Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2022, Vol. 42 Issue (9): 50-57    DOI: 10.13523/j.cb.2204057
综述     
分子即时检测(POCT)技术及其在新发传染病中的应用*
郭彦彤1,2,刘仲明1,张海燕1,**(),张宝2,**()
1.中国人民解放军南部战区总医院 广州 510010
2.南方医科大学公共卫生学院 广东省热带病研究重点实验室BSL-3实验室(广东) 广州 510515
Molecular Diagnostic POCT Technology and Its Application in Emerging Infectious Diseases
GUO Yan-tong1,2,LIU Zhong-ming1,ZHANG Hai-yan1,**(),ZHANG Bao2,**()
1. PLA Southern Theater Command General Hospital, Guangzhou 510010, China
2. BSL-3 Laboratory(Guangdong), Guangdong Provincial Key Laboratory of Tropical Disease Research,School of Public Health, Southern Medical University, Guangzhou 510515, China
 全文: PDF(2186 KB)   HTML
摘要:

分子即时检测(point-of-care testing,POCT)技术具有灵敏度高、分析速度快、体积小、检测成本低廉等特点,在分子诊断领域受到广泛关注。近年来,分子POCT技术的发展与应用在应对新发、突发传染病,保护人类生命健康方面具有重大意义。介绍近五年来新兴的分子POCT技术,总结新兴分子POCT技术的最新研究进展及应用前景,分析POCT技术的优势与面临的挑战,探讨提高其检测灵敏度和选择性的技术策略。

关键词: POCT分子诊断新发传染病生物安全    
Abstract:

The development and application of molecular point-of-care (POCT) technology has been noticed in recent years because of its high sensitivity, fast analysis speed, small size, and low detection cost. The development and application of molecular POCT technology is of great significance for protecting human life and health and coping with the threat of emerging and sudden infectious diseases. In this paper, several emerging molecular POCT technologies in the past five years, focusing on describing the latest research progress, and their application prospects were introduced. The advantages and challenges of molecular POCT were discussed, as well as the technical strategies to improve its detection sensitivity and selectivity.

Key words: Point-of-care testing (POCT)    Molecular diagnostics    Emerging infectious diseases    Biosafety
收稿日期: 2022-04-22 出版日期: 2022-10-10
ZTFLH:  R446  
基金资助: * 军队生物安全研究专项(19SWAQ24);军队实验动物专项(SYDW[2020]18)
通讯作者: 张海燕,张宝     E-mail: zhanghaiyan1998@126.com;zhang20051005@126.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
郭彦彤
刘仲明
张海燕
张宝

引用本文:

郭彦彤,刘仲明,张海燕,张宝. 分子即时检测(POCT)技术及其在新发传染病中的应用*[J]. 中国生物工程杂志, 2022, 42(9): 50-57.

GUO Yan-tong,LIU Zhong-ming,ZHANG Hai-yan,ZHANG Bao. Molecular Diagnostic POCT Technology and Its Application in Emerging Infectious Diseases. China Biotechnology, 2022, 42(9): 50-57.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.2204057        https://manu60.magtech.com.cn/biotech/CN/Y2022/V42/I9/50

图1  i-Genbox的原理[9]
图2  基于纸质BPE的ECL miRNA-155检测生物传感器的制备[16]
图3  可穿戴设备的分层组装[21]
图4  用于埃博拉病毒检测的自动化CRISPR微流体芯片[24]
图5  过滤辅助磁流体血液-PCR反应[25]
设备 种类 制造商 病原体 评价 来源
GeneXpert 微型PCR仪 Cepheid SARS-CoV-2 敏感度与特异度均为100%,检出限为250 copies/mL,反应耗时120 min [31]
