Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2023, Vol. 43 Issue (1): 50-58    DOI: 10.13523/j.cb.2207050
综述     
耐药菌非抗生素疗法研究进展*
熊利洋,胡秀玲,魏云林**()
昆明理工大学生命科学与技术学院 昆明 650500
Advances in Non-antibiotic Therapy for Drug-resistant Bacteria
XIONG Li-yang,HU Xiu-ling,WEI Yun-lin**()
Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
 全文: PDF(977 KB)   HTML
摘要:

抗生素耐药性是21世纪人类面临的主要公共卫生威胁之一。抗生素滥用导致越来越多的细菌产生了耐药性,使得传统抗生素治疗面临着巨大挑战。非抗生素治疗策略,如噬菌体疗法、抗菌肽疗法、抗毒力因子疗法等,在应对耐药性细菌方面具有独特的优势与临床潜力,并且能够有效避免细菌耐药性的产生与传播。综述耐药菌非抗生素疗法的研究进展,探讨其在抗感染领域的新型治疗方案。未来,耐药菌非抗生素疗法有望协同乃至替代抗生素疗法,从而应对“抗生素危机”。

关键词: 抗生素耐药性多重耐药性细菌噬菌体疗法抗菌肽抗毒力因子疗法    
Abstract:

Antibiotic resistance has been a serious challenge for human health at the beginning of the 21st century. With the appearance of more and more multi-drug resistant bacteria, traditional antibiotic treatments have been involved in a significant crisis in the last decades. A new non-antibiotic therapeutic strategy, including phage therapy, antimicrobial peptide therapy and anti-virulence factor therapy, has been received more attention in recent years, due to its unique advantages and clinical potential in dealing with bacterial infections, while effectively avoiding the emergence and spread of bacterial resistance. This strategy has been expected to synergize with or even replace traditional antibiotic therapy to fight against this crisis. In this paper, some important concepts and research advances about non-antibiotic therapies in the last decades have been summarized, and the clinical potential and challenges of non-antibiotic therapeutic strategies in the future have also been analyzed.

Key words: Antibiotic resistance    Multi-drug resistant bacteria    Phage therapy    Antimicrobial peptides    Anti-virulence factor therapy
收稿日期: 2022-07-23 出版日期: 2023-02-14
ZTFLH:  Q939  
基金资助: *国家自然科学基金(31960232)
通讯作者: **魏云林 电子信箱:weiyunlin@kmust.edu.cn   
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
熊利洋
胡秀玲
魏云林

引用本文:

熊利洋, 胡秀玲, 魏云林. 耐药菌非抗生素疗法研究进展*[J]. 中国生物工程杂志, 2023, 43(1): 50-58.

XIONG Li-yang, HU Xiu-ling, WEI Yun-lin. Advances in Non-antibiotic Therapy for Drug-resistant Bacteria. China Biotechnology, 2023, 43(1): 50-58.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.2207050        https://manu60.magtech.com.cn/biotech/CN/Y2023/V43/I1/50

图1  噬菌体侵染裂解耐药菌机制
图2  抗菌肽的四种膜渗透模型[20]
图3  抗毒力因子疗法的三种治疗策略
抗菌策略 优势 劣势
噬菌体疗法(phage therapy) 高度特异性,研发周期短,成本较低,毒性低,安全性较好 抗菌谱较窄,易产生耐药性
抗菌肽疗法(antimicrobial peptides therapy) 抗菌谱较宽,不易产生耐药性,抗菌机制较多 存在一定毒性,剂量依赖性,研发成本高
群体感应抑制策略(quorum sensing inhibition strategy) 抗菌谱较宽,不易产生耐药性 存在一定毒性,剂量要求严格
生物膜抑制策略(biofilm inhibition strategy) 抗菌谱较宽,不易产生耐药性 存在一定毒性,研发成本高
毒素中和策略(toxin neutralization strategy) 抗菌谱较宽,不易产生耐药性 存在一定毒性,研发成本高
表1  不同抗菌策略的优缺点比较
[1] Menor-Flores M, Vega-Rodríguez M A, Molina F. Computational design of phage cocktails based on phage-bacteria infection networks. Computers in Biology and Medicine, 2022, 142: 105186.
doi: 10.1016/j.compbiomed.2021.105186
[2] Varela M F, Stephen J, Lekshmi M, et al. Bacterial resistance to antimicrobial agents. Antibiotics (Basel, Switzerland), 2021, 10(5): 593.
