Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2022, Vol. 42 Issue (11): 155-162    DOI: 10.13523/j.cb.2209017
生物质资源     
生物强化污泥厌氧发酵产酸研究进展*
李夏桐,杨林,韩盼,孙卫宁,周凯乐,程刚**()
西安工程大学环境与化学工程学院 西安 710600
Biofortification on Acid Production by Anaerobic Fermentation of Sludge:A Review
LI Xia-tong,YANG Lin,HAN Pan,SUN Wei-ning,ZHOU Kai-le,CHENG Gang**()
Faculty of Environmental and Chemical Engineering, Xi’an Polytechnic University, Xi’an 710600, China
 全文: PDF(523 KB)   HTML
摘要:

污泥厌氧发酵生产挥发性脂肪酸相较产甲烷,是更具应用价值的污泥稳定途径及资源化利用方式,得到国内外学者的普遍重视。考虑到产酸量低和产酸过程的不稳定性是限制污泥发酵产酸的主要问题,采用生物强化方法实现挥发性脂肪酸的大量积累,与物理和化学方法相比,具有成本低、无二次污染等优点。根据生物强化制剂的类型,归纳了微生物纯培养物、微生物混合培养物及生物酶强化对污泥厌氧发酵产酸的影响,并在此基础上对生物强化技术控制污泥定向产酸、调控奇偶数碳比率等方面的应用进行讨论。此外,分析了影响挥发性脂肪酸产量和组分的因素,如pH、温度、底物、水力停留时间和污泥龄等。最后对生物强化技术的发展方向进行了展望,以期为深入探究污泥资源化利用提供借鉴。

关键词: 生物强化剩余污泥厌氧发酵挥发性脂肪酸    
Abstract:

Compared with methane production, producing volatile fatty acids by anaerobic fermentation of sludge is a more valuable way of sludge stabilization and resource utilization, which scholars have widely valued at home and abroad. Considering that the low acid production and the instability of the acid production process are the main problems limiting the acid production by sludge fermentation, the use of bioaugmentation to achieve a large amount of accumulation of volatile fatty acids has the advantages of low cost and no secondary pollution compared with physical and chemical methods. According to the types of bioaugmentation agents, this paper summarized the effects of pure microbial culture, mixed microbial culture, and biological enzyme enhancement on anaerobic fermentation and acid production of sludge, and discussed the application of bioaugmentation technology in controlling directional acid production of sludge and regulating odd-even carbon ratio. In addition, the factors affecting the yield and composition of volatile fatty acids, such as pH, temperature, substrate, hydraulic retention time, and sludge age, were analyzed. Finally, the development prospects for the bioaugmentation technology were discussed in order to provide a reference for further exploration of sludge recycling.

Key words: Bioaugmentation    Sewage waste sludge    Anaerobic fermentation    Volatile fatty acids
收稿日期: 2022-09-09 出版日期: 2022-12-07
ZTFLH:  X703  
基金资助: *陕西省科技计划(2019GY-163);西安市科技计划(20SFSF0012)
通讯作者: **电子信箱:19870705@xpu.edu.cn   
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
李夏桐
杨林
韩盼
孙卫宁
周凯乐
程刚

引用本文:

李夏桐, 杨林, 韩盼, 孙卫宁, 周凯乐, 程刚. 生物强化污泥厌氧发酵产酸研究进展*[J]. 中国生物工程杂志, 2022, 42(11): 155-162.

LI Xia-tong, YANG Lin, HAN Pan, SUN Wei-ning, ZHOU Kai-le, CHENG Gang. Biofortification on Acid Production by Anaerobic Fermentation of Sludge:A Review. China Biotechnology, 2022, 42(11): 155-162.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.2209017        https://manu60.magtech.com.cn/biotech/CN/Y2022/V42/I11/155

[1] 刘鑫, 惠秀娟, 唐凤德. 我国典型城市污泥产生量处理处置现状及经济学趋势分析. 环境保护与循环经济, 2021, 41(4): 88-93.