FilmArray® RP2.1 微型PCR仪 BioFire SARS-CoV-2 与RT-qPCR的检测结果一致性很高,检出限为50 copies/mL,反应耗时60 min [32]
AGS8830 微型PCR仪 杭州安誉 SARS-CoV-2 无需核酸提取,检出限为500 copies/mL,反应耗时40 min [33]
Cobas Liat 气压式微流体设备 Roche SARS-CoV-2 与RT-qPCR的检测结果一致性为98.6%,反应耗时20 min [34]
GenePOC Carba 微流体设备 Meridian Bioscience 产碳青霉烯酶
的肠杆菌
无需核酸提取,总敏感度为100%,高于XpertCarba-R的96.4%, 反应耗时70 min [35]
ID NOW INAA设备 Abbott SARS-CoV-2 与RT-qPCR相比敏感度为85.1%,特异度为99.7%,阳性预测值和阴性预测值分别为88.5%和99.6%,反应耗时5~13 min [36]
Alere i INAA设备 Alere 甲流/乙流病毒 与多重RT-PCR相比,甲/乙流敏感度为97.7% 和96.3%,特异度均为100%,耗时15 min [37]
表1  用于病原体检测的商业分子POCT设备
技术名称 检测对象 样品用量
/μL
评价 来源
基于智能手机的RT-LAMP反应POCT SARS-CoV-2 RNA 20 免核酸提取,反应耗时30 min,测试结果与传统RT-PCR仪结果一致 [38]
基于智能手机的超级三明治电化学生物传感器(纳米金颗粒标记的捕获探针+Au@SCX8-RGO-TB纳米材料) SARS-CoV-2 RNA 10 需要核酸提取,实现了对各种临床咽拭子样本中SARS-CoV-2样本的灵敏、准确、快速检测,阳性检出率为88.2%,而RT-qPCR法为70.59% [39]
基于3D打印的便携POCT仪器 ZIKV RNA 100 RNA自动提取由3D打印机完成,整个ZIKV检测在27~30 min内完成 [40]
基于LAMP的手驱动微流体芯片 沙门氏菌DNA 2 一种手指驱动DNA提取,荧光成像肉眼可视,快速便捷的POCT检测平台 [41]
基于LAMP的微流体芯片 疱疹病毒DNA 200 需要DNA提取,反应耗时30 min左右 [42]
转化纳米粒子的侧向流动检测(upconversion nanoparticle-based lateral flowassays, UCNP-LFAs) 乙肝病毒DNA 200 需要核酸提取,智能手机作为阅读器,检测核酸的荧光强度低于金标准 [43]
柔性纳米株电化学传感器 沙门氏菌DNA 200 针对食源性疾病病原体,需核酸提取,提供便携、低成本、可靠的POCT检测平台 [44]
基于智能手机平台LFA检测 SARS-CoV-2 RNA 140 免RNA提取,智能手机进行控制、数据处理与分析 [45]
基于LAMP的纳米放大比色法 SARS-CoV-2 RNA 4 免RNA提取,检测的准确性、敏感度和特异度分别大于98.4%、96.6%和100% [46]
螺旋环介导等温扩增(helical loop mediated isothermal amplification,HAMP) MERS RNA 2 需RNA提取,反应耗时75 min,采用羟基纳普特霍尔蓝(hydroxy naphthol blue,HNB)作为染色指标进行视觉分析 [47]
逆转录绝热等温PCR 登革热病毒 RNA 5 需核酸提取,一种快速、特异、灵敏的POCT检测系统,可用于登革热病毒感染的常规诊断 [48]
重组酶聚合酶扩增反应 EBOV RNA 10 检测耗时20 min,以PT-PCR为金标准,检测EBOV的敏感度为97%,特异度为97% [49]
表2  分子POCT诊断在新发传染病中的应用实例
[1] Zarei M. Advances in point-of-care technologies for molecular diagnostics. Biosensors and Bioelectronics, 2017, 98: 494-506.
doi: S0956-5663(17)30473-6 pmid: 28728010
[2] Wang Y, Yu L, Kong X, et al. Application of nanodiagnostics in point-of-care tests for infectious diseases. Int J Nanomedicine, 2017, 12: 4789-4803.
doi: 10.2147/IJN.S137338
[3] Moerner W E, Shechtman Y, Wang Q. Single-molecule spectroscopy and imaging over the decades. Faraday Discussions, 2015, 184: 9-36.
doi: 10.1039/c5fd00149h pmid: 26616210
[4] Heo J H, Cho H H, Lee J W, et al. Achromatic-chromatic colorimetric sensors for on-off type detection of analytes. The Analyst, 2014, 139(24): 6486-6493.
doi: 10.1039/C4AN01645A
[5] Bahadır E B, Sezgintürk M K. Electrochemical biosensors for hormone analyses. Biosensors and Bioelectronics, 2015, 68: 62-71.
doi: S0956-5663(14)01008-2 pmid: 25558874
[6] Liu J J, Geng Z X, Fan Z Y, et al. Point-of-care testing based on smartphone: the current state-of-the-art (2017-2018). Biosensors and Bioelectronics, 2019, 132: 17-37.
