Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2022, Vol. 42 Issue (9): 105-115    DOI: 10.13523/j.cb.2205046
综述     
细胞表面展示技术在环境修复方面的研究进展*
黄明珠1,2,姚坤2,宋卓琳2,张豪2,刘斌2,陈雪岚1,2,**()
1.国家淡水鱼加工技术研发专业中心 南昌 330022
2.江西师范大学生命科学学院 南昌 330022
Advances in Cell Surface Display Technology in Environmental Remediation
HUANG Ming-zhu1,2,YAO Kun2,SONG Zhuo-lin2,ZHANG Hao2,LIU Bin2,CHEN Xue-lan1,2,**()
1. National R&D Center for Freshwater Fish Processing, Nanchang 330022, China
2. College of Life Sciences, Jiangxi Normal University, Nanchang 330022, China
 全文: PDF(1297 KB)   HTML
摘要:

人类社会工业化导致各种有毒物质被排放到环境中造成严重的污染。除了自然降解外,传统的处理方法包括化学转化、物理吸附、离子交换和电化学方法等,但存在二次污染、能源需求高、投资成本高、再生效率低、低浓度废水处理效率低等缺点。细胞表面展示技术是一种通过表面锚定蛋白在细胞表面连接功能肽的新型、高效的生物技术。与细胞内和分泌物表达系统相比,微生物表面展示的蛋白质对有机溶剂、蛋白酶、温度和pH的变化表现出更强的稳定性。通过细胞培养就可以获得固定在细胞表面的蛋白酶,避免了蛋白质纯化、浓缩等繁琐的程序。此外,细胞表面展示技术是良好的单细胞水平突变体文库高通量筛选平台。综述细胞表面展示技术在环境生物修复方面的研究进展,重点介绍该技术的应用和未来发展前景。

关键词: 生物修复生物吸附细胞表面展示全细胞催化微生物    
Abstract:

Industrialization has led to various toxic compounds emission, which causes environmental contamination. Aside from natural geological weathering, traditional solutions include chemical conversion, physical absorption, electrochemical methods and ions exchange, but their applications are limited due to some disadvantages, such as secondary pollution, high energy requirement, high investment cost, low regeneration efficiency and inefficiency in low-concentration wastewater treatment. Cell surface engineering is an innovative, cost-effective biotechnology of microorganism for modification of cell surface function through joining external functional peptides with surface anchoring proteins. In contrast to conventional intracellular and secretion expression systems, proteins displayed on the surface of microorganism may exhibit enhanced stability against changes in organic solvents, proteases, temperature and pH. Surface-engineered cells prepared by cultivation are ready to be used as microparticles covered with proteins/peptides, avoiding troublesome concentration procedures and protein purification. Furthermore, cell-surface display engineering is suitable for high throughput screening from the mutant library for more capable proteins/peptides at the single-cell level. Currently, this technology is widely used in the control of environmental pollution. This review is focused on recent strategies of using cell-surface display technology in environmental bioremediation, summarizing its applications, recent progress and future prospects.

Key words: Bioremediation    Biosorption    Cell surface display    Whole cell biocatalyst    Microorganism
收稿日期: 2022-05-23 出版日期: 2022-10-10
ZTFLH:  Q813  
基金资助: * 国家自然科学基金(31960014);国家自然科学基金(31660019);江西省自然科学基金(20202ACBL205001);江西省教育厅科技项目(GJJ210321)
通讯作者: 陈雪岚     E-mail: xuelanchen162@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
黄明珠
姚坤
宋卓琳
张豪
刘斌
陈雪岚

引用本文:

黄明珠,姚坤,宋卓琳,张豪,刘斌,陈雪岚. 细胞表面展示技术在环境修复方面的研究进展*[J]. 中国生物工程杂志, 2022, 42(9): 105-115.

