Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2022, Vol. 42 Issue (12): 61-68    DOI: 10.13523/j.cb.2207003
综述     
纳米硅酸镁锂在组织再生中的应用*
许雄程,骆凯()
福建省口腔疾病研究重点实验室 福建省高校口腔医学重点实验室 福建医科大学口腔组织工程研究中心 福建医科大学附属口腔医院 福州 350002
Application of Laponite in Tissue Regeneration
XU Xiong-cheng,LUO Kai()
Fujian Key Laboratory of Oral Diseases, Stomatological Key Laboratory of Fujian College and University, Institute of Stomatology & Laboratory of Oral Tissue Engineering, School and Hospital of Stomatology, Fujian Medical University, Fuzhou 350002, China
 全文: PDF(425 KB)   HTML
摘要:

因外伤、肿瘤和先天发育异常等导致的组织缺损会严重影响患者的生理功能和心理健康。组织再生修复过程复杂,随着年龄的增长,机体本身再生修复的能力逐渐减弱,缺损组织的修复多以纤维结构混乱的瘢痕修复为主。硅酸镁锂(laponite,LAP)因其独特的纳米层状结构和表面电化学特点,能够与多种生物分子和药物相互作用,展现了较好的细胞相容性和生物活性,已被广泛应用于组织再生生物材料的功能化改性。综述LAP的性质特点及其在组织再生修复领域的应用,以期推进LAP研究成果更好地向临床转化。

关键词: 硅酸镁锂组织再生干细胞免疫调控    
Abstract:

Tissue defects caused by trauma, tumors and congenital developmental abnormalities seriously affect the physiological function and mental health of patients. Processes of tissue regeneration and repair are complex. The body’s ability to regenerate and repair tissue defects gradually weakens, which is mainly based on scar repair with fibrous capsule. Laponite (LAP) has been widely used for functionalized modification of tissue regeneration biomaterials due to its unique nano-layered structure and surface electrochemical characteristics, which can interact with a variety of biomolecules and drugs and exhibit better cytocompatibility and bioactivity. The properties and characteristics of LAP and its application in the field of tissue regeneration and repair are reviewed in order to promote better clinical translation of LAP research outcomes.

Key words: Laponite    Tissue regeneration    Stem cell    Immunoregulation
收稿日期: 2022-07-04 出版日期: 2023-01-05
ZTFLH:  R318  
基金资助: *国家自然科学基金(81870766);福建省科技创新联合资金(2020Y9032);福建省医学创新课题资助项目(2020CXA048)
通讯作者: 骆凯     E-mail: luokai39@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
许雄程
骆凯

引用本文:

许雄程,骆凯. 纳米硅酸镁锂在组织再生中的应用*[J]. 中国生物工程杂志, 2022, 42(12): 61-68.

XU Xiong-cheng,LUO Kai. Application of Laponite in Tissue Regeneration. China Biotechnology, 2022, 42(12): 61-68.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.2207003        https://manu60.magtech.com.cn/biotech/CN/Y2022/V42/I12/61

[1] Afewerki S, Magalhães L S S M, Silva A D R, et al. Bioprinting a synthetic smectic clay for orthopedic applications. Advanced Healthcare Materials, 2019, 8(13): e1900158.
[2] Gaharwar A K, Singh I, Khademhosseini A. Engineered biomaterials for in situ tissue regeneration. Nature Reviews Materials, 2020, 5(9): 686-705.
doi: 10.1038/s41578-020-0209-x
[3] Gaharwar A K, Cross L M, Peak C W, et al. 2D nanoclay for biomedical applications: regenerative medicine, therapeutic delivery, and additive manufacturing. Advanced Materials, 2019, 31(23): e1900332.