Liu X, Xi/Hui X J, Tang F D. Analysis on the current situation and economic trend of treatment and disposal of typical municipal sludge production in China. Environmental Protection and Circular Economy, 2021, 41(4): 88-93.
[2] Fang W, Zhang X D, Zhang P Y, et al. Overview of key operation factors and strategies for improving fermentative volatile fatty acid production and product regulation from sewage sludge. Journal of Environmental Sciences, 2020, 87: 93-111.
doi: 10.1016/j.jes.2019.05.027
[3] Lorini L, Munarin G, Salvatori G, et al. Sewage sludge as carbon source for polyhydroxyalkanoates: a holistic approach at pilot scale level. Journal of Cleaner Production, 2022, 354: 131728.
doi: 10.1016/j.jclepro.2022.131728
[4] Muhorakeye A, Cayetano R D, Kumar A N, et al. Valorization of pretreated waste activated sludge to organic acids and biopolymer. Chemosphere, 2022, 303: 135078.
doi: 10.1016/j.chemosphere.2022.135078
[5] Ye M, Luo J H, Zhang S T, et al. In situ ammonia stripping with alkaline fermentation of waste activated sludge to improve short-chain fatty acids production and carbon source availability. Bioresource Technology, 2020, 301: 122782.
doi: 10.1016/j.biortech.2020.122782
[6] Liang T, Elmaadawy K, Liu B C, et al. Anaerobic fermentation of waste activated sludge for volatile fatty acid production: recent updates of pretreatment methods and the potential effect of humic and nutrients substances. Process Safety and Environmental Protection, 2021, 145: 321-339.
doi: 10.1016/j.psep.2020.08.010
[7] Liang T, Elmaadawy K, Liu B C, et al. Anaerobic fermentation of waste activated sludge for volatile fatty acid production: recent updates of pretreatment methods and the potential effect of humic and nutrients substances. Process Safety and Environmental Protection, 2021, 145: 321-339.
doi: 10.1016/j.psep.2020.08.010
[8] 曹媛, 宋秀兰. 城市剩余污泥预处理促进短链脂肪酸产生的研究进展. 现代化工, 2021, 41(S1): 73-77.
Cao Y, Song X L. Research progress on pretreatment of waste activated sludge for promoting short-chain fatty acid production. Modern Chemical Industry, 2021, 41(S1): 73-77.
[9] 王娜, 李保国, 史吉平, 等. 微生物在污泥减量中的应用研究进展. 江苏农业科学, 2020, 48(8): 6-12.
Wang N, Li B G, Shi J P, et al. Research progress on application of microorganisms in sludge reduction. Jiangsu Agricultural Sciences, 2020, 48(8): 6-12.
[10] Yuan Y Y, Hu X Y, Chen H B, et al. Advances in enhanced volatile fatty acid production from anaerobic fermentation of waste activated sludge. Science of the Total Environment, 2019, 694: 133741.
doi: 10.1016/j.scitotenv.2019.133741
[11] 徐俊, 朱雯喆, 谢丽. 生物强化技术对厌氧消化特性影响研究进展. 化工进展, 2019, 38(9): 4227-4237.
Xu J, Zhu W Z, Xie L. Effect of bioaugmentation on the performance of anaerobic digestion: a review. Chemical Industry and Engineering Progress, 2019, 38(9): 4227-4237.
[12] Azman S, Khadem A F, van Lier J B, et al. Presence and role of anaerobic hydrolytic microbes in conversion of lignocellulosic biomass for biogas production. Critical Reviews in Environmental Science and Technology, 2015, 45(23): 2523-2564.
doi: 10.1080/10643389.2015.1053727
[13] Ai S J, Liu H Y, Wu M J, et al. Roles of acid-producing bacteria in anaerobic digestion of waste activated sludge. Frontiers of Environmental Science & Engineering, 2018, 12(6): 1-11.
