新药杂志, 2017, 26(22): 2693-2700.
Zhou W, Xia J, Sun W B, et al. Current research status of chemical constituents and pharmacological effects of Dendrobium nobile. Chinese Journal of New Drugs, 2017, 26(22): 2693-2700.
[5] 令狐楚, 谷荣辉, 秦礼康. 金钗石斛的化学成分及药理作用研究进展. 中草药, 2021, 52(24): 7693-7708.
Linghu C, Gu R H, Qin L K. Research progress on chemical constituents and pharmacological effects of Dendrobium nobile. Chinese Traditional and Herbal Drugs, 2021, 52(24): 7693-7708.
[6] 余玉珠, 陆艳柳, 陈卫国, 等. 12种石斛属植物不同栽培技术及观赏价值研究. 安徽农业科学, 2020, 48(17): 156-157, 205.
Yu Y Z, Lu Y L, Chen W G, et al. Study on different cultivation techniques and ornamental value of 12 species of Dendrobium. Journal of Anhui Agricultural Sciences, 2020, 48(17): 156-157, 205.
[7] 赵春江. 植物表型组学大数据及其研究进展. 农业大数据学报, 2019, 1(2): 5-18.
Zhao C J. Big data of plant phenomics and its research progress. Journal of Agricultural Big Data, 2019, 1(2): 5-18.
[8] 翁杨, 曾睿, 吴陈铭, 等. 基于深度学习的农业植物表型研究综述. 中国科学: 生命科学, 2019, 49(6): 698-716.
Weng Y, Zeng R, Wu C M, et al. A survey on deep-learning-based plant phenotype research in agriculture. Scientia Sinica (Vitae), 2019, 49(6): 698-716.
[9] 穆金虎, 陈玉泽, 冯慧, 等. 作物育种学领域新的革命: 高通量的表型组学时代. 植物科学学报, 2016, 34(6): 962-971.
Mu J H, Chen Y Z, Feng H, et al. A new revolution in crop breeding: the era of high-throughput phenomics. Plant Science Journal, 2016, 34(6): 962-971.
[10] Zhang B H, Niu Z T, Li C, et al. Improving large-scale biomass and total alkaloid production of Dendrobium nobile Lindl. using a temporary immersion bioreactor system and MeJA elicitation. Plant Methods, 2022, 18(1): 10.
[11] 梅威威, 吴绍康, 张浩, 等. 铁皮石斛多糖提取工艺及脱蛋白方法研究. 中华中医药学刊, 2014, 32(12): 2869-2872.
Mei W W, Wu S K, Zhang H, et al. Comparative study on extraction of crude polysaccharides from Dendrobium candidum and removing protein procedure. Chinese Archives of Traditional Chinese Medicine, 2014, 32(12): 2869-2872.
[12] 张哲, 任明迅, 向文倩, 等. 东南亚兰科植物的物种多样性、生活习性及其传粉系统. 广西植物, 2021, 41(10): 1683-1703.
Zhang Z, Ren M X, Xiang W Q, et al. Species diversity, habits and pollination system of Orchidaceae in Southeast Asia. Guihaia, 2021, 41(10): 1683-1703.
[13] 李清, 李标, 郭顺星. 金钗石斛转录组SSR位点信息分析. 中国中药杂志, 2017, 42(1): 63-69.
Li Q, Li B, Guo S X. SSR information in transcriptome of Dendrobium nobile. China Journal of Chinese Materia Medica, 2017, 42(1): 63-69.
[14] Pan C X, Chen S R, Chen Z M, et al. Assessing the geographical distribution of 76 Dendrobium species and impacts of climate change on their potential suitable distribution area in China. Environmental Science and Pollution Research International, 2022, 29(14): 20571-20592.
doi: 10.1007/s11356-021-15788-0
[15] 胡建斌, 马双武, 王吉明, 等. 基于表型性状的甜瓜核心种质构建. 果树学报, 2013, 30(3): 404-411.
Hu J B, Ma S W, Wang J M, et al. Establishment of a melon (Cucumis melo) core collection based on phenotypic characters. Journal of Fruit Science, 2013, 30(3): 404-411.
[16] 张洪亮, 李自超, 曹永生, 等. 表型水平上检验水稻核心种质的参数比较. 作物学报, 2003, 29(2): 252-257.
Zhang H L, Li Z C, Cao Y S, et al. Comparison of parameters for testing the rice core collection in phenotype. Acta Agronomica Sinica, 2003, 29(2): 252-257.
[17] 乔婧, 高海燕, 李文清, 等. 粒用高粱种质资源主要农艺性状的相关性及主成分分析. 山西农业科学, 2019, 47(11): 1903-1906, 1917.
Qiao J, Gao H Y, Li W Q, et al. Correlation and principal component analysis of main agronomic characters of grain Sorghum germplasm resources. Journal of Shanxi Agricultural Sciences, 2019, 47(11): 1903-1906, 1917.
[18] 郗连连, 李嘉宝, 朱凯琳, 等. 花楸属3种植物的基因组大小与叶气孔特征分析. 植物科学学报, 2020, 38(1): 32-38.
Xi L L, Li J B, Zhu K L, et al. Variation in genome size and stomatal traits among three Sorbus species. Plant Science Journal, 2020, 38(1): 32-38.