[4] Das S S, Neelam, Hussain K, et al. Laponite-based nanomaterials for biomedical applications: a review. Current Pharmaceutical Design, 2019, 25(4): 424-443.
doi: 10.2174/1381612825666190402165845 pmid: 30947654
[5] Villalba-Rodríguez A M, Martínez-González S, Sosa-Hernández J E, et al. Nanoclay/Polymer-based hydrogels and enzyme-loaded nanostructures for wound healing applications. Gels (Basel, Switzerland), 2021, 7(2): 59.
[6] 田园, 谢利, 田卫东. 硅酸镁锂复合材料在再生医学领域的应用. 口腔生物医学, 2020, 11(1): 60-63.
Tian Y, Xie L, Tian W D. Application of laponite composite materials in the field of regenerative medicine. Oral Biomedicine, 2020, 11(1): 60-63.
[7] 王明霞, 刘志辉. 硅酸镁锂在生物医学领域的研究进展及应用. 口腔医学研究, 2021, 37(4): 292-295.
doi: 10.13701/j.cnki.kqyxyj.2021.04.004
Wang M X, Liu Z H. Research progress and application of synthetic nanosilicates in biomedical field. Journal of Oral Science Research, 2021, 37(4): 292-295.
doi: 10.13701/j.cnki.kqyxyj.2021.04.004
[8] Dong J N, Cheng Z N, Tan S W, et al. Clay nanoparticles as pharmaceutical carriers in drug delivery systems. Expert Opinion on Drug Delivery, 2021, 18(6): 695-714.
doi: 10.1080/17425247.2021.1862792
[9] Carrow J K, Cross L M, Reese R W, et al. Widespread changes in transcriptome profile of human mesenchymal stem cells induced by two-dimensional nanosilicates. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(17): E3905-E3913.
[10] 梁馨予, 石佳博, 陈文川, 等. 硅酸镁锂在骨组织工程中的研究进展. 国际口腔医学杂志, 2018, 45(3): 340-345.
Liang X Y, Shi J B, Chen W C, et al. Research progress on synthetic nanosilicates in bone tissue engineering. International Journal of Stomatology, 2018, 45(3): 340-345.
[11] Liu C Q, Pei M, Li Q F, et al. Decellularized extracellular matrix mediates tissue construction and regeneration. Frontiers of Medicine, 2022, 16(1): 56-82.
doi: 10.1007/s11684-021-0900-3
[12] Dziki J L, Sicari B M, Wolf M T, et al. Immunomodulation and mobilization of progenitor cells by extracellular matrix bioscaffolds for volumetric muscle loss treatment. Tissue Engineering Part A, 2016, 22(19-20): 1129-1139.
pmid: 27562630
[13] Sadtler K, Estrellas K, Allen B W, et al. Developing a pro-regenerative biomaterial scaffold microenvironment requires T helper 2 cells. Science, 2016, 352(6283): 366-370.
doi: 10.1126/science.aad9272 pmid: 27081073
[14] Jin W Y, Tamzalit F, Chaudhuri P K, et al. T cell activation and immune synapse organization respond to the microscale mechanics of structured surfaces. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(40): 19835-19840.
[15] Villarreal-Leal R A, Healey G D, Corradetti B. Biomimetic immunomodulation strategies for effective tissue repair and restoration. Advanced Drug Delivery Reviews, 2021, 179: 113913.
doi: 10.1016/j.addr.2021.113913
[16] He J H, Chen G B, Liu M Y, et al. Scaffold strategies for modulating immune microenvironment during bone regeneration. Materials Science and Engineering C, Materials for Biological Applications, 2020, 108: 110411.
doi: 10.1016/j.msec.2019.110411
[17] Ladewig J, Koch P, Brüstle O. Leveling Waddington: the emergence of direct programming and the loss of cell fate hierarchies. Nature Reviews Molecular Cell Biology, 2013, 14(4): 225-236.
doi: 10.1038/nrm3543 pmid: 23486282
[18] Niu Y M, Wang Z Z, Shi Y C, et al. Modulating macrophage activities to promote endogenous bone regeneration: biological mechanisms and engineering approaches. Bioactive Materials, 2021, 6(1): 244-261.
doi: 10.1016/j.bioactmat.2020.08.012 pmid: 32913932
[19] Natarajan D, Ye Z T, Wang L P, et al. Rare earth smart nanomaterials for bone tissue engineering and implantology: advances, challenges, and prospects. Bioengineering & Translational Medicine, 2022, 7(1): e10262.