[14] 杨春雪. 嗜热菌强化剩余污泥水解及短链脂肪酸积累规律研究. 哈尔滨: 哈尔滨工业大学, 2015.
Yang C X. Enhanced effects of thermophiles on waste activated sludge hydrolysis and short-chain fatty acids production. Harbin: Harbin Institute of Technology, 2015.
[15] Fan Q W, Fan X J, Fu P, et al. Anaerobic digestion of wood vinegar wastewater using domesticated sludge: focusing on the relationship between organic degradation and microbial communities (Archaea, bacteria, and fungi). Bioresource Technology, 2022, 347: 126384.
doi: 10.1016/j.biortech.2021.126384
[16] Liang J J, Li B, Zhu L, et al. Hydrothermal treatment and biorefinery of sewage sludge for waste reduction and production of fungal hyphae fibers and volatile fatty acids. Journal of Cleaner Production, 2021, 289: 125715.
doi: 10.1016/j.jclepro.2020.125715
[17] Fang W, Zhang P Y, Zhang X D, et al. White rot fungi pretreatment to advance volatile fatty acid production from solid-state fermentation of solid digestate: efficiency and mechanisms. Energy, 2018, 162: 534-541.
doi: 10.1016/j.energy.2018.08.082
[18] Jie W G, Peng Y Z, Ren N Q, et al. Utilization of alkali-tolerant stains in fermentation of excess sludge. Bioresource Technology, 2014, 157: 52-59.
doi: 10.1016/j.biortech.2014.01.107
[19] 胡之弈, 林鸿飞, 王帅, 等. 藻酸盐降解菌群强化剩余污泥厌氧发酵产酸. 环境工程学报, 2022, 16(1): 245-252.
Hu Z Y, Lin H F, Wang S, et al. Enhanced acidogenesis of waste activated sludge fermentation by an alginatedegrading consortium. Chinese Journal of Environmental Engineering, 2022, 16(1): 245-252.
[20] 王春燕, 曾薇, 许欢欢, 等. 混合外源菌强化剩余污泥微氧水解产酸. 中国环境科学, 2020, 40(1): 252-260.
Wang C Y, Zeng W, Xu H H, et al. Effect of mixed yeast of acetic bacteria on acid production from micro-aerobic hydrolysis of excess sludge. China Environmental Science, 2020, 40(1): 252-260.
[21] 刘和. 城市污泥厌氧发酵产挥发性脂肪酸:原理与应用. 北京: 科学出版社, 2015.
Liu H. Anaerobic fermentation of volatile fatty acids from municipal sludge:Principles and applications. Beijing: Science Press, 2015.
[22] 刘晓玲. 城市污泥厌氧发酵产酸条件优化及其机理研究. 无锡: 江南大学, 2008.
Liu X L. The condition optimization of sewage sludge for producing volatile fatty acids and the investigation of acidogenic mechanism. Wuxi: Jiangnan University, 2008.
[23] 许科伟. 污泥厌氧消化过程中乙酸累积的微生态机理研究. 无锡: 江南大学, 2010.
Xu K W. A microbial ecological study on the mechanism of acetate accumulation during anaerobic incubation of sewage sludge. Wuxi: Jiangnan University, 2010.
[24] 王晋. 厌氧发酵产酸微生物种群生态及互营关系研究. 无锡: 江南大学, 2013.
Wang J. Research of microbial community ecology and the trophic link during acidogenic fermentation. Wuxi: Jiangnan University, 2013.
[25] Hassard F, Biddle J, Harnett R, et al. Microbial extracellular enzyme activity affects performance in a full-scale modified activated sludge process. Science of the Total Environment, 2018, 625: 1527-1534.
doi: 10.1016/j.scitotenv.2018.01.073
[26] 刘国华, 王健, 齐鲁, 等. 生物酶对初沉污泥厌氧发酵产短链脂肪酸的调控研究. 中国环境科学, 2022, 42(5): 2195-2203.