[3] Hutchings M I, Truman A W, Wilkinson B. Antibiotics: past, present and future. Current Opinion in Microbiology, 2019, 51: 72-80.
doi: S1369-5274(19)30019-0 pmid: 31733401
[4] Pang Z, Raudonis R, Glick B R, et al. Antibiotic resistance in Pseudomonas aeruginosa: mechanisms and alternative therapeutic strategies. Biotechnology Advances, 2019, 37(1): 177-192.
doi: 10.1016/j.biotechadv.2018.11.013
[5] Gajdács M. The concept of an ideal antibiotic: implications for drug design. Molecules (Basel, Switzerland), 2019, 24(5): E892.
[6] Lin D M, Koskella B, Lin H C. Phage therapy: an alternative to antibiotics in the age of multi-drug resistance. World Journal of Gastrointestinal Pharmacology and Therapeutics, 2017, 8(3): 162-173.
doi: 10.4292/wjgpt.v8.i3.162 pmid: 28828194
[7] Kortright K E, Chan B K, Koff J L, et al. Phage therapy: a renewed approach to combat antibiotic-resistant bacteria. Cell Host & Microbe, 2019, 25(2): 219-232.
[8] Łusiak-Szelachowska M, Międzybrodzki R, Drulis-Kawa Z, et al. Bacteriophages and antibiotic interactions in clinical practice: what we have learned so far. Journal of Biomedical Science, 2022, 29(1): 23.
doi: 10.1186/s12929-022-00806-1 pmid: 35354477
[9] Yu L, Wang S, Guo Z M, et al. A guard-killer phage cocktail effectively lyses the host and inhibits the development of phage-resistant strains of Escherichia coli. Applied Microbiology and Biotechnology, 2018, 102(2): 971-983.
doi: 10.1007/s00253-017-8591-z
[10] Kering K K, Kibii B J, Wei H P. Biocontrol of phytobacteria with bacteriophage cocktails. Pest Management Science, 2019, 75(7): 1775-1781.
doi: 10.1002/ps.5324 pmid: 30624034
[11] Dedrick R M, Guerrero-Bustamante C A, Garlena R A, et al. Engineered bacteriophages for treatment of a patient with a disseminated drug-resistant Mycobacterium abscessus. Nature Medicine, 2019, 25(5): 730-733.
doi: 10.1038/s41591-019-0437-z
[12] Nick J A, Dedrick R M, Gray A L, et al. Host and pathogen response to bacteriophage engineered against Mycobacterium abscessus lung infection. Cell, 2022, 185(11): 1860-1874, e12.
doi: 10.1016/j.cell.2022.04.024
[13] Jault P, Leclerc T, Jennes S, et al. Efficacy and tolerability of a cocktail of bacteriophages to treat burn wounds infected by Pseudomonas aeruginosa (PhagoBurn): a randomised, controlled, double-blind phase 1/2 trial. The Lancet Infectious Diseases, 2019, 19(1): 35-45.
doi: 10.1016/S1473-3099(18)30482-1
[14] Xiang Y Y, Ma C L, Yin S, et al. Phage therapy for refractory periapical periodontitis caused by Enterococcus faecalis in vitro and in vivo. Applied Microbiology and Biotechnology, 2022, 106(5-6): 2121-2131.
doi: 10.1007/s00253-022-11810-8
[15] Save J, Que Y A, Entenza J M, et al. Bacteriophages combined with subtherapeutic doses of flucloxacillin act synergistically against Staphylococcus aureus experimental infective endocarditis. Journal of the American Heart Association, 2022, 11(3): e023080.