doi: S0956-5663(19)30132-0 pmid: 30851493
[7] Geng Z X, Zhang X, Fan Z Y, et al. Recent progress in optical biosensors based on smartphone platforms. Sensors (Basel, Switzerland), 2017, 17(11): 2449.
doi: 10.3390/s17112449
[8] Hutchison J R, Erikson R L, Sheen A M, et al. Reagent-free and portable detection of Bacillus anthracis spores using a microfluidic incubator and smartphone microscope. The Analyst, 2015, 140(18): 6269-6276.
doi: 10.1039/C5AN01304F
[9] Nguyen H Q, Nguyen V D, van Nguyen H, et al. Quantification of colorimetric isothermal amplification on the smartphone and its open-source app for point-of-care pathogen detection. Scientific Reports, 2020, 10: 15123.
doi: 10.1038/s41598-020-72095-3 pmid: 32934342
[10] Oh S J, Park B H, Choi G, et al. Fully automated and colorimetric foodborne pathogen detection on an integrated centrifugal microfluidic device. Lab on a Chip, 2016, 16(10): 1917-1926.
doi: 10.1039/c6lc00326e pmid: 27112702
[11] Nguyen H V, Nguyen V D, Lee E Y, et al. Point-of-care genetic analysis for multiplex pathogenic bacteria on a fully integrated centrifugal microdevice with a large-volume sample. Biosensors and Bioelectronics, 2019, 136: 132-139.
doi: S0956-5663(19)30326-4 pmid: 31078871
[12] Xu H, Xia A Y, Wang D D, et al. An ultraportable and versatile point-of-care DNA testing platform. Science Advances, 2020, 6(17): eaaz7445.
doi: 10.1126/sciadv.aaz7445
[13] Pollock N R, Rolland J P, Kumar S, et al. A paper-based multiplexed transaminase test for low-cost, point-of-care liver function testing. Science Translational Medicine, 2012, 4(152): 152ra129.
[14] Mandal N, Dutta S, Gupta A, et al. Paper-based sensors for point-of-care kidney function monitoring. IEEE Sensors Journal, 2020, 20(17): 9644-9651.
doi: 10.1109/JSEN.2020.2990231
[15] Chan C W, Parker K, Tesic V, et al. Analytical and clinical evaluation of the automated elecsys anti-SARS-CoV-2 antibody assay on the Roche cobas e602 analyzer. American Journal of Clinical Pathology, 2020, 154(5): 620-626.
doi: 10.1093/ajcp/aqaa155 pmid: 32814955
[16] Wang F F, Fu C P, Huang C, et al. Paper-based closed Au-Bipolar electrode electrochemiluminescence sensing platform for the detection of miRNA-155. Biosensors & Bioelectronics, 2020, 150: 111917.
doi: 10.1016/j.bios.2019.111917
[17] Dincer C, Bruch R, Kling A, et al. Multiplexed point-of-care testing - xPOCT. Trends in Biotechnology, 2017, 35(8): 728-742.
doi: S0167-7799(17)30062-8 pmid: 28456344
[18] Kumar S, Rai P, Sharma J G, et al. PEDOT: PSS/PVA-nanofibers-decorated conducting paper for cancer diagnostics. Advanced Materials Technologies, 2016, 1(4): 1600056.
doi: 10.1002/admt.201600056
[19] Tur-García E L, Davis F, Collyer S D, et al. Novel flexible enzyme laminate-based sensor for analysis of lactate in sweat. Sensors and Actuators B: Chemical, 2017, 242: 502-510.
doi: 10.1016/j.snb.2016.11.040
[20] Dossi N, Toniolo R, Impellizzieri F, et al. A paper-based platform with a pencil-drawn dual amperometric detector for the rapid quantification of ortho-diphenols in extravirgin olive oil. Analytica Chimica Acta, 2017, 950: 41-48.
doi: S0003-2670(16)31322-8 pmid: 27916128
[21] Nguyen P Q, Soenksen L R, Donghia N M, et al. Wearable materials with embedded synthetic biology sensors for biomolecule detection. Nature Biotechnology, 2021, 39(11): 1366-1374.
doi: 10.1038/s41587-021-00950-3 pmid: 34183860
[22] Zhu H L, Fohlerová Z, Pekárek J, et al. Recent advances in lab-on-a-chip technologies for viral diagnosis. Biosensors and Bioelectronics, 2020, 153: 112041.