HUANG Ming-zhu,YAO Kun,SONG Zhuo-lin,ZHANG Hao,LIU Bin,CHEN Xue-lan. Advances in Cell Surface Display Technology in Environmental Remediation. China Biotechnology, 2022, 42(9): 105-115.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.2205046        https://manu60.magtech.com.cn/biotech/CN/Y2022/V42/I9/105

图1  细胞表面展示系统[5]
图2  合成细菌-MNP协同组装吸附重金属的路线[21]
图3  通过温度控制进行Cu2+的生物检测和生物修复的技术路线[24]
图4  Hg2+生物修复和生物控制系统[25]
物种 展示蛋白/肽 锚定蛋白 目的 参考文献
E. coli PbrR/PbrR691/PbrD 冰核蛋白 吸附铅 [11]
E. coli CysLysCysLysCysLysCys 冰核蛋白 吸附汞 [12]
E. coli ThrAsnThrLeuSerAsnAsn OmpCt 吸附铅 [13]
E. coli AsnAlaLysHisHisProArg AsnArgTrpHisHisLeuGlu
SerProHisHisGlyGlyTrp
OmpCt 吸附铜 [14]
D. radiodurans SmtA/PhoN Hpi、SlpA 吸附镉、铀 [15]
S. cerevisiae CadR α-凝集素 吸附镉 [16]
S. cerevisiae SMT2a/SMT2c/SMT2d/SMT2e α-凝集素 吸附镉 [17]
B. subtilis 18His CotB 吸附镍 [19]
B. subtilis 12His CotE 吸附镍、镉 [20]
E. coli SynHMB OmpA 吸附镉、铅 [21]
E. coli 锌指结构 OmpC [23]
E. coli CueR Lpp-OmpA 吸附铜 [24]
E. coli MBP 冰核蛋白 吸附汞 [25]
E. coli PET酶 YeeJ 降解PET [31]
P. pastoris PET酶 GPI锚定序列 降解PET [5]
P. putida 有机磷水解酶 冰核蛋白 降解有机磷农药 [32]
B. subtilis OpaA/Opdcb CotG 降解有机磷农药 [33]
E. coli 甲基对硫磷水解酶 EcFbFP 降解有机磷农药 [34]
E. coli CarCB2 冰核蛋白 降解三氟氯氰菊酯 [35]
Stenotrophomonas sp. 胺甲萘水解酶 冰核蛋白 降解胺甲萘 [36]
S. cerevisiae 漆酶 Aga1-Aga2 多种染料脱色 [39]
物种 展示蛋白/肽 锚定蛋白 目的 参考文献
B. thuringiensis WlacD MBG RB19脱色 [40]
S. cerevisiae VP Aga1-Aga2 降解偶氮染料 [41]
S. cerevisiae LiP Aga1-Aga2 降解偶氮染料 [42]
B. subtilis TMR/GDH CotG 降解三苯基甲烷染料 [43]
E. coli CarEW 冰核蛋白 降解邻苯二甲酸酯 [46]
E. coli EstG OprF 降解邻苯二甲酸二丁酯 [48]
E. coli ASTB OprF/Lpp-OmpA 双酚A解毒 [49]
S. cerevisiae 漆酶 Aga1-Aga2 双酚A/磺胺甲恶唑解毒 [7]
B. subtilis 腈水解酶 CotG 降解腈类化合物 [52]
S. cerevisiae 漆酶 Aga2 APAP降解 [54]
E. coli Omega-transaminase AIDA-I 黏附蓝藻 [57]
表1  近年在环境修复中应用的细胞表面展示系统
[1] 徐明, 阚海东, 桑楠, 等. 持久性有毒污染物环境健康研究的现状与思考. 中国科学院院刊, 2020, 35(11): 1337-1343.
Xu M, Kan H D, Sang N, et al. Current status and thinking of environmental health research on persistent toxic pollutants. Bulletin of Chinese Academy of Sciences, 2020, 35(11): 1337-1343.
