Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2022, Vol. 42 Issue (12): 52-60    DOI: 10.13523/j.cb.2207027
综述     
重组酶介导的定点整合及在构建重组CHO细胞中的应用
孙瑾瑜1,2,刘光2,李晨3,王颖1,*(),刘国庆2,*()
1 中国药科大学生命科学与技术学院 南京 211198
2 上海复宏汉霖生物技术股份有限公司 上海 200233
3 安腾瑞霖(上海)生物科技有限公司 上海 201620
Recombinase-mediated Site-specific Integration and Its Application in the Construction of Recombinant CHO Cells
SUN Jin-yu1,2,LIU Guang2,LI Chen3,WANG Ying1,*(),LIU Guo-qing2,*()
1 College of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, China
2 Shanghai Henlius Biotech, Inc., Shanghai 200233, China
3 Aton (Shanghai) Biotech Co., Ltd., Shanghai 201620, China
 全文: PDF(631 KB)   HTML
摘要:

中国仓鼠卵巢细胞(Chinese hamster ovary cells,CHO)是生产治疗性重组蛋白最常用的细胞。随机整合(random integration,RI)工艺是目前构建重组CHO细胞株的主要策略,由于CHO细胞基因组缺乏稳定性,为得到产量高、品质好且适应特定工艺的细胞株,通常需要1~2轮高通量筛选,不仅工作量大、耗时长且批次稳定性差。定点整合(site-specific integration,SSI)基因编辑技术将外源基因整合至细胞基因组的特定位点,经一轮筛选得到稳定、高产且适应特定生产工艺的细胞株,从而缩短细胞株构建周期。近年来,不断有将定点整合策略应用于构建重组CHO细胞株的报道。基因编辑技术的发展是实现细胞外源基因定点整合工艺的基础,常用的基因编辑技术包括核酸酶技术、转座子技术和重组酶技术。比较这三种基因编辑技术在构建流程、整合效率和专利等方面的不同特点,重点讨论重组酶介导的定点整合及其在CHO细胞株构建中的应用。

关键词: 基因编辑定点整合重组酶CHO重组酶介导盒式交换    
Abstract:

Chinese Hamster Ovary (CHO) cells are the most commonly used cells for producing therapeutic recombinant proteins. At present, random integration (RI) is still the main strategy for the construction of recombinant CHO cell lines. Due to the lack of genomic stability in CHO cells, 1-2 rounds of high-throughput screening are usually required to obtain cell lines with high yield, good quality and suitable for a specific process,which is a process with heavy workload, time-consuming and poor batch stability. Site-specific integration (SSI) is a gene editing technique that integrates foreign genes into specific sites to obtain stable, high-yield cell lines adapted to specific production process through one round of screening, thus shortening the construction cycle of cell lines. In recent years, there have been continuous reports of cases where the site-specific integration strategy was applied to construct recombinant CHO cell lines. The most commonly used techniques are nuclease, transposon, and recombinase techniques. The recombinase with great commercial prospect and its application in CHO cell line construction are discussed after considering the construction process, efficiency and patents.

Key words: Gene editing    Site-specific integration    Recombinase    CHO    Recombination-mediated cassette exchange (RMCE)
收稿日期: 2022-07-14 出版日期: 2023-01-05
ZTFLH:  Q819  
通讯作者: 王颖,刘国庆     E-mail: waying@CPU.edu.cn;Guoqing_Liu@henlius.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
孙瑾瑜
刘光
李晨
王颖
刘国庆

引用本文:

孙瑾瑜,刘光,李晨,王颖,刘国庆. 重组酶介导的定点整合及在构建重组CHO细胞中的应用[J]. 中国生物工程杂志, 2022, 42(12): 52-60.