Liu G H, Wang J, Qi L, et al. Study on regulating anaerobic fermentation for producing short-chain fatty acids from primary sludge in WWTPs by different bio-enzymes. China Environmental Science, 2022, 42(5): 2195-2203.
[27] Yu S Y, Zhang G M, Li J Z, et al. Effect of endogenous hydrolytic enzymes pretreatment on the anaerobic digestion of sludge. Bioresource Technology, 2013, 146: 758-761.
doi: S0960-8524(13)01155-3 pmid: 23948225
[28] Luo K, Yang Q, Yu J, et al. Combined effect of sodium dodecyl sulfate and enzyme on waste activated sludge hydrolysis and acidification. Bioresource Technology, 2011, 102(14): 7103-7110.
doi: 10.1016/j.biortech.2011.04.023 pmid: 21576017
[29] Xin X D, He J G, Li L, et al. Enzymes catalyzing pre-hydrolysis facilitated the anaerobic fermentation of waste activated sludge with acidogenic and microbiological perspectives. Bioresource Technology, 2018, 250: 69-78.
doi: S0960-8524(17)31790-X pmid: 29153652
[30] Li X K, Liu G G, Liu S L, et al. The relationship between volatile fatty acids accumulation and microbial community succession triggered by excess sludge alkaline fermentation. Journal of Environmental Management, 2018, 223: 85-91.
doi: S0301-4797(18)30642-X pmid: 29906676
[31] 习彦花, 张丽萍, 崔冠慧, 等. 厌氧产乙酸菌株ZY-3的筛选、鉴定及产酸条件. 江苏农业科学, 2016, 44(12): 526-528.
Xi Y H, Zhang L P, Cui G H, et al. Screening, identification and acid production conditions of anaerobic acetic acid producing strain ZY-3. Jiangsu Agricultural Sciences, 2016, 44(12): 526-528.
[32] 王晋, 刘和, 符波, 等. 污泥厌氧消化中同型产乙酸菌富集研究. 工业微生物, 2013, 43(1): 1-5.
Wang J, Liu H, Fu B, et al. Enrichment of homoacetogens during anaerobic acidogenic fermentation of sewage sludge. Industrial Microbiology, 2013, 43(1): 1-5.
[33] 沈志, 刘和, 许科伟, 等. 硫酸盐还原菌促进市政污泥厌氧发酵产乙酸. 环境科学研究, 2009, 22(9): 1056-1062.
Shen Z, Liu H, Xu K W, et al. Improvement of acetate production from anaerobic fermentation of sewage sludge by sulfate reducing bacteria. Research of Environmental Sciences, 2009, 22(9): 1056-1062.
[34] Jiang L, Fu H, Yang H K, et al. Butyric acid: Applications and recent advances in its bioproduction. Biotechnol Adv, 2018, 36(8):2101-2117.
doi: S0734-9750(18)30162-9 pmid: 30266343
[35] Jha A K, Li J, Yuan Y, et al. A Review on bio-butyric acid production and its optimization. Int J Agric Biol, 2014, 16(5): 6.
[36] Liu S Q, Duncan S, Qureshi N, et al. Fermentative production of butyric acid from paper mill sludge hydrolysates using Clostridium tyrobutyricum NRRL B-67062/RPT 4213. Biocatalysis and Agricultural Biotechnology, 2018, 14: 48-51.
doi: 10.1016/j.bcab.2018.02.002
[37] Suo Y K, Ren M M, Yang X T, et al. Metabolic engineering of Clostridium tyrobutyricum for enhanced butyric acid production with high butyrate/acetate ratio. Applied Microbiology and Biotechnology, 2018, 102(10): 4511-4522.
doi: 10.1007/s00253-018-8954-0
[38] 邵享文, 黄心昊, 陈尧, 等. 丁酸驯化及氢胁迫对厌氧污泥菌群及生物强化的影响. 中国给水排水, 2019, 35(19): 12-19.