[2] Shi L, Yin Y, Zhang L C, et al. Design and engineering heterojunctions for the photoelectrochemical monitoring of environmental pollutants: a review. Applied Catalysis B: Environmental, 2019, 248: 405-422.
doi: 10.1016/j.apcatb.2019.02.044
[3] Tanaka T, Kondo A. Cell surface engineering of industrial microorganisms for biorefining applications. Biotechnology Advances, 2015, 33(7): 1403-1411.
doi: 10.1016/j.biotechadv.2015.06.002 pmid: 26070720
[4] Yang T, Chen M L, Wang J H. Genetic and chemical modification of cells for selective separation and analysis of heavy metals of biological or environmental significance. TrAC Trends in Analytical Chemistry, 2015, 66: 90-102.
doi: 10.1016/j.trac.2014.11.016
[5] Chen Z Z, Wang Y Y, Cheng Y Y, et al. Efficient biodegradation of highly crystallized polyethylene terephthalate through cell surface display of bacterial PETase. Science of the Total Environment, 2020, 709: 136138.
doi: 10.1016/j.scitotenv.2019.136138
[6] Liu Z, Ho S H, Hasunuma T, et al. Recent advances in yeast cell-surface display technologies for waste biorefineries. Bioresource Technology, 2016, 215: 324-333.
doi: S0960-8524(16)30435-7 pmid: 27039354
[7] Chen Y Y, Stemple B, Kumar M, et al. Cell surface display fungal laccase as a renewable biocatalyst for degradation of persistent micropollutants bisphenol A and sulfamethoxazole. Environmental Science & Technology, 2016, 50(16): 8799-8808.
doi: 10.1021/acs.est.6b01641
[8] Yin K, Lv M, Wang Q N, et al. Simultaneous bioremediation and biodetection of mercury ion through surface display of carboxylesterase E2 from Pseudomonas aeruginosa PA1. Water Research, 2016, 103: 383-390.
doi: 10.1016/j.watres.2016.07.053
[9] Wang Y Y, Selvamani V, Yoo I K, et al. A novel strategy for the microbial removal of heavy metals: cell-surface display of peptides. Biotechnology and Bioprocess Engineering, 2021, 26(1): 1-9.
doi: 10.1007/s12257-020-0218-z
[10] Ueda M. Establishment of cell surface engineering and its development. Bioscience, Biotechnology and Biochemistry, 2016, 80(7): 1243-1253.
doi: 10.1080/09168451.2016.1153953
[11] Jia X Q, Li Y, Xu T, et al. Display of lead-binding proteins on Escherichia coli surface for lead bioremediation. Biotechnology and Bioengineering, 2020, 117(12): 3820-3834.
doi: 10.1002/bit.27525
[12] Nguyen T T L, Lee H R, Hong S H, et al. Selective lead adsorption by recombinant Escherichia coli displaying a lead-binding peptide. Applied Biochemistry and Biotechnology, 2013, 169(4): 1188-1196.
doi: 10.1007/s12010-012-0073-2
[13] Liu M R, Kakade A, Liu P, et al. Hg2+-binding peptide decreases mercury ion accumulation in fish through a cell surface display system. Science of the Total Environment, 2019, 659: 540-547.
doi: 10.1016/j.scitotenv.2018.12.406
[14] Maruthamuthu M K, Nadarajan S P, Ganesh I, et al. Construction of a high efficiency copper adsorption bacterial system via peptide display and its application on copper dye polluted wastewater. Bioprocess and Biosystems Engineering, 2015, 38(11): 2077-2084.
doi: 10.1007/s00449-015-1447-y pmid: 26219270
[15] Misra C S, Sounderajan S, Apte S K. Metal removal by metallothionein and an acid phosphatase PhoN, surface-displayed on the cells of the extremophile, Deinococcus radiodurans. Journal of Hazardous Materials, 2021, 419: 126477.
doi: 10.1016/j.jhazmat.2021.126477
[16] Tao H C, Li P S, Liu Q S, et al. Surface-engineered Saccharomyces cerevisiae cells displaying redesigned CadR for enhancement of adsorption of cadmium (II). Journal of Chemical Technology & Biotechnology, 2016, 91(6): 1889-1895.