[20] Smith T D, Nagalla R R, Chen E Y, et al. Harnessing macrophage plasticity for tissue regeneration. Advanced Drug Delivery Reviews, 2017, 114: 193-205.
doi: S0169-409X(17)30047-9 pmid: 28449872
[21] Wu R X, Yin Y, He X T, et al. Engineering a cell home for stem cell homing and accommodation. Advanced Biosystems, 2017, 1(4): 1700004.
doi: 10.1002/adbi.201700004
[22] Hasani-Sadrabadi M M, Sarrion P, Nakatsuka N, et al. Hierarchically patterned polydopamine-containing membranes for periodontal tissue engineering. ACS Nano, 2019, 13(4): 3830-3838.
doi: 10.1021/acsnano.8b09623 pmid: 30895772
[23] He X T, Li X, Xia Y, et al. Building capacity for macrophage modulation and stem cell recruitment in high-stiffness hydrogels for complex periodontal regeneration: experimental studies in vitro and in rats. Acta Biomaterialia, 2019, 88: 162-180.
doi: 10.1016/j.actbio.2019.02.004
[24] Zhang X F, Chen Q P, Mao X L. Magnesium enhances osteogenesis of BMSCs by tuning osteoimmunomodulation. BioMed Research International, 2019, 2019: 7908205.
[25] Davis R, Urbanowski R A, Gaharwar A K. 2D layered nanomaterials for therapeutics delivery. Current Opinion in Biomedical Engineering, 2021, 20: 100319.
doi: 10.1016/j.cobme.2021.100319
[26] Dawson J I, Oreffo R O C. Clay: new opportunities for tissue regeneration and biomaterial design. Advanced Materials, 2013, 25(30): 4069-4086.
doi: 10.1002/adma.201301034
[27] Dávila J L, d’Ávila M A. Laponite as a rheology modifier of alginate solutions: physical gelation and aging evolution. Carbohydrate Polymers, 2017, 157: 1-8.
doi: S0144-8617(16)31111-0 pmid: 27987800
[28] Jatav S, Joshi Y M. Chemical stability of laponite in aqueous media. Applied Clay Science, 2014, 97-98: 72-77.
[29] Mongondry P, Tassin J F, Nicolai T. Revised state diagram of laponite dispersions. Journal of Colloid and Interface Science, 2005, 283(2): 397-405.
pmid: 15721911
[30] Ruzicka B, Zaccarelli E. A fresh look at the laponite phase diagram. Soft Matter, 2011, 7(4): 1268-1286.
doi: 10.1039/c0sm00590h
[31] Shahin A, Joshi Y M. Physicochemical effects in aging aqueous laponite suspensions. Langmuir, 2012, 28(44): 15674-15686.
doi: 10.1021/la302544y pmid: 23057660
[32] Jabbari-Farouji S, Tanaka H, Wegdam G H, et al. Multiple nonergodic disordered states in laponite suspensions: a phase diagram. Physical Review E, Statistical, Nonlinear, and Soft Matter Physics, 2008, 78(<W>6 pt 1): 061405.