SUN Jin-yu,LIU Guang,LI Chen,WANG Ying,LIU Guo-qing. Recombinase-mediated Site-specific Integration and Its Application in the Construction of Recombinant CHO Cells. China Biotechnology, 2022, 42(12): 52-60.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.2207027        https://manu60.magtech.com.cn/biotech/CN/Y2022/V42/I12/52

图1  重组酶介导的整合、切除和倒置反应
类型 脱靶率 位点依赖 构建过程 商业专利归属
核酸酶技术 ZFNs技术 不依赖 复杂 Sangamo
TALENs技术 不依赖 较复杂 Cellectis Bioresearch
CRISPR/Cas9技术 不依赖 简便 Broad Institute、Berkeley、Merck KGaA,等
转座子技术 - 依赖 简便 ATUM、Lonza、ProBioGen
重组酶技术 - 依赖 简便 Applied Stem Cell
表1  三种基因编辑技术比较
图2  酪氨酸重组酶和丝氨酸重组酶介导的RMCE
[1] Tihanyi B, Nyitray L. Recent advances in CHO cell line development for recombinant protein production. Drug Discovery Today: Technologies, 2020, 38: 25-34.
doi: 10.1016/j.ddtec.2021.02.003 pmid: 34895638
[2] Zhang H Y, Fan Z L, Wang T Y. Advances of glycometabolism engineering in Chinese hamster ovary cells. Frontiers in Bioengineering and Biotechnology, 2021, 9: 774175.
doi: 10.3389/fbioe.2021.774175
[3] Lalonde M E, Durocher Y. Therapeutic glycoprotein production in mammalian cells. Journal of Biotechnology, 2017, 251: 128-140.
doi: 10.1016/j.jbiotec.2017.04.028
[4] Donini R, Haslam S M, Kontoravdi C. Glycoengineering Chinese hamster ovary cells: a short history. Biochemical Society Transactions, 2021, 49(2): 915-931.
doi: 10.1042/BST20200840 pmid: 33704400
[5] Mahé A, Martiné A, Fagète S, et al. Exploring the limits of conventional small-scale CHO fed-batch for accelerated on demand monoclonal antibody production. Bioprocess and Biosystems Engineering, 2022, 45(2): 297-307.
doi: 10.1007/s00449-021-02657-w
[6] Lee J S, Kallehauge T B, Pedersen L E, et al. Site-specific integration in CHO cells mediated by CRISPR/Cas9 and homology-directed DNA repair pathway. Scientific Reports, 2015, 5: 8572.
doi: 10.1038/srep08572 pmid: 25712033
[7] Baumann M, Gludovacz E, Sealover N, et al. Preselection of recombinant gene integration sites enabling high transcription rates in CHO cells using alternate start codons and recombinase mediated cassette exchange. Biotechnology and Bioengineering, 2017, 114(11): 2616-2627.
doi: 10.1002/bit.26388 pmid: 28734047
[8] Thomas K R, Folger K R, Capecchi M R. High frequency targeting of genes to specific sites in the mammalian genome. Cell, 1986, 44(3): 419-428.
pmid: 3002636
[9] Jasin M, Berg P. Homologous integration in mammalian cells without target gene selection. Genes & Development, 1988, 2(11): 1353-1363.
doi: 10.1101/gad.2.11.1353
[10] Rouet P, Smih F, Jasin M. Expression of a site-specific endonuclease stimulates homologous recombination in mammalian cells. PNAS, 1994, 91(13): 6064-6068.
doi: 10.1073/pnas.91.13.6064 pmid: 8016116
[11] Capecchi M R. The origin and evolution of gene targeting. Developmental Biology, 2022, 481: 179-187.
doi: 10.1016/j.ydbio.2021.10.007
[12] McClintock B. The origin and behavior of mutable loci in maize. PNAS, 1950, 36(6): 344-355.
doi: 10.1073/pnas.36.6.344 pmid: 15430309
[13] Ivics Z, Hackett P B, Plasterk R H, et al. Molecular reconstruction of sleeping beauty, a Tc1-like transposon from fish, and its transposition in human cells. Cell, 1997, 91(4): 501-510.
doi: 10.1016/s0092-8674(00)80436-5 pmid: 9390559
[14] Akopian A, Stark W M. Site-specific DNA recombinases as instruments for genomic surgery. Advances in Genetics, 2005, 55: 1-23.
pmid: 16291210
[15] Nunes-Düby S E, Kwon H J, Tirumalai R S, et al. Similarities and differences among 105 members of the Int family of site-specific recombinases. Nucleic Acids Research, 1998, 26(2): 391-406.
pmid: 9421491
[16] Salava H, Thula S, Mohan V, et al. Application of genome editing in tomato breeding: mechanisms, advances, and prospects. International Journal of Molecular Sciences, 2021, 22(2): 682.