doi: 10.1161/JAHA.121.023080
[16] Eskenazi A, Lood C, Wubbolts J, et al. Combination of pre-adapted bacteriophage therapy and antibiotics for treatment of fracture-related infection due to pandrug-resistant Klebsiella pneumoniae. Nature Communications, 2022, 13(1): 302.
doi: 10.1038/s41467-021-27656-z pmid: 35042848
[17] Danis-Wlodarczyk K M, Cai A, Chen A N, et al. Friends or foes? Rapid determination of dissimilar colistin and ciprofloxacin antagonism of Pseudomonas aeruginosa phages. Pharmaceuticals (Basel, Switzerland), 2021, 14(11): 1162.
[18] Browne K, Chakraborty S, Chen R X, et al. A new era of antibiotics: the clinical potential of antimicrobial peptides. International Journal of Molecular Sciences, 2020, 21(19): 7047.
doi: 10.3390/ijms21197047
[19] Jiang Y J, Chen Y Y, Song Z Y, et al. Recent advances in design of antimicrobial peptides and polypeptides toward clinical translation. Advanced Drug Delivery Reviews, 2021, 170: 261-280.
doi: 10.1016/j.addr.2020.12.016 pmid: 33400958
[20] Kumar P, Kizhakkedathu J N, Straus S K. Antimicrobial peptides: diversity, mechanism of action and strategies to improve the activity and biocompatibility in vivo. Biomolecules, 2018, 8(1): 4.
doi: 10.3390/biom8010004
[21] Koo H B, Seo J. Antimicrobial peptides under clinical investigation. Peptide Science, 2019, 111(5): e24122.
[22] Magana M, Pushpanathan M, Santos A L, et al. The value of antimicrobial peptides in the age of resistance. The Lancet Infectious Diseases, 2020, 20(9): e216-e230.
doi: 10.1016/S1473-3099(20)30327-3
[23] Zhou M, Qian Y X, Xie J Y, et al. Poly(2-oxazoline)-based functional peptide mimics:eradicating MRSA infections and persisters while alleviating antimicrobial resistance. Angewandte Chemie International Edition, 2020, 59(16): 6412-6419.
[24] de Breij A, Riool M, Cordfunke R A, et al. The antimicrobial peptide SAAP-148 combats drug-resistant bacteria and biofilms. Science Translational Medicine, 2018, 10(423): eaan4044.
doi: 10.1126/scitranslmed.aan4044
[25] Gan B H, Gaynord J, Rowe S M, et al. The multifaceted nature of antimicrobial peptides: current synthetic chemistry approaches and future directions. Chemical Society Reviews, 2021, 50(13): 7820-7880.
doi: 10.1039/d0cs00729c pmid: 34042120
[26] Law S K K, Tan H S. The role of quorum sensing, biofilm formation, and iron acquisition as key virulence mechanisms in Acinetobacter baumannii and the corresponding anti-virulence strategies. Microbiological Research, 2022, 260: 127032.
doi: 10.1016/j.micres.2022.127032
[27] Leitão J H. Microbial virulence factors. International Journal of Molecular Sciences, 2020, 21(15): 5320.
doi: 10.3390/ijms21155320
[28] Zhao J, Li X Y, Hou X Y, et al. Widespread existence of quorum sensing inhibitors in marine bacteria: potential drugs to combat pathogens with novel strategies. Marine Drugs, 2019, 17(5): 275.
doi: 10.3390/md17050275
[29] Fleitas Martínez O, Cardoso M H, Ribeiro S M, et al. Recent advances in anti-virulence therapeutic strategies with a focus on dismantling bacterial membrane microdomains, toxin neutralization, quorum-sensing interference and biofilm inhibition. Frontiers in Cellular and Infection Microbiology, 2019, 9: 74.
