Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2022, Vol. 42 Issue (9): 17-26    DOI: 10.13523/j.cb.2204041
研究报告     
盐穗木金属硫蛋白HcMT的体外自由基清除活性及抗氧化能力*
刘阳,彭翠,吴彦辰,邓夕莞,毛新芳,刘忠渊**()
四川轻化工大学化学工程学院 自贡 643000
Free Radical Scavenging Activity and Antioxidant Capacity of Metallothionein HcMT from Halostachys caspica in vitro
LIU Yang,PENG Cui,WU Yan-chen,DENG Xi-wan,MAO Xin-fang,LIU Zhong-yuan**()
College of Chemical Engineering, Sichuan University of Science & Engineering, Zigong 643000, China
 全文: PDF(962 KB)   HTML
摘要:

目的: 原核表达盐穗木(Halostachys caspica C. A. Mey.)金属硫蛋白HcMT并探究其抗氧化活性。方法: 构建原核表达载体pET-32a-HcMT,转化至大肠杆菌Escherichia coli BL21,加入Zn2+胁迫培养(终浓度为200 μmol/L),分离纯化得到Zn-HcMT,测定Zn-HcMT自由基清除活性和总抗氧化能力,制备复合物Zn-HcMT/TiO2并做FTIR表征。结果: 通过原核表达获得融合蛋白Zn-HcMT,对·OH、O2·-、DPPH自由基具有较强的清除活性,对·OH、O2·-的IC50分别为0.386 mg/mL、0.038 mg/mL。融合蛋白浓度为0.01 mg/mL时,对DPPH清除率达(37.43 ± 0.006 8)%,浓度为0.3mg/mL时TEAC(trolox-equivalent antioxidant capacity)值为(1.023 ± 0.01)mmol/L,融合蛋白还原力A700为0.142 ± 0.055,FTIR图谱同时表现了Zn-HcMT和TiO2吸收特性。结论: Zn-HcMT具有良好的清除ROS活性及较强的抗氧化能力,在化妆品领域有潜在应用前景。

关键词: 盐穗木金属硫蛋白原核表达自由基功能活性防晒霜    
Abstract:

Objective: To express metallothionein HcMT of Halostachys caspica in prokaryotic cells and explore its antioxidant activity, so as to lay a foundation for its application in the field of cosmetics. Methods: the prokaryotic expression vector pET-32a-HcMT was constructed, transformed into Escherichia coli BL21, cultured under Zn2+ stress (the final concentration was 200 μmol/L), separated and purified to obtain Zn-HcMT, and its free radical scavenging activity and total antioxidant capacity were measured. The complex Zn-HcMT/TiO2 was prepared and characterized by FTIR. Results: The fusion protein Zn-HcMT was obtained by prokaryotic expression. It had strong scavenging activity for ·OH,O2·- and DPPH free radicals. The IC50 of ·OH and O2·-were 0.386 mg/mL, 0.038 mg/mL, respectively. The DPPH clearance rate of 0.01 mg/mL fusion protein was (37.43 ± 0.006 8)%, the TEAC value of 0.3mg/mL fusion protein was (1.023 ± 0.01)mmol/L, and the reducing power of 0.3 mg/mL fusion protein A700 was 0.142 ± 0.055. FTIR spectra showed the absorption characteristics of Zn-HcMT and TiO2 at the same time. Conclusion: Zn-HcMT has a good ROS scavenging activity and strong antioxidant capacity. It has great application potential in the field of cosmetics.

Key words: Halostachys caspica metallothionein    Prokaryotic expression    Free radical    Functional activity    Sunscreen cream
收稿日期: 2022-04-19 出版日期: 2022-10-10
ZTFLH:  Q819  
基金资助: * 四川省“千人计划”(E90112);四川省应用基础研究(2019YJ0459)
通讯作者: 刘忠渊     E-mail: lzy1168@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
刘阳
彭翠
吴彦辰
邓夕莞
毛新芳
刘忠渊

引用本文:

刘阳,彭翠,吴彦辰,邓夕莞,毛新芳,刘忠渊. 盐穗木金属硫蛋白HcMT的体外自由基清除活性及抗氧化能力*[J]. 中国生物工程杂志, 2022, 42(9): 17-26.

