Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2022, Vol. 42 Issue (8): 99-108    DOI: 10.13523/j.cb.2204036
综述     
果胶甲酯酶抑制蛋白(PMEIs)的功能性研究进展
熊媛,任襄襄,朱慧,任昕宜,潘子阳,苏涛*()
南京林业大学生物与环境学院 南方现代林业协同创新中心 南京 210037
Recent Progress in the Functional Research of PMEIs
XIONG Yuan,REN Xiang-xiang,ZHU Hui,REN Xin-yi,PAN Zi-yang,SU Tao*()
Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
 全文: PDF(2388 KB)   HTML
摘要:

细胞壁是一种复杂的动态网络结构,在植物生长发育、胁迫应答和免疫抗性过程中起着重要的调控和防御作用。果胶(pectin)是细胞初生壁结构中多糖的主要成分之一;其中,同型半乳糖醛酸聚糖(HG)是果胶多糖组分中含量最丰富的线性聚合物。HG的甲基酯化程度变化会导致其酶解形成凝胶,从而影响果胶结构的稳定性。果胶甲酯酶抑制蛋白(PMEIs)通过翻译后机制调控果胶甲酯酶(PMEs)活性,微调果胶多糖甲酯化修饰平衡后,维持细胞壁的完整性和生物力学特性。研究发现,PMEI-PME互作调控果胶甲酯化修饰的稳态是决定细胞黏附、细胞壁硬度和弹性以及器官形态发生的关键因素,同时也是细胞壁应对逆境、释放抗性信号和免疫防御的分子模式。主要对PMEIs在调节植物器官发育过程和应对不同胁迫因子发挥的抗逆功能及调控机制等最新研究进展作出综述。鉴于PMEIs在木本植物中的体内生理活性和调控机制仍有待探索,可为后续填补该领域的研究空白提供理论依据和策略参考。

关键词: 细胞壁果胶果胶甲酯酶抑制蛋白同型半乳糖醛酸聚糖甲酯化修饰免疫防御    
Abstract:

The cell wall is a complex and dynamic network structure, playing a vital regulatory role in plant growth and development, stress response, and immune resistance. As the main polysaccharide component in the primary cell wall structure, pectin is composed of homogalacturonic acid (HG), the most abundant linear polymer. The degree of methyl esterification of HG leads to its enzymatic hydrolysis to form a gel, thus affecting the stability of the pectin structure. Depending on post-translational mechanisms, pectin methylesterase inhibitors (PMEIs) regulate the PME activity by fine-tuning the balance of methyl esterification of pectin polysaccharides to maintain cell wall integrity and biomechanical properties. An increasing number of studies have shown that PMEI-PME interaction modulates the homeostasis of pectin methyl esterification, which is a crucial factor determining cell adhesion, cell wall porosity, elasticity, and organ morphogenesis. It is also an associated molecular pattern of cell wall-mediated immune response to environmental cues by releasing the anti-stress signals. This review presents the recent research progress on the physiological importance of PMEIs in regulating plant growth and development, especially regulatory mechanisms underlying the function of the stress tolerance in response to various stress stimuli. Since much remains unknown concerning the in vivo activity and regulatory mechanisms of PMEIs in woody plants, this review provides a theoretical basis and strategic reference for future research.

Key words: Cell wall    Pectin    Pectin methylesterase inhibitor (PMEI)    Homogalacturonic acid    Methyl esterification    Immune defense
收稿日期: 2022-04-17 出版日期: 2022-09-07
ZTFLH:  Q71  
通讯作者: 苏涛     E-mail: sutao@njfu.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
熊媛
任襄襄
朱慧
任昕宜
潘子阳
苏涛

引用本文:

熊媛,任襄襄,朱慧,任昕宜,潘子阳,苏涛. 果胶甲酯酶抑制蛋白(PMEIs)的功能性研究进展[J]. 中国生物工程杂志, 2022, 42(8): 99-108.

XIONG Yuan,REN Xiang-xiang,ZHU Hui,REN Xin-yi,PAN Zi-yang,SU Tao. Recent Progress in the Functional Research of PMEIs. China Biotechnology, 2022, 42(8): 99-108.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.2204036        https://manu60.magtech.com.cn/biotech/CN/Y2022/V42/I8/99