doi: 10.1016/j.bios.2020.112041
[23] Sinha M, Mack H, Coleman T P, et al. A high-resolution digital DNA melting platform for robust sequence profiling and enhanced genotype discrimination. SLAS Technology, 2018, 23(6): 580-591.
doi: 10.1177/2472630318769846 pmid: 29652558
[24] Qin P W, Park M, Alfson K J, et al. Rapid and fully microfluidic Ebola virus detection with CRISPR-Cas13a. ACS Sensors, 2019, 4(4): 1048-1054.
doi: 10.1021/acssensors.9b00239 pmid: 30860365
[25] Srisomwat C, Teengam P, Chuaypen N, et al. Pop-up paper electrochemical device for label-free hepatitis B virus DNA detection. Sensors and Actuators B: Chemical, 2020, 316: 128077.
doi: 10.1016/j.snb.2020.128077
[26] Trick A Y, Ngo H T, Nambiar A H, et al. Filtration-assisted magnetofluidic cartridge platform for HIV RNA detection from blood. Lab on a Chip, 2022, 22(5): 945-953.
doi: 10.1039/d1lc00820j pmid: 35088790
[27] Shan C, Xie X P, Barrett A D T, et al. Zika virus: diagnosis, therapeutics, and vaccine. ACS Infectious Diseases, 2016, 2(3): 170-172.
doi: 10.1021/acsinfecdis.6b00030 pmid: 27623030
[28] Kost G J. Molecular and point-of-care diagnostics for Ebola and new threats: national POCT policy and guidelines will stop epidemics. Expert Review of Molecular Diagnostics, 2018, 18(7): 657-673.
doi: 10.1080/14737159.2018.1491793 pmid: 29933717
[29] Pang J X, Chia P Y, Lye D C, et al. Progress and challenges towards point-of-care diagnostic development for dengue. Journal of Clinical Microbiology, 2017, 55(12): 3339-3349.
doi: 10.1128/JCM.00707-17 pmid: 28904181
[30] Wang C, Liu M, Wang Z F, et al. Point-of-care diagnostics for infectious diseases: from methods to devices. Nano Today, 2021, 37: 101092.
doi: 10.1016/j.nantod.2021.101092
[31] Tsang H F, Leung W M S, Chan L W C, et al. Performance comparison of the Cobas® Liat® and Cepheid® GeneXpert® systems on SARS-CoV-2 detection in nasopharyngeal swab and posterior oropharyngeal saliva. Expert Review of Molecular Diagnostics, 2021, 21(5): 515-518.
doi: 10.1080/14737159.2021.1919513
[32] Cassidy H, van Genne M, Lizarazo-Forero E, et al. Evaluation of the QIAstat-Dx RP2.0 and the BioFire FilmArray RP2.1 for the rapid detection of respiratory pathogens including SARS-CoV-2. Frontiers in Microbiology, 2022, 13: 854209.
doi: 10.3389/fmicb.2022.854209
[33] 何维芝, 许彬, 蒋立. 不同提取及扩增方法检测新型冠状病毒核酸的性能比较分析. 华南预防医学, 2022, 48(1): 135-138.
He W Z, Xu B, Jiang L. Comparative analysis of the performance of different extraction and amplification methods for the detection of nucleic acids of SARS-CoV-2. South China Journal of Preventive Medicine, 2022, 48(1): 135-138.
[34] Hansen G, Marino J, Wang Z X, et al. Clinical performance of the point-of-care cobas liat for detection of SARS-CoV-2 in 20 minutes: a multicenter study. Journal of Clinical Microbiology, 2021, 59(2): e02811-e02820.
[35] Lucena Baeza L, Pfennigwerth N, Hamprecht A. Rapid and easy detection of carbapenemases in enterobacterales in the routine laboratory using the new GenePOC carba/revogene carba C assay. Journal of Clinical Microbiology, 2019, 57(9): e00597-e00519.
[36] Ramachandran A, Noble J, Deucher A, et al. Performance of Abbott ID-Now rapid nucleic amplification test for laboratory identification of COVID-19 in asymptomatic emergency department patients. Journal of the American College of Emergency Physicians Open, 2021, 2(6): e12592.