doi: 10.3390/ijms22020682
[17] Zhang B H. CRISPR/Cas9: a robust genome-editing tool with versatile functions and endless application. International Journal of Molecular Sciences, 2020, 21(14): 5111.
doi: 10.3390/ijms21145111
[18] Kim S, Kim J S. Targeted genome engineering via zinc finger nucleases. Plant Biotechnology Reports, 2011, 5(1): 9-17.
pmid: 21837253
[19] Joung J K, Sander J D. TALENs: a widely applicable technology for targeted genome editing. Nature Reviews Molecular Cell Biology, 2013, 14(1): 49-55.
doi: 10.1038/nrm3486 pmid: 23169466
[20] Richter C, Chang J T, Fineran P C. Function and regulation of clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR associated (Cas) systems. Viruses, 2012, 4(10): 2291-2311.
doi: 10.3390/v4102291
[21] Beerli R R, Barbas C F. Engineering polydactyl zinc-finger transcription factors. Nature Biotechnology, 2002, 20(2): 135-141.
pmid: 11821858
[22] Janik E, Niemcewicz M, Ceremuga M, et al. Various aspects of a gene editing system-CRISPR-Cas9. International Journal of Molecular Sciences, 2020, 21(24): 9604.
doi: 10.3390/ijms21249604
[23] Zhang F, Wen Y, Guo X. CRISPR/Cas9 for genome editing: progress, implications and challenges. Human Molecular Genetics, 2014, 23(R1): R40-R46.
doi: 10.1093/hmg/ddu125
[24] Banan M. Recent advances in CRISPR/Cas9-mediated knock-ins in mammalian cells. Journal of Biotechnology, 2020, 308: 1-9.
doi: S0168-1656(19)30920-4 pmid: 31751596
[25] Lentsch E, Li L, Pfeffer S, et al. CRISPR/Cas9-mediated knock-out of KrasG12D mutated pancreatic cancer cell lines. International Journal of Molecular Sciences, 2019, 20(22): 5706.
doi: 10.3390/ijms20225706
[26] Babakhani S, Oloomi M. Transposons: the agents of antibiotic resistance in bacteria. Journal of Basic Microbiology, 2018, 58(11): 905-917.
doi: 10.1002/jobm.201800204 pmid: 30113080
[27] Sandoval-Villegas N, Nurieva W, Amberger M, et al. Contemporary transposon tools: a review and guide through mechanisms and applications of Sleeping Beauty, piggyBac and Tol2 for genome engineering. International Journal of Molecular Sciences, 2021, 22(10): 5084.
doi: 10.3390/ijms22105084
[28] Bodea G O, McKelvey E G Z, Faulkner G J. Retrotransposon-induced mosaicism in the neural genome. Open Biology, 2018, 8(7): 180074.
doi: 10.1098/rsob.180074
[29] Schertzer M D, Thulson E, Braceros K C A, et al. A piggyBac-based toolkit for inducible genome editing in mammalian cells. RNA, 2019, 25(8): 1047-1058.
doi: 10.1261/rna.068932.118 pmid: 31101683
[30] Golic K G, Lindquist S. The FLP recombinase of yeast catalyzes site-specific recombination in the Drosophila genome. Cell, 1989, 59(3): 499-509.
pmid: 2509077
[31] Araki H, Nakanishi N, Evans B R, et al. Site-specific recombinase, R, encoded by yeast plasmid pSR1. Journal of Molecular Biology, 1992, 225(1): 25-37.
pmid: 1583692
[32] Sauer B. Inducible gene targeting in mice using the Cre/loxSystem. Methods, 1998, 14(4): 381-392.
pmid: 9608509
[33] Sauer B, McDermott J. DNA recombination with a heterospecific Cre homolog identified from comparison of the pac-c1 regions of P1-related phages. Nucleic Acids Research, 2004, 32(20): 6086-6095.
doi: 10.1093/nar/gkh941 pmid: 15550568
[34] Ingham C J, Crombie H J, Bruton C J, et al. Multiple novel promoters from the early region in the Streptomyces temperate phage φC 31 are activated during lytic development. Molecular Microbiology, 1993, 9(6): 1267-1274.