[17] Wei Q G, Zhang H H, Guo D G, et al. Cell surface display of four types of Solanum nigrum metallothionein on Saccharomyces cerevisiae for biosorption of cadmium. Journal of Microbiology and Biotechnology, 2016, 26(5): 846-853.
doi: 10.4014/jmb.1512.12041
[18] Li H, Dong W, Liu Y, et al. Enhanced biosorption of nickel ions on immobilized surface-engineered yeast using nickel-binding peptides. Frontiers in Microbiology, 2019, 10: 1254.
doi: 10.3389/fmicb.2019.01254 pmid: 31297097
[19] Hinc K, Ghandili S, Karbalaee G, et al. Efficient binding of nickel ions to recombinant Bacillus subtilis spores. Research in Microbiology, 2010, 161(9): 757-764.
doi: 10.1016/j.resmic.2010.07.008
[20] Kim W, Kim D, Back S, et al. Removal of Ni2+ and Cd2+ by surface display of polyhistidine on Bacillus subtilis spore using CotE anchor protein. Biotechnology and Bioprocess Engineering, 2019, 24(2): 375-381.
doi: 10.1007/s12257-018-0467-2
[21] Zhu N L, Zhang B, Yu Q L. Genetic engineering-facilitated coassembly of synthetic bacterial cells and magnetic nanoparticles for efficient heavy metal removal. ACS Applied Materials & Interfaces, 2020, 12(20): 22948-22957.
[22] Santos-Zavaleta A, Salgado H, Gama-Castro S, et al. RegulonDB v 10.5: tackling challenges to unify classic and high throughput knowledge of gene regulation in E. coli K-12. Nucleic Acids Research, 2019, 47(D1): D212-D220.
doi: 10.1093/nar/gky1077
[23] Ravikumar S, Yoo I K, Lee S Y, et al. A study on the dynamics of the zraP gene expression profile and its application to the construction of zinc adsorption bacteria. Bioprocess and Biosystems Engineering, 2011, 34(9): 1119-1126.
doi: 10.1007/s00449-011-0562-7
[24] Wang W, Jiang F Y, Wu F, et al. Biodetection and bioremediation of copper ions in environmental water samples using a temperature-controlled, dual-functional Escherichia coli cell. Applied Microbiology and Biotechnology, 2019, 103(16): 6797-6807.
doi: 10.1007/s00253-019-09984-9 pmid: 31240366
[25] Xue Y B, Du P, Ibrahim Shendi A A, et al. Mercury bioremediation in aquatic environment by genetically modified bacteria with self-controlled biosecurity circuit. Journal of Cleaner Production, 2022, 337: 130524.
doi: 10.1016/j.jclepro.2022.130524
[26] Carr C M, Clarke D J, Dobson A D W. Microbial polyethylene terephthalate hydrolases: current and future perspectives. Frontiers in Microbiology, 2020, 11: 571265.
doi: 10.3389/fmicb.2020.571265
[27] 黄逸伦, 张师军, 吴长江. 废旧PET回收循环利用方法的研究进展. 现代塑料加工应用, 2021, 33(3): 52-55.
Huang Y L, Zhang S J, Wu C J. Research progress on recycling methods of waste PET. Modern Plastics Processing and Applications, 2021, 33(3): 52-55.
[28] 赵彧瑾, 陈仔君, 赵晶晶, 等. 聚对苯二甲酸乙二醇酯(PET)降解酶的研究进展. 微生物学杂志, 2021, 41(6): 90-96.
Zhao Y J, Chen Z J, Zhao J J, et al. Advanced in degradation enzyme of polyethylene terephthalate (PET). Journal of Microbiology, 2021, 41(6): 90-96.