Shao X W, Huang X H, Chen Y, et al. Effects of butyric acid tolerant acclimation and hydrogen stress on microbial community structure and biological enhancement of anaerobic sludge. China Water & Wastewater, 2019, 35(19): 12-19.
[39] Iglesias-Iglesias R, Portela-Grandío A, Treu L, et al. Co-digestion of cheese whey with sewage sludge for caproic acid production: role of microbiome and polyhydroxyalkanoates potential production. Bioresource Technology, 2021, 337: 125388.
doi: 10.1016/j.biortech.2021.125388
[40] Angenent L T, Richter H, Buckel W, et al. Chain elongation with reactor microbiomes: open-culture biotechnology to produce biochemicals. Environmental Science & Technology, 2016, 50(6): 2796-2810.
doi: 10.1021/acs.est.5b04847
[41] 余江南. 有机废弃物厌氧混菌发酵产己酸过程强化及其调控机制研究. 无锡: 江南大学, 2020.
Yu J N. Enhancement of caproate production from organic waste via anaerobic mixed culture and its underlying mechanisms. Wuxi: Jiangnan University, 2020.
[42] Pan X R, Huang L, Fu X Z, et al. Long-term, selective production of caproate in an anaerobic membrane bioreactor. Bioresource Technology, 2020, 302: 122865.
doi: 10.1016/j.biortech.2020.122865
[43] 白松, 侯正杰, 高庚荣, 等. 微生物合成奇数链脂肪酸研究进展. 中国生物工程杂志, 2022, 42(6): 76-85.
Bai S, Hou Z J, Gao G R, et al. Advances in the synthesis of odd-chain fatty acids by microorganisms. China Biotechnology, 2022, 42(6): 76-85.
[44] Ahmadi N, Khosravi-Darani K, Mortazavian A M. An overview of biotechnological production of propionic acid: from upstream to downstream processes. Electronic Journal of Biotechnology, 2017, 28: 67-75.
doi: 10.1016/j.ejbt.2017.04.004
[45] Li X, Chen Y G, Zhao S, et al. Lactic acid accumulation from sludge and food waste to improve the yield of propionic acid-enriched VFA. Biochemical Engineering Journal, 2014, 84: 28-35.
doi: 10.1016/j.bej.2013.12.020
[46] Wang Z H, Fang Q, Luo J, et al. Optimized process for the odd-carbon volatile fatty acids (OCFA) directional production: Anaerobic co-digestion of disused grease with sludge by anaerobic sequencing batch reactor. Journal of Water Process Engineering, 2022, 46: 102592.
doi: 10.1016/j.jwpe.2022.102592
[47] Carvalheira M, Marreiros B C, Reis M A M. Acids (VFAs) and bioplastic (PHA) recovery. Clean Energy and Resource Recovery. Amsterdam: Elsevier, 2022: 245-254.
[48] Huang L, Chen Z Q, Xiong D D, et al. Oriented acidification of wasted activated sludge (WAS) focused on odd-carbon volatile fatty acid (VFA): Regulation strategy and microbial community dynamics. Water Research, 2018, 142: 256-266.
doi: S0043-1354(18)30444-5 pmid: 29890474
[49] Wu L, Zhang C, Hu H, et al. Phosphorus and short-chain fatty acids recovery from waste activated sludge by anaerobic fermentation: effect of acid or alkali pretreatment. Bioresource Technology, 2017, 240: 192-196.
doi: S0960-8524(17)30286-9 pmid: 28343862
[50] Chen Y, Jiang X, Xiao K K, et al. Enhanced volatile fatty acids (VFAs) production in a thermophilic fermenter with stepwise pH increase: Investigation on dissolved organic matter transformation and microbial community shift. Water Research, 2017, 112: 261-268.