[33] Zreiqat H, Howlett C R, Zannettino A, et al. Mechanisms of magnesium-stimulated adhesion of osteoblastic cells to commonly used orthopaedic implants. Journal of Biomedical Materials Research, 2002, 62(2): 175-184.
pmid: 12209937
[34] Valentin-Ranc C, Carlier M F. Role of ATP-bound divalent metal ion in the conformation and function of actin. Comparison of Mg-ATP, Ca-ATP, and metal ion-free ATP-actin. Journal of Biological Chemistry, 1991, 266(12): 7668-7675.
pmid: 2019592
[35] Liu L, Liu Y Q, Feng C, et al. Lithium-containing biomaterials stimulate bone marrow stromal cell-derived exosomal miR-130a secretion to promote angiogenesis. Biomaterials, 2019, 192: 523-536.
doi: S0142-9612(18)30784-1 pmid: 30529871
[36] Zhang F, Phiel C J, Spece L, et al. Inhibitory phosphorylation of glycogen synthase kinase-3 (GSK-3) in response to lithium: evidence for autoregulation of GSK-3. Journal of Biological Chemistry, 2003, 278(35): 33067-33077.
doi: 10.1074/jbc.M212635200 pmid: 12796505
[37] Clevers H. Wnt/β-catenin signaling in development and disease. Cell, 2006, 127(3): 469-480.
doi: 10.1016/j.cell.2006.10.018 pmid: 17081971
[38] Mousa M, Milan J A, Kelly O, et al. The role of lithium in the osteogenic bioactivity of clay nanoparticles. Biomaterials Science, 2021, 9(8): 3150-3161.
doi: 10.1039/d0bm01444c pmid: 33730142
[39] Hoppe A, Güldal N S, Boccaccini A R. A review of the biological response to ionic dissolution products from bioactive glasses and glass-ceramics. Biomaterials, 2011, 32(11): 2757-2774.
doi: 10.1016/j.biomaterials.2011.01.004 pmid: 21292319
[40] Reffitt D M, Ogston N, Jugdaohsingh R, et al. Orthosilicic acid stimulates collagen type 1 synthesis and osteoblastic differentiation in human osteoblast-like cells in vitro. Bone, 2003, 32(2): 127-135.
doi: 10.1016/s8756-3282(02)00950-x pmid: 12633784
[41] Jankau J, Błažyńska-Spychalska A, Kubiak K, et al. Bacterial cellulose properties fulfilling requirements for a biomaterial of choice in reconstructive surgery and wound healing. Frontiers in Bioengineering and Biotechnology, 2022, 9: 805053.
[42] Ghadiri M, Chrzanowski W, Rohanizadeh R. Antibiotic eluting clay mineral (Laponite®) for wound healing application: an in vitro study. Journal of Materials Science: Materials in Medicine, 2014, 25(11): 2513-2526.
doi: 10.1007/s10856-014-5272-7 pmid: 25027303
[43] Dai Z B, Zhang Y H, Chen C, et al. An antifouling and antimicrobial zwitterionic nanocomposite hydrogel dressing for enhanced wound healing. ACS Biomaterials Science & Engineering, 2021, 7(4): 1621-1630.
[44] Lin X J, Li Y M, Luo W, et al. Leucine-activated nanohybrid biofilm for skin regeneration via improving cell affinity and neovascularization capacity. Journal of Materials Chemistry B, 2020, 8(35): 7966-7976.
doi: 10.1039/d0tb00958j pmid: 32756660
[45] Ji J Y, Ren D Y, Weng Y Z. Efficiency of multifunctional antibacterial hydrogels for chronic wound healing in diabetes: a comprehensive review. International Journal of Nanomedicine, 2022, 17: 3163-3176.
doi: 10.2147/IJN.S363827
[46] Huang J T, Chang L C, Cheng C S, et al. Cytotoxicity produced by silicate nanoplatelets: study of cell death mechanisms. Toxins, 2020, 12(10): 623.
doi: 10.3390/toxins12100623
[47] Ghadiri M, Chrzanowski W, Lee W H, et al. Layered silicate clay functionalized with amino acids: wound healing application. RSC Advances, 2014, 4(67): 35332-35343.