[29] Son H F, Cho I J, Joo S, et al. Rational protein engineering of thermo-stable PETase from Ideonella sakaiensis for highly efficient PET degradation. ACS Catalysis, 2019, 9(4): 3519-3526.
doi: 10.1021/acscatal.9b00568
[30] Heyde S A H, Bååth J A, Westh P, et al. Surface display as a functional screening platform for detecting enzymes active on PET. Microbial Cell Factories, 2021, 20(1): 93.
doi: 10.1186/s12934-021-01582-7 pmid: 33933097
[31] Gercke D, Furtmann C, Tozakidis I E P, et al. Highly crystalline post-consumer PET waste hydrolysis by surface displayed using a bacterial whole-cell biocatalyst. ChemCatChem, 2021, 13(15): 3479-3489.
doi: 10.1002/cctc.202100443
[32] 张红星, 李茜茜, 叶婷, 等. 细胞表面展示有机磷水解酶的恶臭假单胞菌工程菌的构建及全细胞酶活性分析. 华中农业大学学报, 2008, 27(1): 65-70.
Zhang H X, Li Q Q, Ye T, et al. Construction and whole-cell catalytic activity analysis of engineered Pseudomonas putida with cell-surface displayed organophosphorus hydrolase. Journal of Huazhong Agricultural University, 2008, 27(1): 65-70.
[33] Song T Y, Wang F L, Xiong S S, et al. Surface display of organophosphorus-degrading enzymes on the recombinant spore of Bacillus subtilis. Biochemical and Biophysical Research Communications, 2019, 510(1): 13-19.
doi: 10.1016/j.bbrc.2018.12.077
[34] Bian L, Zhang Z, Tang R X, et al. Flavin-based fluorescent protein EcFbFP auto-guided surface display of methyl parathion hydrolase in Escherichia coli. Molecular Biotechnology, 2019, 61(11): 816-825.
doi: 10.1007/s12033-019-00204-3 pmid: 31486973
[35] Ding J M, Liu Y, Gao Y X, et al. Biodegradation of λ-cyhalothrin through cell surface display of bacterial carboxylesterase. Chemosphere, 2022, 289: 133130.
doi: 10.1016/j.chemosphere.2021.133130
[36] Yang C, Xu X Q, Liu Y P, et al. Simultaneous hydrolysis of carbaryl and chlorpyrifos by Stenotrophomonas sp. strain YC-1 with surface-displayed carbaryl hydrolase. Scientific Reports, 2017, 7: 13391.
doi: 10.1038/s41598-017-13788-0
[37] Liu J, Tan L M, Wang J, et al. Complete biodegradation of chlorpyrifos by engineered Pseudomonas putida cells expressing surface-immobilized laccases. Chemosphere, 2016, 157: 200-207.
doi: 10.1016/j.chemosphere.2016.05.031
[38] Forgacs E, Cserháti T, Oros G. Removal of synthetic dyes from wastewaters: a review. Environment International, 2004, 30(7): 953-971.
pmid: 15196844
[39] Popović N, Pržulj D, Mladenović M, et al. Immobilization of yeast cell walls with surface displayed laccase from Streptomyces cyaneus within dopamine-alginate beads for dye decolorization. International Journal of Biological Macromolecules, 2021, 181: 1072-1080.
doi: 10.1016/j.ijbiomac.2021.04.115
[40] Wan J, Sun X W, Liu C, et al. Decolorization of textile dye RB 19 using volcanic rock matrix immobilized Bacillus thuringiensis cells with surface displayed laccase. World Journal of Microbiology & Biotechnology, 2017, 33(6): 123.
doi: 10.1007/s11274-017-2290-x
[41] Ilić Ðurđić K, Ostafe R, Ðurđević Delmaš A, et al. Saturation mutagenesis to improve the degradation of azo dyes by versatile peroxidase and application in form of VP-coated yeast cell walls. Enzyme and Microbial Technology, 2020, 136: 109509.
doi: 10.1016/j.enzmictec.2020.109509
[42] Ilić Ðurđić K, Ostafe R, Prodanović O, et al. Improved degradation of azo dyes by lignin peroxidase following mutagenesis at two sites near the catalytic pocket and the application of peroxidase-coated yeast cell walls. Frontiers of Environmental Science & Engineering, 2021, 15(2): 19.