doi: S0043-1354(17)30074-X pmid: 28178608
[51] Zhao J W, Wang D B, Liu Y W, et al. Novel stepwise pH control strategy to improve short chain fatty acid production from sludge anaerobic fermentation. Bioresource Technology, 2018, 249: 431-438.
doi: S0960-8524(17)31879-5 pmid: 29065325
[52] Atasoy M, Eyice O, Schnürer A, et al. Volatile fatty acids production via mixed culture fermentation: revealing the link between pH, inoculum type and bacterial composition. Bioresource Technology, 2019, 292: 121889.
doi: 10.1016/j.biortech.2019.121889
[53] Khan M A, Ngo H H, Guo W S, et al. Selective production of volatile fatty acids at different pH in an anaerobic membrane bioreactor. Bioresource Technology, 2019, 283: 120-128.
doi: S0960-8524(19)30432-8 pmid: 30901584
[54] Strazzera G, Battista F, Garcia N H, et al. Volatile fatty acids production from food wastes for biorefinery platforms: a review. Journal of Environmental Management, 2018, 226: 278-288.
doi: S0301-4797(18)30910-1 pmid: 30121464
[55] Hao J X, Wang H. Volatile fatty acids productions by mesophilic and thermophilic sludge fermentation: biological responses to fermentation temperature. Bioresource Technology, 2015, 175: 367-373.
doi: 10.1016/j.biortech.2014.10.106 pmid: 25459844
[56] Zhuo G H, Yan Y Y, Tan X J, et al. Ultrasonic-pretreated waste activated sludge hydrolysis and volatile fatty acid accumulation under alkaline conditions: effect of temperature. Journal of Biotechnology, 2012, 159(1-2): 27-31.
doi: 10.1016/j.jbiotec.2012.01.005 pmid: 22342599
[57] 李晓玲. 剩余污泥碱性发酵影响因素和过程强化研究. 哈尔滨: 哈尔滨工业大学, 2014.
Li X L. Influence factors and process enhancement study of waste activated sludge alkaline fermentation. Harbin: Harbin Institute of Technology, 2014.
[58] Vázquez-Fernández A, Suárez-Ojeda M E, Carrera J. Review about bioproduction of volatile fatty acids from wastes and wastewaters: influence of operating conditions and organic composition of the substrate. Journal of Environmental Chemical Engineering, 2022, 10(3): 107917.
doi: 10.1016/j.jece.2022.107917
[59] Garcia-Aguirre J, Aymerich E, González-Mtnez de Goñi J, et al. Selective VFA production potential from organic waste streams: assessing temperature and pH influence. Bioresource Technology, 2017, 244: 1081-1088.
doi: S0960-8524(17)31303-2 pmid: 28851164
[60] Jiang J G, Zhang Y J, Li K M, et al. Volatile fatty acids production from food waste: effects of pH, temperature, and organic loading rate. Bioresource Technology, 2013, 143: 525-530.
doi: 10.1016/j.biortech.2013.06.025 pmid: 23831761
[61] Zhang C S, Su H J, Baeyens J, et al. Reviewing the anaerobic digestion of food waste for biogas production. Renewable and Sustainable Energy Reviews, 2014, 38: 383-392.
doi: 10.1016/j.rser.2014.05.038
[62] Zheng Z H, Cai Y F, Zhang Y, et al. The effects of C/N (10-25) on the relationship of substrates, metabolites, and microorganisms in “inhibited steady-state” of anaerobic digestion. Water Research, 2021, 188: 116466.
doi: 10.1016/j.watres.2020.116466
[63] Wainaina S, Awasthi M K, Horváth I S, et al. Anaerobic digestion of food waste to volatile fatty acids and hydrogen at high organic loading rates in immersed membrane bioreactors. Renewable Energy, 2020, 152: 1140-1148.
doi: 10.1016/j.renene.2020.01.138
[64] Pan Y, Zhi Z X, Zhen G Y, et al. Synergistic effect and biodegradation kinetics of sewage sludge and food waste mesophilic anaerobic co-digestion and the underlying stimulation mechanisms. Fuel, 2019, 253: 40-49.