doi: 10.1039/C4RA05216A
[48] Koehler J, Brandl F P, Goepferich A M. Hydrogel wound dressings for bioactive treatment of acute and chronic wounds. European Polymer Journal, 2018, 100: 1-11.
doi: 10.1016/j.eurpolymj.2017.12.046
[49] Golafshan N, Rezahasani R, Esfahani M T, et al. Nanohybrid hydrogels of laponite: PVA-Alginate as a potential wound healing material. Carbohydrate Polymers, 2017, 176: 392-401.
doi: S0144-8617(17)30946-3 pmid: 28927623
[50] Huang K T, Fang Y L, Hsieh P S, et al. Zwitterionic nanocomposite hydrogels as effective wound dressings. Journal of Materials Chemistry B, 2016, 4(23): 4206-4215.
doi: 10.1039/C6TB00302H
[51] Tomás H, Alves C S, Rodrigues J. Laponite ® : a key nanoplatform for biomedical applications. Nanomedicine: Nanotechnology, Biology and Medicine, 2018, 14(7): 2407-2420.
[52] Gaharwar A K, Mihaila S M, Swami A, et al. Bioactive silicate nanoplatelets for osteogenic differentiation of human mesenchymal stem cells. Advanced Materials, 2013, 25(24): 3329-3336.
doi: 10.1002/adma.201300584
[53] Mihaila S M, Gaharwar A K, Reis R L, et al. The osteogenic differentiation of SSEA-4 sub-population of human adipose derived stem cells using silicate nanoplatelets. Biomaterials, 2014, 35(33): 9087-9099.
doi: 10.1016/j.biomaterials.2014.07.052 pmid: 25123923
[54] Li T, Liu Z L, Xiao M, et al. Impact of bone marrow mesenchymal stem cell immunomodulation on the osteogenic effects of laponite. Stem Cell Research & Therapy, 2018, 9(1): 100.
[55] Wang C S, Wang S G, Li K, et al. Preparation of laponite bioceramics for potential bone tissue engineering applications. PLoS One, 2014, 9(6): e99585.
doi: 10.1371/journal.pone.0099585
[56] Cidonio G, Alcala-Orozco C R, Lim K S, et al. Osteogenic and angiogenic tissue formation in high fidelity nanocomposite laponite-gelatin bioinks. Biofabrication, 2019, 11(3): 035027.
doi: 10.1088/1758-5090/ab19fd
[57] Zandi N, Sani E S, Mostafavi E, et al. Nanoengineered shear-thinning and bioprintable hydrogel as a versatile platform for biomedical applications. Biomaterials, 2021, 267: 120476.
doi: 10.1016/j.biomaterials.2020.120476
[58] Dong L L, Bu Z H, Xiong Y Z, et al. Facile extrusion 3D printing of gelatine methacrylate/laponite nanocomposite hydrogel with high concentration nanoclay for bone tissue regeneration. International Journal of Biological Macromolecules, 2021, 188: 72-81.
doi: 10.1016/j.ijbiomac.2021.07.199 pmid: 34364938
[59] Chen T Y, Ou S F, Chien H W. Biomimetic mineralization of tannic acid-supplemented HEMA/SBMA nanocomposite hydrogels. Polymers, 2021, 13(11): 1697.
doi: 10.3390/polym13111697
[60] Cidonio G, Cooke M, Glinka M, et al. Printing bone in a gel: using nanocomposite bioink to print functionalised bone scaffolds. Materials Today Bio, 2019, 4: 100028.
doi: 10.1016/j.mtbio.2019.100028
[61] Zhai X Y, Ruan C S, Ma Y F, et al. 3D-bioprinted osteoblast-laden nanocomposite hydrogel constructs with induced microenvironments promote cell viability, differentiation, and osteogenesis both in vitro and in vivo. Advanced Science, 2018, 5(3): 1700550.
doi: 10.1002/advs.201700550
[62] Xu X C, Zhuo J, Xiao L, et al. Nanosilicate-functionalized polycaprolactone orchestrates osteogenesis and osteoblast-induced multicellular interactions for potential endogenous vascularized bone regeneration. Macromolecular Bioscience, 2022, 22(2): e2100265.