[43] Gao F, Ding H T, Xu X H, et al. A self-sufficient system for removal of synthetic dye by coupling of spore-displayed triphenylmethane reductase and glucose 1-dehydrogenase. Environmental Science and Pollution Research International, 2016, 23(21): 21319-21326.
pmid: 27502455
[44] Yang X, Flowers R C, Weinberg H S, et al. Occurrence and removal of pharmaceuticals and personal care products (PPCPs) in an advanced wastewater reclamation plant. Water Research, 2011, 45(16): 5218-5228.
doi: 10.1016/j.watres.2011.07.026 pmid: 21864879
[45] Petrie B, Barden R, Kasprzyk-Hordern B. A review on emerging contaminants in wastewaters and the environment: current knowledge, understudied areas and recommendations for future monitoring. Water Research, 2015, 72: 3-27.
doi: 10.1016/j.watres.2014.08.053 pmid: 25267363
[46] Ding J M, Zhou Y, Wang C F, et al. Development of a whole-cell biocatalyst for diisobutyl phthalate degradation by functional display of a carboxylesterase on the surface of Escherichia coli. Microbial Cell Factories, 2020, 19(1): 114.
doi: 10.1186/s12934-020-01373-6
[47] Whangsuk W, Sungkeeree P, Nakasiri M, et al. Two endocrine disrupting dibutyl phthalate degrading esterases and their compensatory gene expression in Sphingobium sp. SM42. International Biodeterioration & Biodegradation, 2015, 99: 45-54.
[48] Sungkeeree P, Whangsuk W, Dubbs J, et al. Biodegradation of endocrine disrupting dibutyl phthalate by a bacterial consortium expressing Sphingobium sp. SM42 esterase. Process Biochemistry, 2016, 51(8): 1040-1045.
doi: 10.1016/j.procbio.2016.04.014
[49] Nanudorn P, Thiengmag S, Whangsuk W, et al. Potential use of two aryl sulfotransferase cell-surface display systems to detoxify the endocrine disruptor bisphenol A. Biochemical and Biophysical Research Communications, 2020, 528(4): 691-697.
doi: S0006-291X(20)31058-5 pmid: 32513533
[50] Banerjee A, Sharma R, Banerjee U C. The nitrile-degrading enzymes: current status and future prospects. Applied Microbiology and Biotechnology, 2002, 60(1-2): 33-44.
pmid: 12382040
[51] Martinkova L, Mylerova V. Synthetic applications of nitrile-converting enzymes. Current Organic Chemistry, 2003, 7(13): 1279-1295.
doi: 10.2174/1385272033486486
[52] Chen H Y, Zhang T X, Sun T Y, et al. Clostridium thermocellum nitrilase expression and surface display on Bacillus subtilis spores. Journal of Molecular Microbiology and Biotechnology, 2015, 25(6): 381-387.
[53] Wu S J, Zhang L L, Chen J M. Paracetamol in the environment and its degradation by microorganisms. Applied Microbiology and Biotechnology, 2012, 96(4): 875-884.
doi: 10.1007/s00253-012-4414-4 pmid: 23053075
[54] Wu Y, Chen Y Y, Wei N. Biocatalytic properties of cell surface display laccase for degradation of emerging contaminant acetaminophen in water reclamation. Biotechnology and Bioengineering, 2020, 117(2): 342-353.
doi: 10.1002/bit.27214 pmid: 31654417
[55] Mongkolthanaruk W, Dharmsthiti S. Biodegradation of lipid-rich wastewater by a mixed bacterial consortium. International Biodeterioration & Biodegradation, 2002, 50(2): 101-105.
[56] Thiengmag S, Chuencharoen S, Thasana N, et al. Bacterial consortium expressing surface displayed, intra- and extracellular lipases and pseudopyronine B for the degradation of oil. International Journal of Environmental Science and Technology, 2016, 13(8): 2067-2078.
doi: 10.1007/s13762-016-1034-z
[57] Gustavsson M, Muraleedharan M N, Larsson G. Surface expression of ω-transaminase in Escherichia coli. Applied and Environmental Microbiology, 2014, 80(7): 2293-2298.
doi: 10.1128/AEM.03678-13 pmid: 24487538
[58] 向红英, 王菊芳, 杨愈丰, 等. 细菌表面展示技术研究新进展. 生物化学与生物物理进展, 2019, 46(2): 162-168.