[19] 秦燕, 王跃华, 孙卫邦, 等. 百部科植物叶表皮特征及其分类学意义. 植物科学学报, 2018, 36(4): 487-500.
Qin Y, Wang Y H, Sun W B, et al. Characters of the leaf epidermis of Stemonaceae and their taxonomical significance. Plant Science Journal, 2018, 36(4): 487-500.
[20] 王中煊, 张豪, 陈蕾, 等. 15种独蒜兰属植物叶表皮微形态特征及分类学意义研究. 西北植物学报, 2020, 40(9): 1527-1538.
Wang Z X, Zhang H, Chen L, et al. Leaf epidermal micro-morphology and taxonomic significance of 15 species of Pleione. Acta Botanica Boreali-Occidentalia Sinica, 2020, 40(9): 1527-1538.
[21] Slatkin M. Isolation by distance in equilibrium and non-equilibrium populations. Evolution, 1993, 47(1): 264-279.
doi: 10.1111/j.1558-5646.1993.tb01215.x pmid: 28568097
[22] Barson N J, Cable J, van oosterhout C. Population genetic analysis of microsatellite variation of guppies (Poecilia reticulata) in Trinidad and Tobago: evidence for a dynamic source-sink metapopulation structure, founder events and population bottlenecks. Journal of Evolutionary Biology, 2009, 22(3): 485-497.
doi: 10.1111/j.1420-9101.2008.01675.x pmid: 19210594
[23] Markwith S H, Scanlon M J. Multiscale analysis of Hymenocallis coronaria (Amaryllidaceae) genetic diversity, genetic structure, and gene movement under the influence of unidirectional stream flow. American Journal of Botany, 2007, 94(2): 151-160.
doi: 10.3732/ajb.94.2.151 pmid: 21642217
[24] Hou B W, Tian M, Luo J, et al. Genetic diversity assessment and ex situ conservation strategy of the endangered Dendrobium officinale (Orchidaceae) using new trinucleotide microsatellite markers. Plant Systematics and Evolution, 2012, 298(8): 1483-1491.
doi: 10.1007/s00606-012-0651-3
[25] Yan W J, Hou B W, Xue Q Y, et al. Different evolutionary processes in shaping the genetic composition of Dendrobium nobile in southwest China. Genetica, 2015, 143(3): 361-371.
doi: 10.1007/s10709-015-9835-4
[26] Caujapé-Castells J, Tye A, Crawford D J, et al. Conservation of oceanic island floras: present and future global challenges. Perspectives in Plant Ecology, Evolution and Systematics, 2010, 12(2): 107-129.
doi: 10.1016/j.ppees.2009.10.001
[27] Harding K, Benson E E, da Costa Nunes E, et al. Can biospecimen science expedite the ex situ conservation of plants in megadiverse countries? A focus on the flora of Brazil. Critical Reviews in Plant Sciences, 2013, 32(6): 411-444.
doi: 10.1080/07352689.2013.800421
[1] 贾明良, 方荷芳, 张本厚, 胡燕花, 周安佩, 李同建, 金洪光, 韩兴杰, 文锋. 三叶半夏种质资源扩繁及保存研究*[J]. 中国生物工程杂志, 2022, 42(11): 18-26.
[2] 张文涛, 喻静, 刘亦良, 张本厚, 陈集双. 三种荆州半夏的ITS序列分析与种属鉴定[J]. 中国生物工程杂志, 2015, 35(1): 41-45.
[3] 李霞, 刘佳佳, 陈建华, 栾明宝, 殷珍珍, 杨栋梁. 产喜树碱喜树内生真菌的筛选及喜树内生真菌的SRAP分析[J]. 中国生物工程杂志, 2011, 31(7): 60-64.
[4] 闫双勇,李学军,苏京平,马忠友,孙林静. TILLING在水稻育种中的应用前景[J]. 中国生物工程杂志, 2006, 26(11): 76-80.
[5] 殷旭旺, 赵文. 分子生物学技术在轮虫遗传多样性和系统发生研究中的应用[J]. 中国生物工程杂志, 2005, 25(S1): 215-220.
[6] 肖调义, 张学文, 章怀云, 唐湘北, 苏建明, 刘臻. 洞庭湖四种黄颡鱼基因组DNA遗传多样性的RAPD分析[J]. 中国生物工程杂志, 2004, 24(3): 84-89.
[7] 房经贵, 章镇, 王三红. DNA技术与果树种质资源的保存与研究[J]. 中国生物工程杂志, 2000, 20(6): 50-52.
[8] 张丕燕, 谢庄, 刘红林, 陈杰. RAPD技术及其在动物遗传育种中的应用[J]. 中国生物工程杂志, 2000, 20(4): 52-54.
[9] 周立伟, 吴乃虎. 分子生物学技术在濒危植物遗传多样性研究中的应用[J]. 中国生物工程杂志, 1995, 15(4): 22-25.
[10] 徐洵. 海洋生物技术[J]. 中国生物工程杂志, 1995, 15(3): 2-6.
[11] 姜国勇, 李思经. 石刁柏生物工程研究进展[J]. 中国生物工程杂志, 1993, 13(3): 42-45.