doi: 10.3389/fcimb.2019.00074 pmid: 31001485
[30] Fong J, Zhang C D, Yang R L, et al. Combination therapy strategy of quorum quenching enzyme and quorum sensing inhibitor in suppressing multiple quorum sensing pathways of P. aeruginosa. Scientific Reports, 2018, 8(1): 1155.
doi: 10.1038/s41598-018-19504-w
[31] Lade H, Paul D, Kweon J H. Quorum quenching mediated approaches for control of membrane biofouling. International Journal of Biological Sciences, 2014, 10(5): 550-565.
doi: 10.7150/ijbs.9028 pmid: 24910534
[32] Zhang M M, Wang M J, Zhu X C, et al. Equisetin as potential quorum sensing inhibitor of Pseudomonas aeruginosa. Biotechnology Letters, 2018, 40(5): 865-870.
doi: 10.1007/s10529-018-2527-2
[33] Gopu V, Meena C K, Murali A, et al. Petunidin as a competitive inhibitor of acylated homoserine lactones in Klebsiella pneumoniae. RSC Advances, 2016, 6(4): 2592-2601.
doi: 10.1039/C5RA20677D
[34] Ivanova A, Ivanova K, Tied A, et al. Layer-by-layer coating of aminocellulose and quorum quenching acylase on silver nanoparticles synergistically eradicate bacteria and their biofilms. Advanced Functional Materials, 2020, 30(24): 2001284.
doi: 10.1002/adfm.202001284
[35] Rémy B, Mion S, Plener L, et al. Interference in bacterial quorum sensing: a biopharmaceutical perspective. Frontiers in Pharmacology, 2018, 9: 203.
doi: 10.3389/fphar.2018.00203 pmid: 29563876
[36] Roy R, Tiwari M, Donelli G, et al. Strategies for combating bacterial biofilms: a focus on anti-biofilm agents and their mechanisms of action. Virulence, 2018, 9(1): 522-554.
doi: 10.1080/21505594.2017.1313372 pmid: 28362216
[37] Koo H, Allan R N, Howlin R P, et al. Targeting microbial biofilms: current and prospective therapeutic strategies. Nature Reviews Microbiology, 2017, 15(12): 740-755.
doi: 10.1038/nrmicro.2017.99 pmid: 28944770
[38] Hu D F, Deng Y Y, Jia F, et al. Surface charge switchable supramolecular nanocarriers for nitric oxide synergistic photodynamic eradication of biofilms. ACS Nano, 2020, 14(1): 347-359.
doi: 10.1021/acsnano.9b05493 pmid: 31887012
[39] Feng X C, Guo W Q, Zheng H S, et al. Inhibition of biofilm formation by chemical uncoupler, 3,3', 4',5-tetrachlorosalicylanilide (TCS): from the perspective of quorum sensing and biofilm related genes. Biochemical Engineering Journal, 2018, 137: 95-99.
doi: 10.1016/j.bej.2018.05.010
[40] Puga C H, Rodríguez-López P, Cabo M L, et al. Enzymatic dispersal of dual-species biofilms carrying Listeria monocytogenes and other associated food industry bacteria. Food Control, 2018, 94: 222-228.
doi: 10.1016/j.foodcont.2018.07.017
[41] Weiss A, Delavenne E, Matias C, et al. Topical niclosamide (ATx201) reduces Staphylococcus aureus colonization and increases Shannon diversity of the skin microbiome in atopic dermatitis patients in a randomized, double-blind, placebo-controlled phase 2 trial. Clinical and Translational Medicine, 2022, 12(5): e790.
doi: 10.1002/ctm2.790 pmid: 35522900
[42] Barthold L, Heber S, Schmidt C Q, et al. Human α-defensin-6 neutralizes Clostridioides difficile toxins TcdA and TcdB by direct binding. International Journal of Molecular Sciences, 2022, 23(9): 4509.
doi: 10.3390/ijms23094509
[43] Andersson J A, Peniche A G, Galindo C L, et al. New host-directed therapeutics for the treatment of Clostridioides difficile infection. mBio, 2020, 11(2): e00053-e00020.