Xiang H Y, Wang J F, Yang Y F, et al. The research progress of bacterial surface display technology. Progress in Biochemistry and Biophysics, 2019, 46(2): 162-168.
[59] Kroukamp H, den Haan R, van Wyk N, et al. Overexpression of native PSE1 and SOD1 in Saccharomyces cerevisiae improved heterologous cellulase secretion. Applied Energy, 2013, 102: 150-156.
doi: 10.1016/j.apenergy.2012.05.062
[1] 贾男,臧国伟,李春,王颖. 辅因子在微生物细胞工厂中的代谢调控与应用*[J]. 中国生物工程杂志, 2022, 42(7): 79-89.
[2] 高倩,王博,江洪. 国家自然科学基金资助微生物组研究的现状与效果分析*[J]. 中国生物工程杂志, 2022, 42(6): 130-135.
[3] 白松,侯正杰,高庚荣,乔斌,程景胜. 微生物合成奇数链脂肪酸研究进展*[J]. 中国生物工程杂志, 2022, 42(6): 76-85.
[4] 李雪,孟庆雄. 肠道微生物对寿命的影响及其机制*[J]. 中国生物工程杂志, 2022, 42(4): 49-57.
[5] 马春兰,李金花,白雨凡,魏云林. 重金属胁迫下的细菌适应性进化研究进展*[J]. 中国生物工程杂志, 2022, 42(1/2): 182-190.
[6] 李然,闫晓光,李伟国,梁冬梅,财音青格乐,乔建军. 高效合成倍半萜酿酒酵母的构建策略*[J]. 中国生物工程杂志, 2022, 42(1/2): 14-25.
[7] 陈亚超,李楠楠,刘子迪,胡冰,李春. 源于甘草内生菌的甘草酸合成相关功能基因的宏基因组挖掘*[J]. 中国生物工程杂志, 2021, 41(9): 37-47.
[8] 孙瑶,乔梦伟,刘诗宇,宫殿良,宋金柱. 乳杆菌对致病假单胞菌的抑制作用研究进展*[J]. 中国生物工程杂志, 2021, 41(8): 103-109.
[9] 马巧妮,王萌,朱兴全. 重组酶介导扩增技术及其在病原微生物快速检测中的应用进展*[J]. 中国生物工程杂志, 2021, 41(6): 45-49.
[10] 邵映芝,车鉴,程驰,江志阳,薛闯. 分子生物学方法提高电活性微生物胞外电子传递效率的研究进展*[J]. 中国生物工程杂志, 2021, 41(6): 50-59.
[11] 吴弘轩, 杨金花, 沈培杰, 李清晨, 黄建忠, 祁峰. 利用大肠杆菌细胞工厂生产吲哚-3-乙酸的研究 *[J]. 中国生物工程杂志, 2021, 41(1): 12-19.
[12] 吕雪芹, 金柯, 刘家恒, 崔世修, 李江华, 堵国成, 刘龙. 工业模式微生物膜有序性的活细胞定量分析 *[J]. 中国生物工程杂志, 2021, 41(1): 20-29.
[13] 郭二鹏, 张建志, 司同. 羊毛硫肽的高通量工程改造方法新进展 *[J]. 中国生物工程杂志, 2021, 41(1): 30-41.
[14] 常璐, 黄娇芳, 董浩, 周斌辉, 朱小娟, 庄英萍. 合成生物学改造微生物及生物被膜用于重金属污染检测与修复 *[J]. 中国生物工程杂志, 2021, 41(1): 62-71.
[15] 高小朋,何猛超,许可,李春. 工业微生物发酵过程中pH调控研究进展 *[J]. 中国生物工程杂志, 2020, 40(6): 93-99.