[63] Xu X C, Xiao L, Xu Y M, et al. Vascularized bone regeneration accelerated by 3D-printed nanosilicate-functionalized polycaprolactone scaffold. Regenerative Biomaterials, 2021, 8(6): rbab061.
doi: 10.1093/rb/rbab061
[64] Zheng X, Zhang X R, Wang Y T, et al. Hypoxia-mimicking 3D bioglass-nanoclay scaffolds promote endogenous bone regeneration. Bioactive Materials, 2021, 6(10): 3485-3495.
doi: 10.1016/j.bioactmat.2021.03.011 pmid: 33817422
[65] Zhang Y H, Chen M J, Dai Z B, et al. Sustained protein therapeutics enabled by self-healing nanocomposite hydrogels for non-invasive bone regeneration. Biomaterials Science, 2020, 8(2): 682-693.
doi: 10.1039/c9bm01455a pmid: 31776523
[66] O’Shea D G, Curtin C M, O’Brien F J. Articulation inspired by nature: a review of biomimetic and biologically active 3D printed scaffolds for cartilage tissue engineering. Biomaterials Science, 2022, 10(10): 2462-2483.
doi: 10.1039/D1BM01540K
[67] Thakur A, Jaiswal M K, Peak C W, et al. Injectable shear-thinning nanoengineered hydrogels for stem cell delivery. Nanoscale, 2016, 8(24): 12362-12372.
doi: 10.1039/c6nr02299e pmid: 27270567
[68] Boyer C, Figueiredo L, Pace R, et al. Laponite nanoparticle-associated silated hydroxypropylmethyl cellulose as an injectable reinforced interpenetrating network hydrogel for cartilage tissue engineering. Acta Biomaterialia, 2018, 65: 112-122.
doi: S1742-7061(17)30711-0 pmid: 29128532
[69] Zhang W, Zhang Y N, Zhang A N, et al. Enzymatically crosslinked silk-nanosilicate reinforced hydrogel with dual-lineage bioactivity for osteochondral tissue engineering. Materials Science and Engineering C, Materials for Biological Applications, 2021, 127: 112215.
doi: 10.1016/j.msec.2021.112215
[70] Nojoomi A, Tamjid E, Simchi A, et al. Injectable polyethylene glycol-laponite composite hydrogels as articular cartilage scaffolds with superior mechanical and rheological properties. International Journal of Polymeric Materials and Polymeric Biomaterials, 2017, 66(3): 105-114.
doi: 10.1080/00914037.2016.1182914
[71] Wu C J, Gaharwar A K, Chan B K, et al. Mechanically tough pluronic F127/laponite nanocomposite hydrogels from covalently and physically cross-linked networks. Macromolecules, 2011, 44(20): 8215-8224.
doi: 10.1021/ma200562k
[72] Kilian D, Cometta S, Bernhardt A, et al. Core-shell bioprinting as a strategy to apply differentiation factors in a spatially defined manner inside osteochondral tissue substitutes. Biofabrication, 2022, 14(6): 014108.
doi: 10.1088/1758-5090/ac457b
[73] 陈羽浓, 苏俭生. 层状纳米颗粒Laponite对成牙本质细胞矿化促进作用的研究. 牙体牙髓牙周病学杂志, 2018, 28(9): 497-503.
Chen Y N, Su J S. Experimental study on the biomineralization of odontoblast-lineage cells promoted by the nanoplatelet laponite. Chinese Journal of Conservative Dentistry, 2018, 28(9): 497-503.