doi: 10.1016/j.fuel.2019.04.084
[65] Zhang A, He J L, Shen Y Y, et al. Enhanced degradation of glucocorticoids, a potential COVID-19 remedy, by co-fermentation of waste activated sludge and animal manure: the role of manure type and degradation mechanism. Environmental Research, 2021, 201: 111488.
doi: 10.1016/j.envres.2021.111488
[66] He S, Deng Q H, Xian P, et al. Volatile fatty acid (VFA) and methane generation from sewage sludge and banana straw: influence of pH and two-phase anaerobic fermentation. Desalination and Water Treatment, 2019, 152: 208-213.
doi: 10.5004/dwt.2019.23872
[67] Jankowska E, Chwialkowska J, Stodolny M, et al. Volatile fatty acids production during mixed culture fermentation: the impact of substrate complexity and pH. Chemical Engineering Journal, 2017, 326:901-910.
[68] Chen Y G, Luo J Y, Yan Y Y, et al. Enhanced production of short-chain fatty acid by co-fermentation of waste activated sludge and kitchen waste under alkaline conditions and its application to microbial fuel cells. Applied Energy, 2013, 102: 1197-1204.
doi: 10.1016/j.apenergy.2012.06.056
[69] 刘和, 刘晓玲, 邱坚, 等. C/N对污泥厌氧发酵产酸类型及代谢途径的影响. 环境科学学报, 2010, 30(2): 340-346.
Liu H, Liu X L, Qiu J, et al. The effects of C/N ratio on the production of volatile fatty acids and the metabolic pathway of anaerobic fermentation of sewage sludge. Acta Scientiae Circumstantiae, 2010, 30(2): 340-346.
[70] Magdalena J A, González-Fernández C. Microalgae biomass as a potential feedstock for the carboxylate platform. Molecules (Basel, Switzerland), 2019, 24(23): 4404.
[71] Ferguson R M W, Coulon F, Villa R. Organic loading rate: a promising microbial management tool in anaerobic digestion. Water Research, 2016, 100: 348-356.
doi: S0043-1354(16)30324-4 pmid: 27214347
[72] Miron Y, Zeeman G, van Lier J B, et al. The role of sludge retention time in the hydrolysis and acidification of lipids, carbohydrates and proteins during digestion of primary sludge in CSTR systems. Water Research, 2000, 34(5): 1705-1713.
doi: 10.1016/S0043-1354(99)00280-8
[73] Luo J Y, Feng L Y, Zhang W, et al. Improved production of short-chain fatty acids from waste activated sludge driven by carbohydrate addition in continuous-flow reactors: influence of SRT and temperature. Applied Energy, 2014, 113: 51-58.
doi: 10.1016/j.apenergy.2013.07.006
[74] Mulders M, Estevez-Alonso A, Stouten G R, et al. Volatile fatty acid product spectrum as a function of the solids retention time in an anaerobic granular sludge process. Journal of Environmental Engineering, 2020, 146(8): 04020091.
doi: 10.1061/(ASCE)EE.1943-7870.0001768
[1] 徐惠娟 许敬亮 郭颖 庄新姝 袁振宏. 合成气厌氧发酵生产有机酸和醇的研究进展[J]. 中国生物工程杂志, 2010, 30(03): 112-118.
[2] 屠明明,王秋玉. 石油污染土壤的生物刺激和生物强化修复[J]. 中国生物工程杂志, 2009, 29(08): 129-134.
[3] 赵勇,孙成权,沙勇忠. 国际生物制氢相关研究的知识图谱分析[J]. 中国生物工程杂志, 2009, 29(01): 116-121.
[4] 姜岷 谢鑫 许琳 严明. 过量表达苹果酸酶对E.coli FMJ39厌氧混合酸发酵的影响[J]. 中国生物工程杂志, 2007, 27(1): 69-74.