pmid: 7934940
[35] Bibb L A, Hatfull G F. Integration and excision of the Mycobacterium tuberculosis prophage-like element, φRv1. Molecular Microbiology, 2002, 45(6): 1515-1526.
doi: 10.1046/j.1365-2958.2002.03130.x
[36] Christiansen B, Johnsen M G, Stenby E, et al. Characterization of the lactococcal temperate phage TP901-1 and its site-specific integration. Journal of Bacteriology, 1994, 176(4): 1069-1076.
pmid: 8106318
[37] Kim A I, Ghosh P, Aaron M A, et al. Mycobacteriophage Bxb1 integrates into the Mycobacterium smegmatis groEL1 gene. Molecular Microbiology, 2003, 50(2): 463-473.
doi: 10.1046/j.1365-2958.2003.03723.x
[38] Smith M C, Brown W R, McEwan A R, et al. Site-specific recombination by phiC 31 integrase and other large serine recombinases. Biochemical Society Transactions, 2010, 38(2): 388-394.
doi: 10.1042/BST0380388
[39] Meinke G, Bohm A, Hauber J, et al. Cre recombinase and other tyrosine recombinases. Chemical Reviews, 2016, 116(20): 12785-12820.
doi: 10.1021/acs.chemrev.6b00077 pmid: 27163859
[40] Feng S Q, Lu S, Grueber W B, et al. Scarless engineering of the Drosophila genome near any site-specific integration site. Genetics, 2021, 217(3): iyab012.
doi: 10.1093/genetics/iyab012
[41] Chaikind B, Bessen J L, Thompson D B, et al. A programmable Cas9-serine recombinase fusion protein that operates on DNA sequences in mammalian cells. Nucleic Acids Research, 2016, 44(20): 9758-9770.
pmid: 27515511
[42] O’Gorman S, Fox D T, Wahl G M. Recombinase-mediated gene activation and site-specific integration in mammalian cells. Science, 1991, 251(4999): 1351-1355.
pmid: 1900642
[43] Fukushige S, Sauer B. Genomic targeting with a positive-selection lox integration vector allows highly reproducible gene expression in mammalian cells. PNAS, 1992, 89(17): 7905-7909.
pmid: 1518811
[44] Srirangan K, Loignon M, Durocher Y. The use of site-specific recombination and cassette exchange technologies for monoclonal antibody production in Chinese hamster ovary cells: retrospective analysis and future directions. Critical Reviews in Biotechnology, 2020, 40(6): 833-851.
doi: 10.1080/07388551.2020.1768043 pmid: 32456474
[45] Thyagarajan B, Olivares E C, Hollis R P, et al. Site-specific genomic integration in mammalian cells mediated by phage phiC31 integrase. Molecular and Cellular Biology, 2001, 21(12): 3926-3934.
doi: 10.1128/MCB.21.12.3926-3934.2001 pmid: 11359900
[46] Sekhavati M H, Hosseini S M, Tahmoorespur M, et al. PhiC31-based site-specific transgenesis system for production of transgenic bovine embryos by somatic cell nuclear transfer and intracytoplasmic sperm injection. Cell Journal, 2018, 20(1): 98-107.
doi: 10.22074/cellj.2018.4385 pmid: 29308625
[47] Naddafi F, Mahboudi F, Tabarzad M, et al. The epigenetic regulation of blinatumomab gene expression: tumor cell-dependent T cell response against lymphoma cells and cytotoxic activity. International Journal of Molecular and Cellular Medicine, 2019, 8(1): 55-66.
doi: 10.22088/IJMCM.BUMS.8.1.55 pmid: 32195205
[48] Luo J, Shen P P, Chen J. A modular toolset of phiC31-based fluorescent protein tagging vectors for Drosophila. Fly, 2019, 13(1-4): 29-41.
doi: 10.1080/19336934.2019.1595999
[49] Bernabé-Orts J M, Quijano-Rubio A, Vazquez-Vilar M, et al. A memory switch for plant synthetic biology based on the phage φC 31 integration system. Nucleic Acids Research, 2020, 48(6): 3379-3394.
doi: 10.1093/nar/gkaa104 pmid: 32083668
[50] Wang F, Ji Y T, Tian C, et al. An inducible constitutive expression system in Bombyx mori mediated by phiC31 integrase. Insect Science, 2021, 28(5): 1277-1289.