LIU Yang,PENG Cui,WU Yan-chen,DENG Xi-wan,MAO Xin-fang,LIU Zhong-yuan. Free Radical Scavenging Activity and Antioxidant Capacity of Metallothionein HcMT from Halostachys caspica in vitro. China Biotechnology, 2022, 42(9): 17-26.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.2204041        https://manu60.magtech.com.cn/biotech/CN/Y2022/V42/I9/17

图1  重组蛋白Zn-HcMT的表达
图2  重组蛋白Zn-HcMT的纯化
图3  Zn-HcMT对羟自由基的清除率
图4  不同蛋白质对邻苯三酚自氧化速率抑制曲线
图5  Zn-HcMT对超氧自由基清除率
图6  DPPH清除率曲线
图7  不同浓度的样品还原力曲线
图8  不同浓度样品的总抗氧化能力曲线
图9  Zn-HcMT/TiO2复合材料的FTIR光谱
No Observed
frequency /cm
Peak assignment Visible Founctional group
intensity
1 3 396.02 O-H Stretching Strong Phenols
2 3 233.96 N-H Stretching Strong Benzenering
3 2 985.10 C-H Stretching Medium Alkanes
4 2 596.10 S-H Stretching Medium Sulfhydryl group
5 1 630.98 C=O Bond Strong Amines
6 1 551.94 C=C Stretching Strong Phenols
7 1 396.29 C-N Stretching Strong Alipahtic amines
8 1 297.51 C-O Stretching Strong Secondary alcohol
9 1 042.85 C-N Stretching Strong Alipahtic amines
10 597.93 Ti-O-Ti Stretching Strong Mental oxide
表1  Zn-HcMT/TiO2复合材料的FTIR图谱分析
[1] SAEED-UR-RAHMAN, Khalid M, Hui N, et al. Diversity and versatile functions of metallothioneins produced by plants: a review. Pedosphere, 2020, 30(5): 577-588.
doi: 10.1016/S1002-0160(20)60022-4
[2] 樊威, 焦晓磊, 苏建, 等. 金属硫蛋白调控及重金属解毒功能研究进展. 农业与技术, 2020, 40(1): 7-9.
Fan W, Jiao X L, Su J, et al. Research progress of metallothionein regulation and heavy metal detoxification. Agriculture and Technology, 2020, 40(1): 7-9.
[3] 于颖敏. 金属硫蛋白的结构、性能和应用. 中国石油大学胜利学院学报, 2006, 20(4): 22-24.
Yu Y M. Structure, properties and applications of metallothionein. Journal of Shengli College China University of Petroleum, 2006, 20(4): 22-24.
[4] Maarman G J. Pulmonary arterial hypertension and the potential roles of metallothioneins: a focused review. Life Sciences, 2018, 214: 77-83.
doi: S0024-3205(18)30664-7 pmid: 30355531
[5] Merlos Rodrigo M A, Jimenez Jimemez A M, Haddad Y, et al. Metallothionein isoforms as double agents - Their roles in carcinogenesis, cancer progression and chemoresistance. Drug Resistance Updates, 2020, 52: 100691.
doi: 10.1016/j.drup.2020.100691
[6] Swindell W R. Metallothionein and the biology of aging. Ageing Research Reviews, 2011, 10(1): 132-145.
doi: 10.1016/j.arr.2010.09.007 pmid: 20933613
[7] Samuel M S, Datta S, Khandge R S, et al. A state of the art review on characterization of heavy metal binding metallothioneins proteins and their widespread applications. Science of the Total Environment, 2021, 775: 145829.
doi: 10.1016/j.scitotenv.2021.145829
[8] Mackay E A, Overnell J, Dunbar B, et al. Complete amino acid sequences of five dimeric and four monomeric forms of metallothionein from the edible mussel Mytilus edulis. European Journal of Biochemistry, 1993, 218(1): 183-194.
pmid: 8243463
[9] 吕新芳, 毛伟腾, 滑朝阳, 等. 海洋无脊椎动物金属硫蛋白研究进展. 海洋通报, 2015, 34(3): 241-246.
Lv X F, Mao W T, Hua Z Y, et al. A review on the research of metallothionein in marine invertebrates. Marine Science Bulletin, 2015, 34(3): 241-246.