[44] Zhang X C, Gao R R, Liu Y, et al. Anti-virulence activities of biflavonoids from Mesua ferrea L. flower. Drug Discoveries & Therapeutics, 2019, 13(4): 222-227.
[45] Nakatsuji T, Hata T R, Tong Y, et al. Development of a human skin commensal microbe for bacteriotherapy of atopic dermatitis and use in a phase 1 randomized clinical trial. Nature Medicine, 2021, 27(4): 700-709.
doi: 10.1038/s41591-021-01256-2 pmid: 33619370
[1] 邓蕊,曾佳利,卢雪梅. 基于Musca domestica cecropin的抗肿瘤小分子衍生肽筛选及构效关系解析*[J]. 中国生物工程杂志, 2021, 41(11): 14-22.
[2] 唐馨,毛新芳,马彬云,苟萍. 抗菌肽的研究现状和挑战 *[J]. 中国生物工程杂志, 2019, 39(8): 86-94.
[3] 杨隆兵,国果,马慧玲,李妍,赵欣宇,苏佩佩,张勇. 家蝇抗菌肽AMPs17蛋白原核表达条件的优化及其抗真菌活性检测 *[J]. 中国生物工程杂志, 2019, 39(4): 24-31.
[4] 唐健雪,肖永乐,彭俊杰,赵世纪,万小平,高荣. 融合抗菌肽基因在重组毕赤酵母的表达及体外活性研究 *[J]. 中国生物工程杂志, 2018, 38(6): 9-16.
[5] 杨静,贾如涵,李文慧,石大林,邵明洋,韩跃武. 抗菌肽改良设计及抗炎作用的研究进展[J]. 中国生物工程杂志, 2018, 38(1): 57-61.
[6] 温赛, 刘怀然, 韩煦, 李天, 邢旋. 综述人工合成型抗菌肽及其药学应用研究进展[J]. 中国生物工程杂志, 2016, 36(8): 89-98.
[7] 刘晓明, 姜宁, 张爱忠, 蔡鹏. 杂合抗菌肽在毕赤酵母中的表达及其活性测定[J]. 中国生物工程杂志, 2016, 36(2): 81-89.
[8] 巫春旭, 卢雪梅, 金小宝, 朱家勇. 天蚕素类抗菌肽分子设计研究进展[J]. 中国生物工程杂志, 2016, 36(2): 96-100.
[9] 陈洁梅, 张灿辉, 艾田. 解淀粉芽孢杆菌KN-BL-1及其发酵豆粕产抗菌肽类物质的研究[J]. 中国生物工程杂志, 2014, 34(10): 61-66.
[10] 武如娟, 张日俊. 杂合抗菌肽设计及生物学活性的研究进展[J]. 中国生物工程杂志, 2013, 33(9): 94-100.
[11] 陈宇婷, 王长海, 严秀文, 黎军胜. 抗菌肽的设计及其应用[J]. 中国生物工程杂志, 2013, 33(7): 97-102.
[12] 明飞平, 杨军, 朱进美, 邝哲师, 李华周, 夏枫耿, 叶明强, 王候光, 赵祥杰, 黄志丰, 蔡海明, 施巨清, 马苗鹏, 张玲华. 5’非翻译区序列改建提高抗菌肽PR39表达[J]. 中国生物工程杂志, 2013, 33(12): 86-91.
[13] 陈武, 黎定军, 丁彦, 张旭, 肖启明, 周清明. 病原微生物对抗菌肽抗性机制的研究进展[J]. 中国生物工程杂志, 2012, 32(05): 97-106.
[14] 舒梅, 许杨, 徐熙, 涂追. 两种水生动物抗菌肽的原核表达及活性分析[J]. 中国生物工程杂志, 2011, 31(02): 56-61.
[15] 李朴,文阳安,刘靳波,扬细媚,周金敬,涂植光. 抗菌肽Bactenecin7重组质粒构建及其在乳酸菌的分泌表达和活性鉴定[J]. 中国生物工程杂志, 2009, 29(01): 70-74.