[37] Kim H N, Jang W S, Nam J, et al. Performance evaluation of Alere i influenza A&B in detecting influenza viruses A and B. Annals of Clinical and Laboratory Science, 2021, 51(1): 106-111.
[38] Ganguli A, Mostafa A, Berger J, et al. Rapid isothermal amplification and portable detection system for SARS-CoV-2. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(37): 22727-22735.
[39] Zhao H, Liu F, Xie W, et al. Ultrasensitive supersandwich-type electrochemical sensor for SARS-CoV-2 from the infected COVID-19 patients using a smartphone. Sensors and Actuators B: Chemical, 2021, 327: 128899.
doi: 10.1016/j.snb.2020.128899
[40] Chan K, Weaver S C, Wong P Y, et al. Rapid, affordable and portable medium-throughput molecular device for Zika virus. Scientific Reports, 2016, 6: 38223.
doi: 10.1038/srep38223 pmid: 27934884
[41] Chen P, Chen C, Su H Y, et al. Integrated and finger-actuated microfluidic chip for point-of-care testing of multiple pathogens. Talanta, 2021, 224: 121844.
doi: 10.1016/j.talanta.2020.121844
[42] Sun F, Ganguli A, Nguyen J, et al. Smartphone-based multiplex 30-minute nucleic acid test of live virus from nasal swab extract. Lab on a Chip, 2020, 20(9): 1621-1627.
doi: 10.1039/d0lc00304b pmid: 32334422
[43] Gong Y, Zheng Y M, Jin B R, et al. A portable and universal upconversion nanoparticle-based lateral flow assay platform for point-of-care testing. Talanta, 2019, 201: 126-133.
doi: S0039-9140(19)30373-X pmid: 31122402
[44] Park Y M, Lim S Y, Jeong S W, et al. Flexible nanopillar-based electrochemical sensors for genetic detection of foodborne pathogens. Nano Convergence, 2018, 5: 15.
doi: 10.1186/s40580-018-0147-0 pmid: 29904621
[45] Azmi I, Faizan M I, Kumar R, et al. A saliva-based RNA extraction-free workflow integrated with Cas13a for SARS-CoV-2 detection. Frontiers in Cellular and Infection Microbiology, 2021, 11: 632646.
doi: 10.3389/fcimb.2021.632646
[46] Alafeef M, Moitra P, Dighe K, et al. RNA-extraction-free nano-amplified colorimetric test for point-of-care clinical diagnosis of COVID-19. Nature Protocols, 2021, 16(6): 3141-3162.
doi: 10.1038/s41596-021-00546-w pmid: 33931780
[47] Mao R, Qi L F, Wang Z, et al. Helix loop-mediated isothermal amplification of nucleic acids. RSC Advances, 2018, 8(34): 19098-19102.
doi: 10.1039/C8RA01201F
[48] Go Y Y, Rajapakse R P V J, Kularatne S A M, et al. A pan-dengue virus reverse transcription-insulated isothermal PCR assay intended for point-of-need diagnosis of dengue virus infection by use of the POCKIT nucleic acid analyzer. Journal of Clinical Microbiology, 2016, 54(6): 1528-1535.
doi: 10.1128/JCM.00225-16 pmid: 27030492
[49] Yang M J, Ke Y H, Wang X S, et al. Development and evaluation of a rapid and sensitive EBOV-RPA test for rapid diagnosis of Ebola virus disease. Scientific Reports, 2016, 6: 26943.
doi: 10.1038/srep26943 pmid: 27246147
[50] Priye A, Wong S, Bi Y P, et al. Lab-on-a-drone: toward pinpoint deployment of smartphone-enabled nucleic acid-based diagnostics for mobile health care. Analytical Chemistry, 2016, 88(9): 4651-4660.
doi: 10.1021/acs.analchem.5b04153 pmid: 26898247
[51] Guo M Z, Gao B B, He B F. Paper and pseudo-paper based flexible membrane devices. Chinese Science Bulletin, 2020, 65(23): 2454-2468.