[74] Zhang R T, Xie L, Wu H, et al. Alginate/Laponite hydrogel microspheres co-encapsulating dental pulp stem cells and VEGF for endodontic regeneration. Acta Biomaterialia, 2020, 113: 305-316.
doi: S1742-7061(20)30397-4 pmid: 32663663
[75] Shang L L, Liu Z Q, Ma B J, et al. Dimethyloxallyl glycine/nanosilicates-loaded osteogenic/angiogenic difunctional fibrous structure for functional periodontal tissue regeneration. Bioactive Materials, 2021, 6(4): 1175-1188.
doi: 10.1016/j.bioactmat.2020.10.010 pmid: 33163699
[76] Liu Z Q, Shang L L, Ge S H. Immunomodulatory effect of dimethyloxallyl glycine/nanosilicates-loaded fibrous structure on periodontal bone remodeling. Journal of Dental Sciences, 2021, 16(3): 937-947.
doi: 10.1016/j.jds.2020.10.008
[1] 杨喆,陈琪,郭伟,王晶,张一平,卢姗,于振行,沈建忠. 我国“干细胞及转化研究”重点专项的组织实施及思考[J]. 中国生物工程杂志, 2022, 42(9): 116-123.
[2] 赖爽,刘畅,刘春晖,刘聪,任小华,牟雁东. 牙源性干细胞复合微渠多孔羟基磷灰石支架成骨性能研究*[J]. 中国生物工程杂志, 2022, 42(8): 13-20.
[3] 郑颖,邓诗碧,陈方. 干细胞与再生医学技术发展态势研究[J]. 中国生物工程杂志, 2022, 42(4): 111-119.
[4] 邓嘉强, 李韦瑶, 钟丽君, 余树民. 自噬与间充质干细胞衰老的关系研究进展[J]. 中国生物工程杂志, 2022, 42(3): 55-61.
[5] 钱昱,丁晓雨,刘志强,袁增强. 基因修饰人多能干细胞的高效单克隆建系方法[J]. 中国生物工程杂志, 2021, 41(8): 33-41.
[6] 李开秀,司维. 间充质干细胞来源的外泌体治疗炎症性肠病研究进展*[J]. 中国生物工程杂志, 2021, 41(7): 66-73.
[7] 王宇轩,陈婷,张永亮. MiR-148生物学功能研究进展*[J]. 中国生物工程杂志, 2021, 41(7): 74-80.
[8] 赵久梅,王哲,李学英. 调控软骨形成的信号通路及相关因子在骨髓间充质干细胞骨向分化中的作用*[J]. 中国生物工程杂志, 2021, 41(10): 62-72.
[9] 陈飞,王晓冰,徐增辉,钱其军. 干细胞改善糖尿病的分子机制及临床研究进展[J]. 中国生物工程杂志, 2020, 40(7): 59-69.
[10] 戴奇男,张景红. 肿瘤多药耐药与自噬、DNA修复和肿瘤干细胞相关的分子机制研究进展 *[J]. 中国生物工程杂志, 2020, 40(4): 69-77.
[11] 苑亚坤,刘广洋,刘拥军,谢亚芳,吴昊. 间充质干细胞基础研究与临床转化的中美比较[J]. 中国生物工程杂志, 2020, 40(4): 97-107.
[12] 杨丹,田海山,李校堃. 成纤维细胞生长因子5的研究进展 *[J]. 中国生物工程杂志, 2020, 40(3): 117-124.
[13] 李玉,张晓. 日本细胞治疗监管双轨制的经验及启示 *[J]. 中国生物工程杂志, 2020, 40(1-2): 174-179.
[14] 陈利军,屈晶晶,项春生. 间充质干细胞在2019新型冠状病毒肺炎(COVID-19)中的治疗潜能、临床研究与应用前景*[J]. 中国生物工程杂志, 2020, 40(11): 43-55.
[15] 邱丹丹,陆彩霞,代解杰. 诱导多能干细胞来源的肝细胞在HCV感染模型中的应用*[J]. 中国生物工程杂志, 2020, 40(11): 67-72.