doi: 10.1111/1744-7917.12866
[51] Ata-Abadi N S, Forouzanfar M, Dormiani K, et al. Site-specific integration as an efficient method for production of recombinant human hyaluronidase PH 20 in semi-adherent cells. Applied Microbiology and Biotechnology, 2022, 106(4): 1459-1473.
doi: 10.1007/s00253-022-11794-5 pmid: 35107633
[52] Turan S, Zehe C, Kuehle J, et al. Recombinase-mediated cassette exchange (RMCE)-a rapidly-expanding toolbox for targeted genomic modifications. Gene, 2013, 515(1): 1-27.
doi: 10.1016/j.gene.2012.11.016
[53] Inniss M C, Bandara K, Jusiak B, et al. A novel Bxb 1 integrase RMCE system for high fidelity site-specific integration of mAb expression cassette in CHO Cells. Biotechnology and Bioengineering, 2017, 114(8): 1837-1846.
doi: 10.1002/bit.26268 pmid: 28186334
[54] Scarcelli J J, Shang T Q, Iskra T, et al. Strategic deployment of CHO expression platforms to deliver Pfizer’s monoclonal antibody portfolio. Biotechnology Progress, 2017, 33(6): 1463-1467.
doi: 10.1002/btpr.2493 pmid: 28480558
[55] Sato M, Nakamura S, Inada E, et al. Recent advances in the production of genome-edited rats. International Journal of Molecular Sciences, 2022, 23(5): 2548.
doi: 10.3390/ijms23052548
[56] Chi X L, Zheng Q, Jiang R H, et al. A system for site-specific integration of transgenes in mammalian cells. PLoS One, 2019, 14(7): e0219842.
doi: 10.1371/journal.pone.0219842
[57] Li J X, Li Y J, Pawlik K M, et al. A CRISPR-Cas9, Cre-lox, and Flp-FRT cascade strategy for the precise and efficient integration of exogenous DNA into cellular genomes. The CRISPR Journal, 2020, 3(6): 470-486.
doi: 10.1089/crispr.2020.0042
[58] Dafhnis-Calas F, Xu Z Y, Haines S, et al. Iterative in vivo assembly of large and complex transgenes by combining the activities of φC 31 integrase and Cre recombinase. Nucleic Acids Research, 2005, 33(22): e189.
doi: 10.1093/nar/gni192 pmid: 16361264
[59] Lee N C O, Kim J H, Petrov N S, et al. Method to assemble genomic DNA fragments or genes on human artificial chromosome with regulated kinetochore using a multi-integrase system. ACS Synthetic Biology, 2018, 7(1): 63-74.
doi: 10.1021/acssynbio.7b00209 pmid: 28799737
[60] Moralli D, Monaco Z L. Gene expressing human artificial chromosome vectors: advantages and challenges for gene therapy. Experimental Cell Research, 2020, 390(1): 111931.
doi: 10.1016/j.yexcr.2020.111931
[61] Ahmadi M, Mahboudi F, Akbari Eidgahi M R, et al. Evaluating the efficiency of phiC 31 integrase-mediated monoclonal antibody expression in CHO cells. Biotechnology Progress, 2016, 32(6): 1570-1576.
doi: 10.1002/btpr.2362
[62] Nehlsen K, Schucht R, da Gama-Norton L, et al. Recombinant protein expression by targeting pre-selected chromosomal loci. BMC Biotechnology, 2009, 9: 100.
doi: 10.1186/1472-6750-9-100 pmid: 20003421
[63] Zhang L, Inniss M C, Han S, et al. Recombinase-mediated cassette exchange (RMCE) for monoclonal antibody expression in the commercially relevant CHOK1SV cell line. Biotechnology Progress, 2015, 31(6): 1645-1656.
doi: 10.1002/btpr.2175 pmid: 26399954
[64] Feary M, Moffat M A, Casperson G F, et al. CHOK1SV GS-KO SSI expression system: a combination of the Fer1L4 locus and glutamine synthetase selection. Biotechnology Progress, 2021, 37(4): e3137.
doi: 10.1002/btpr.3137 pmid: 33609084
[65] Jusiak B, Jagtap K, Gaidukov L, et al. Comparison of integrases identifies Bxb1-GA mutant as the most efficient site-specific integrase system in mammalian cells. ACS Synthetic Biology, 2019, 8(1): 16-24.