[10] 徐炳政, 王颖, 张东杰, 等. 酵母源金属硫蛋白体外清除自由基及抑菌活性的研究. 食品工业科技, 2014, 35(21): 111-114.
Xu B Z, Wang Y, Zhang D J, et al. Study on scavenging free radical and antibacterial activities in vitro of metallothioneins from yeast. Science and Technology of Food Industry, 2014, 35(21): 111-114.
[11] Meng C Y, Wang K W, Zhang X J, et al. Purification, secondary structure and antioxidant activity of metallothionein zinc-binding proteins from Arca subcrenata. Protein Expression and Purification, 2021, 182: 105838.
doi: 10.1016/j.pep.2021.105838
[12] Li H, Malyar R M, Zhai N H, et al. Zinc supplementation alleviates OTA-induced oxidative stress and apoptosis in MDCK cells by up-regulating metallothioneins. Life Sciences, 2019, 234: 116735.
doi: 10.1016/j.lfs.2019.116735
[13] Xue T T, Li X Z, Zhu W, et al. Cotton metallothionein GhMT3a, a reactive oxygen species scavenger, increased tolerance against abiotic stress in transgenic tobacco and yeast. Journal of Experimental Botany, 2009, 60(1): 339-349.
doi: 10.1093/jxb/ern291 pmid: 19033550
[14] Liu Z Y, Meng H E, Abdulla H, et al. Cloning and characterization of metallothionein gene (HcMT) from Halostachys caspica and its expression in E. coli. Gene, 2016, 585(2): 221-227.
doi: 10.1016/j.gene.2016.03.039
[15] Rashid M M, Simončič B, Tomšič B. Recent advances in TiO2-functionalized textile surfaces. Surfaces and Interfaces, 2021, 22: 100890.
doi: 10.1016/j.surfin.2020.100890
[16] Xu F. Review of analytical studies on TiO2 nanoparticles and particle aggregation, coagulation, flocculation, sedimentation, stabilization. Chemosphere, 2018, 212: 662-677.
doi: 10.1016/j.chemosphere.2018.08.108
[17] Lincho J, Gomes J, Kobylanski M, et al. TiO2 nanotube catalysts for parabens mixture degradation by photocatalysis and ozone-based technologies. Process Safety and Environmental Protection, 2021, 152: 601-613.
doi: 10.1016/j.psep.2021.06.044
[18] Tekin D, Birhan D, Kiziltas H. Thermal, photocatalytic, and antibacterial properties of calcinated nano-TiO2/polymer composites. Materials Chemistry and Physics, 2020, 251: 123067.
doi: 10.1016/j.matchemphys.2020.123067
[19] Bragaglia M, Cherubini V, Nanni F. PEEK-TiO2 composites with enhanced UV resistance. Composites Science and Technology, 2020, 199: 108365.
doi: 10.1016/j.compscitech.2020.108365
[20] Torbati T V, Javanbakht V. Fabrication of TiO2/Zn2TiO4/Ag nanocomposite for synergic effects of UV radiation protection and antibacterial activity in sunscreen. Colloids and Surfaces B: Biointerfaces, 2020, 187: 110652.
doi: 10.1016/j.colsurfb.2019.110652
[21] Gollavilli H, Hegde A R, Managuli R S, et al. Naringin nano-ethosomal novel sunscreen creams: development and performance evaluation. Colloids and Surfaces B: Biointerfaces, 2020, 193: 111122.
doi: 10.1016/j.colsurfb.2020.111122 pmid: 32498002
[22] Almutairi B, Ali D, Alyami N, et al. Tantalum doped TiO2 nanoparticles induced cytotoxicity and DNA damage through ROS generation in human neuroblastoma cells. Journal of King Saud University-Science, 2021, 33(6): 101546.
doi: 10.1016/j.jksus.2021.101546
[23] 包怡红, 盛和静. 山核桃蛋白多肽的制备及对羟自由基的清除作用. 食品科学, 2005, 26(9): 515-518.
Bao Y H, Sheng H J. Research on the technology of peptides derived from walnut protein and its effects on scavenging of hydroxyl radicals. Food Science, 2005, 26(9): 515-518.