[52] Chiang C K, Kurniawan A, Kao C Y, et al. Single step and mask-free 3D wax printing of microfluidic paper-based analytical devices for glucose and nitrite assays. Talanta, 2019, 194: 837-845.
doi: 10.1016/j.talanta.2018.10.104
[53] Augustine R, Hasan A, Das S, et al. Loop-mediated isothermal amplification (LAMP): a rapid, sensitive, specific, and cost-effective point-of-care test for coronaviruses in the context of COVID-19 pandemic. Biology, 2020, 9(8): 182.
doi: 10.3390/biology9080182
[54] Zhang J Q, Nfon C, Tsai C F, et al. Development and evaluation of a real-time RT-PCR and a field-deployable RT-insulated isothermal PCR for the detection of Seneca Valley virus. BMC Veterinary Research, 2019, 15(1): 168.
doi: 10.1186/s12917-019-1927-4 pmid: 31126297
[55] Miao G J, Zhang L L, Zhang J, et al. Free convective PCR: from principle study to commercial applications-A critical review. Analytica Chimica Acta, 2020, 1108: 177-197.
doi: S0003-2670(20)30138-0 pmid: 32222239
[56] Luo K, Kim H Y, Oh M H, et al. Paper-based lateral flow strip assay for the detection of foodborne pathogens: principles, applications, technological challenges and opportunities. Critical Reviews in Food Science and Nutrition, 2020, 60(1): 157-170.
doi: 10.1080/10408398.2018.1516623 pmid: 30311773
[57] Morbioli G G, Mazzu-Nascimento T, Stockton A M, et al. Technical aspects and challenges of colorimetric detection with microfluidic paper-based analytical devices (μPADs) - A review. Analytica Chimica Acta, 2017, 970: 1-22.
doi: S0003-2670(17)30348-3 pmid: 28433054
[1] 马丽丽,易盼盼,敖妮花,焦洪涛,雷瑞鹏,刘欢. 基于学科类别和富集分析的生物安全研究领域学科交叉研究*[J]. 中国生物工程杂志, 2021, 41(12): 116-124.
[2] 王小理. 生物安全时代:新生物科技变革与国家安全治理*[J]. 中国生物工程杂志, 2020, 40(9): 95-109.
[3] 杨宇, 刘雅, 谷岚, 赵婷婷, 任鲁风. 全自动核酸分子诊断系统的现状与发展[J]. 中国生物工程杂志, 2017, 37(3): 115-123.
[4] 逄金辉, 马彩云, 封勇丽, 胡瑞法. 转基因作物生物安全:科学证据[J]. 中国生物工程杂志, 2016, 36(1): 122-138.
[5] 梁高峰, 何向峰, 陈宝安. miRNA在肿瘤分子诊断和治疗中的研究进展[J]. 中国生物工程杂志, 2015, 35(9): 57-65.
[6] 康可人, 吴培钿, 李悦琳, 黄绮玲, 李高辉, 唐时幸, 王继华. 抗心型脂肪酸结合蛋白单克隆抗体制备、鉴定和在侧向免疫层析方法中的应用[J]. 中国生物工程杂志, 2013, 33(1): 72-78.
[7] 贾会勇,田佳,李培青,李杰. DHDPS突变基因作为转基因植物筛选标记的研究[J]. 中国生物工程杂志, 2009, 29(05): 61-65.
[8] 刘魁,郭磊,黄晶晶,杨柯. AZ31B镁合金植入小鼠的生物相容性考察[J]. 中国生物工程杂志, 2008, 28(3): 59-63.
[9] 郁卫东, 梁蓉, 杨丽君, 关菁, 李国华, 郭静竹. 人类21号染色体转录调节相关基因作为早期分子诊断标记物的可行性研究[J]. 中国生物工程杂志, 2005, 25(7): 66-70.
[10] 张霞, 陈中义, 张杰, 宋水山, 李国勋. 遗传重组微生物的环境监测[J]. 中国生物工程杂志, 2005, 25(3): 12-16.
[11] 闫峰. 美国与欧盟的转基因食品贸易争端及我国的发展对策[J]. 中国生物工程杂志, 2004, 24(11): 93-95.
[12] 李永春, 孟凡荣. 提高转基因作物生物安全性的分子策略[J]. 中国生物工程杂志, 2003, 23(9): 30-33.
[13] 全先庆, 曹扬荣, 赵彦修, 张慧. 转基因林木研究进展[J]. 中国生物工程杂志, 2003, 23(7): 47-51.
[14] 王紫萱, 易自力. 卡那霉素在植物转基因中的应用及其抗性基因的生物安全性评价[J]. 中国生物工程杂志, 2003, 23(6): 9-13.
[15] 王兴春, 杨长登. 转基因植物生物安全标记基因[J]. 中国生物工程杂志, 2003, 23(4): 19-22.