doi: 10.1021/acssynbio.8b00089 pmid: 30609349
[66] Irion S, Luche H, Gadue P, et al. Identification and targeting of the ROSA 26 locus in human embryonic stem cells. Nature Biotechnology, 2007, 25(12): 1477-1482.
doi: 10.1038/nbt1362
[67] Gaidukov L, Wroblewska L, Teague B, et al. A multi-landing pad DNA integration platform for mammalian cell engineering. Nucleic Acids Research, 2018, 46(8): 4072-4086.
doi: 10.1093/nar/gky216 pmid: 29617873
[1] 瞿丽丽,丁学峰,蔡燕飞,鲁晨,李华钟,金坚,陈蕴. CHO细胞基因组NW-003614092.1内稳定表达位点的发现*[J]. 中国生物工程杂志, 2022, 42(6): 12-19.
[2] 张俊有,王棨临,刘倩,漆思晗,李春燕. CRISPR/Cas基因编辑技术在增强子功能分析及鉴定中的研究进展*[J]. 中国生物工程杂志, 2022, 42(4): 24-32.
[3] 张毅, 王陈, 石晶晶, 陈学军, 张瑞华, 靳倩, 石童, 李丽琴. 稳定表达人源GABAAR-CHO细胞株的建立[J]. 中国生物工程杂志, 2022, 42(3): 38-46.
[4] 林健芬, 罗顺. CHO细胞基因组中稳定hot spot位点研究进展[J]. 中国生物工程杂志, 2022, 42(3): 72-81.
[5] 郭曼曼,田开仁,乔建军,李艳妮. 噬菌体重组酶系统在合成生物学中的应用*[J]. 中国生物工程杂志, 2021, 41(8): 90-102.
[6] 马巧妮,王萌,朱兴全. 重组酶介导扩增技术及其在病原微生物快速检测中的应用进展*[J]. 中国生物工程杂志, 2021, 41(6): 45-49.
[7] 胡暄,王松,于学玲,张晓鹏. 不稳定EGFP细胞模型的构建及其在基因编辑体系评价中的应用*[J]. 中国生物工程杂志, 2021, 41(5): 17-26.
[8] 王艳梅,寇航,马梅,申玉玉,赵宝顶,路福平,黎明. 利用CRISPR-Cas9技术失活黑曲霉中果胶酶基因及突变株性能评价*[J]. 中国生物工程杂志, 2021, 41(5): 35-44.
[9] 冷燕,孙康泰,刘倩倩,蒲阿庆,李翔,万向元,魏珣. 全球基因编辑作物监管趋势研究[J]. 中国生物工程杂志, 2021, 41(12): 24-29.
[10] 樊斌,陈欢,宋婉莹,陈光,王刚. 乳酸菌基因改造技术研究进展 *[J]. 中国生物工程杂志, 2020, 40(6): 84-92.
[11] 郭胜楠, 李信晓, 王峰, 刘昆梅, 丁娜, 扈启宽, 孙涛. 海马与新皮质组织特异性GABRG2基因敲除小鼠模型的构建及其在遗传性癫痫伴热性惊厥附加症中的初步研究 *[J]. 中国生物工程杂志, 2020, 40(3): 9-20.
[12] 盛晓菁,齐晓雪,徐蕾,戚智青,刁勇. 基因克隆及组装技术的研究进展 *[J]. 中国生物工程杂志, 2020, 40(1-2): 133-139.
[13] 王伟东,杜加茹,张运尚,樊剑鸣. CRISPR/Cas9在人病毒感染相关疾病治疗研究中的应用*[J]. 中国生物工程杂志, 2020, 40(12): 18-24.
[14] 王玥,牟彦双,刘忠华. 基于CRISPR/Cas系统的单碱基编辑技术研究进展*[J]. 中国生物工程杂志, 2020, 40(12): 58-66.
[15] 何秀娟,胡凤枝,刘秋丽,刘玉萍,祝玲,郑文云. 乳腺癌细胞QSOX1的CRISPR/Cas9基因编辑及其对增殖侵袭的影响研究*[J]. 中国生物工程杂志, 2020, 40(11): 1-9.