[24] 中华人民共和国卫生部, 中国国家标准化管理委员会. 保健食品中超氧化物歧化酶(SOD)活性的测定: GB/T 5009.171—2003. 北京:中国标准出版社, 2004.
Ministry of Health of the People’s Republic of China, Standardization Administration of the People’s Republic of China. Determination of the action of superoxide dismutase in health foods:GB/T 5009.171-2003[S]. Beijing: Standards Press of China, 2004.
[25] 任薇, 包晓玮, 张志芳, 等. 沙棘多糖清除自由基及抗脂质过氧化作用研究. 食品工业科技, 2019, 40(8): 272-277.
Ren W, Bao X W, Zhang Z F, et al. Study on free radical scavenging and anti-lipid peroxidation of seabuckthorn polysaccharide. Science and Technology of Food Industry, 2019, 40(8): 272-277.
[26] 吴振, 李红, 罗杨, 等. 不同干燥方式对银耳多糖理化特性及抗氧化活性的影响. 食品科学, 2014, 35(13): 93-97.
Wu Z, Li H, Luo Y, et al. Effects of different drying methods on physio-chemical properties and antioxidant activities of polysaccharides extracted from Tremella fuciformis. Food Science, 2014, 35(13): 93-97.
[27] 程超. 麦冬果实蓝色素的抗氧化特性研究. 中国酿造, 2009, 28(4): 58-60.
Cheng C. Antioxidation acitivity of blue pigment from Ophiopgon japonicus (Thunb) Ker gawl. China Brewing, 2009, 28(4): 58-60.
[28] Sato M, Bremner I. Oxygen free radicals and metallothionein. Free Radical Biology and Medicine, 1993, 14(3): 325-337.
pmid: 8458590
[29] Qureshi S, Chandra S, Chopra D, et al. Nabumetone induced photogenotoxicity mechanism mediated by ROS generation under environmental UV radiation in human keratinocytes (HaCaT) cell line. Toxicology and Applied Pharmacology, 2021, 420: 115516.
doi: 10.1016/j.taap.2021.115516
[30] Daund V, Chalke S, Sherje A P, et al. ROS responsive mesoporous silica nanoparticles for smart drug delivery: a review. Journal of Drug Delivery Science and Technology, 2021, 64: 102599.
doi: 10.1016/j.jddst.2021.102599
[31] Haag F, Janicova A, Xu B, et al. Reduced phagocytosis, ROS production and enhanced apoptosis of leukocytes upon alcohol drinking in healthy volunteers. European Journal of Trauma and Emergency Surgery: Official Publication of the European Trauma Society, 2021. DOI: 10.1007/s00068-021-01643-x.
doi: 10.1007/s00068-021-01643-x
[32] Zhao Y N, Yu H, Zhou J M, et al. Malate circulation: linking chloroplast metabolism to mitochondrial ROS. Trends in Plant Science, 2020, 25(5): 446-454.
doi: S1360-1385(20)30027-3 pmid: 32304657
[33] Kan G F, Ju Y, Zhou Y, et al. Cloning and functional characterization of a novel metallothionein gene in Antarctic sea-ice yeast (Rhodotorula mucilaginosa). Journal of Basic Microbiology, 2019, 59(9): 879-889.
doi: 10.1002/jobm.201900240 pmid: 31339587
[34] Atif F, Kaur M, Yousuf S, et al. In vitro free radical scavenging activity of hepatic metallothionein induced in an Indian freshwater fish, Channa punctata Bloch. Chemico-Biological Interactions, 2006, 162(2): 172-180.
doi: 10.1016/j.cbi.2006.06.006
[35] Huang S S, Deng J S, Chen H J, et al. Antioxidant activities of two metallothionein-like proteins from sweet potato (Ipomoea batatas [L.] Lam. ‘Tainong 57’) storage roots and their synthesized peptides. Botanical Studies, 2014, 55(1): 64.
doi: 10.1186/s40529-014-0064-4
[36] Meir S, Kanner J, Akiri B, et al. Determination and involvement of aqueous reducing compounds in oxidative defense systems of various senescing leaves. Journal of Agricultural and Food Chemistry, 1995, 43(7): 1813-1819.
doi: 10.1021/jf00055a012
[37] Duarte-Gutiérrez J, Leyva-Carrillo L, Martínez-Téllez M A, et al. Cloning, expression, purification and biochemical characterization of recombinant metallothionein from the white shrimp Litopenaeus vannamei. Protein Expression and Purification, 2020, 166: 105511.
doi: 10.1016/j.pep.2019.105511
[38] Narayanan M, Vigneshwari P, Natarajan D, et al. Synthesis and characterization of TiO2 NPs by aqueous leaf extract of Coleus aromaticus and assess their antibacterial, larvicidal, and anticancer potential. Environmental Research, 2021, 200: 111335.
doi: 10.1016/j.envres.2021.111335
[1] 乔圣泰,王曼琦,徐慧妮. 番茄SlTpx原核表达蛋白的体外功能分析*[J]. 中国生物工程杂志, 2021, 41(8): 25-32.
[2] 张磊,唐永凯,李红霞,李建林,徐逾鑫,李迎宾,俞菊华. 促进原核表达蛋白可溶性的研究进展 *[J]. 中国生物工程杂志, 2021, 41(2/3): 138-149.
[3] 张潇航,李媛媛,贾敏晅,顾奇. 弹性蛋白样生物材料的制备及性质鉴定 *[J]. 中国生物工程杂志, 2020, 40(8): 33-40.
[4] 吕一凡,李更东,薛楠,吕国梁,时邵辉,王春生. LbCpf1基因的原核表达、纯化与体外切割检测 *[J]. 中国生物工程杂志, 2020, 40(8): 41-48.
[5] 李彤彤,宋彩玲,杨凯越,王文静,陈慧宇,刘明. 抗犬细小病毒VP2蛋白单链抗体的制备与中和活性研究 *[J]. 中国生物工程杂志, 2020, 40(4): 10-16.
[6] 陈秋利,杨丽超,李辉,温莎,李刚,何敏. 人Nek2蛋白原核表达纯化及其多克隆抗体制备 *[J]. 中国生物工程杂志, 2020, 40(3): 31-37.
[7] 杨隆兵,国果,马慧玲,李妍,赵欣宇,苏佩佩,张勇. 家蝇抗菌肽AMPs17蛋白原核表达条件的优化及其抗真菌活性检测 *[J]. 中国生物工程杂志, 2019, 39(4): 24-31.
[8] 李明英,王仁军,张帆,迟彦. β2糖蛋白Ⅰ第五结构域及其突变体、短肽片段的原核表达及活性分析 *[J]. 中国生物工程杂志, 2018, 38(8): 1-9.
[9] 陈远侨,龙定沛,豆晓雪,祁润,赵爱春. ELP30-tag蛋白纯化能力的原核表达研究[J]. 中国生物工程杂志, 2018, 38(2): 54-60.
[10] 何亚南,孙钰椋,任雅坤,梁盛英,杨芬,刘彦礼,林俊堂. 金黄色葡萄球菌类肠毒素K与GFP融合蛋白工程菌的构建及其表达蛋白生物学活性分析 *[J]. 中国生物工程杂志, 2018, 38(12): 14-20.
[11] 任建委,李军,李尚泽. 人源CT55蛋白原核表达及单克隆抗体的制备 *[J]. 中国生物工程杂志, 2018, 38(11): 1-8.
[12] 孙文佳, 姚宇峰, 杨旭, 黄惟巍, 刘存宝, 龙琼, 褚晓杰, 马雁冰. 乙肝核心抗原病毒样颗粒呈现HPV 16L1抗原表位及特异抗体诱导[J]. 中国生物工程杂志, 2017, 37(3): 58-64.
[13] 祖力皮也·吐尔逊, 曹春宝, 温浩, 丁剑冰, 德力夏提·依米提. 细粒棘球蚴EgG1Y162基因进化分析、表达及鉴定[J]. 中国生物工程杂志, 2016, 36(4): 78-87.
[14] 周亮, 叶浩, 周瓅, 关文, 李京敬, 郜尽, 韩伟, 俞雁. 人CXCL4蛋白原核表达与纯化[J]. 中国生物工程杂志, 2016, 36(1): 7-13.
[15] 黄健, 黄美容, 朱杰华, 骆诗露, 闵迅. 肺炎链球菌SP0306蛋白的表达纯化及结晶研究[J]. 中国生物工程杂志, 2015, 35(6): 21-25.