图1  植物细胞中PMEI和PME的生物合成过程和亚细胞定位模型
图2  在不同环境胁迫因子下PMEI参与调控植物发挥的生理和抗逆功能示意图
[1] Wolf S. Cell wall signaling in plant development and defense. Annual Review of Plant Biology, 2022, 73: 323-353.
doi: 10.1146/annurev-arplant-102820-095312
[2] Wolf S, Mouille G, Pelloux J. Homogalacturonan methyl-esterification and plant development. Molecular Plant, 2009, 2(5): 851-860.
doi: 10.1093/mp/ssp066
[3] Haas K T, Wightman R, Meyerowitz E M, et al. Pectin homogalacturonan nanofilament expansion drives morphogenesis in plant epidermal cells. Science, 2020, 367(6481): 1003-1007.
doi: 10.1126/science.aaz5103
[4] Saffer A M. Expanding roles for pectins in plant development. Journal of Integrative Plant Biology, 2018, 60(10): 910-923.
doi: 10.1111/jipb.12662
[5] Zhang D Q, Zhang B H. Pectin drives cell wall morphogenesis without turgor pressure. Trends in Plant Science, 2020, 25(8): 719-722.
doi: 10.1016/j.tplants.2020.05.007
[6] Peaucelle A, Braybrook S A, le Guillou L, et al. Pectin-induced changes in cell wall mechanics underlie organ initiation in Arabidopsis. Current Biology, 2011, 21(20): 1720-1726.
doi: 10.1016/j.cub.2011.08.057 pmid: 21982593
[7] Turbant A, Fournet F, Lequart M, et al. PME58 plays a role in pectin distribution during seed coat mucilage extrusion through homogalacturonan modification. Journal of Experimental Botany, 2016, 67(8): 2177-2190.
doi: 10.1093/jxb/erw025 pmid: 26895630
[8] del Corpo D, Fullone M R, Miele R, et al. AtPME17 is a functional Arabidopsis thaliana pectin methylesterase regulated by its PRO region that triggers PME activity in the resistance to Botrytis cinerea. Molecular Plant Pathology, 2020, 21(12): 1620-1633.
doi: 10.1111/mpp.13002
[9] Levesque-Tremblay G, Pelloux J, Braybrook S A, et al. Tuning of pectin methylesterification: consequences for cell wall biomechanics and development. Planta, 2015, 242(4): 791-811.
doi: 10.1007/s00425-015-2358-5 pmid: 26168980
[10] Wormit A, Usadel B. The multifaceted role of pectin methylesterase inhibitors (PMEIs). International Journal of Molecular Sciences, 2018, 19(10): 2878.
doi: 10.3390/ijms19102878
[11] Zhu X X, Tang C, Li Q H, et al. Characterization of the pectin methylesterase inhibitor gene family in Rosaceae and role of PbrPMEI23/39/41 in methylesterified pectin distribution in pear pollen tube. Planta, 2021, 253(6): 118.
doi: 10.1007/s00425-021-03638-9
[12] Bano N, Ansari S A, Hashem A, et al. Amplification, sequencing and characterization of pectin methyl esterase inhibitor 51 gene in Tectona grandis L.f. Saudi Journal of Biological Sciences, 2021, 28(10): 5451-5460.
doi: 10.1016/j.sjbs.2021.07.015
[13] Wang J J, Ling L, Cai H, et al. Gene-wide identification and expression analysis of the PMEI family genes in soybean (Glycine max). 3 Biotech, 2020, 10(8): 335.
doi: 10.1007/s13205-020-02328-9
[14] Zhang P P, Wang H, Qin X E, et al. Genome-wide identification, phylogeny and expression analysis of the PME and PMEI gene families in maize. Scientific Reports, 2019, 9: 19918.
doi: 10.1038/s41598-019-56254-9
[15] Su T, Zhou B Y, Cao D, et al. Transcriptomic profiling of Populus roots challenged with Fusarium reveals differential responsive patterns of invertase and invertase inhibitor-like families within carbohydrate metabolism. Journal of Fungi (Basel, Switzerland), 2021, 7(2): 89.
[16] Coculo D, Lionetti V. The plant invertase/pectin methylesterase inhibitor superfamily. Frontiers in Plant Science, 2022, 13: 863892.
doi: 10.3389/fpls.2022.863892
[17] 苏涛, 周怀烨, 周碧瑶, 等. 杨树根特异性表达β-果糖苷酶抑制子的功能性验证. 南京林业大学学报(自然科学版), 2020, 44(6): 169-174.
Su T, Zhou H Y, Zhou B Y, et al. The enzyme purification and functional evaluation of a root-expressed invertase inhibitor in poplar. Journal of Nanjing Forestry University (Natural Sciences Edition), 2020, 44(6): 169-174.
[18] Hothorn M, Wolf S, Aloy P, et al. Structural insights into the target specificity of plant invertase and pectin methylesterase inhibitory proteins. The Plant Cell, 2004, 16(12): 3437-3447.
doi: 10.1105/tpc.104.025684
[19] 周怀烨, 周碧瑶, 苏涛. β-果糖苷酶抑制子的研究进展. 生物技术通报, 2020, 36(12): 137-145.
doi: 10.13560/j.cnki.biotech.bull.1985.2020-0258
Zhou H Y, Zhou B Y, Su T. The research progress of β-fructosidase inhibitors. Biotechnology Bulletin, 2020, 36(12): 137-145.
doi: 10.13560/j.cnki.biotech.bull.1985.2020-0258
[20] Jolie R P, Duvetter T, van Loey A M, et al. Pectin methylesterase and its proteinaceous inhibitor: a review. Carbohydrate Research, 2010, 345(18): 2583-2595.
doi: 10.1016/j.carres.2010.10.002
[21] Lionetti V. PECTOPLATE: the simultaneous phenotyping of pectin methylesterases, pectinases, and oligogalacturonides in plants during biotic stresses. Frontiers in Plant Science, 2015, 6: 331.
[22] Hocq L, Sénéchal F, Lefebvre V, et al. Combined experimental and computational approaches reveal distinct pH dependence of pectin methylesterase inhibitors. Plant Physiology, 2016, 173(2): 1075-1093.
doi: 10.1104/pp.16.01790
[23] Bonavita A, Carratore V, Ciardiello M A, et al. Influence of pH on the structure and function of kiwi pectin methylesterase inhibitor. Journal of Agricultural and Food Chemistry, 2016, 64(29): 5866-5876.
doi: 10.1021/acs.jafc.6b01718
[24] Lionetti V, Raiola A, Camardella L, et al. Overexpression of pectin methylesterase inhibitors in Arabidopsis restricts fungal infection by Botrytis cinerea. Plant Physiology, 2007, 143(4): 1871-1880.
doi: 10.1104/pp.106.090803
[25] Sénéchal F, L’Enfant M, Domon J M, et al. Tuning of pectin methylesterification. Journal of Biological Chemistry, 2015, 290(38): 23320-23335.
doi: 10.1074/jbc.M115.639534 pmid: 26183897
[26] Liu N N, Sun Y, Pei Y K, et al. A pectin methylesterase inhibitor enhances resistance to Verticillium wilt. Plant Physiology, 2018, 176(3): 2202-2220.
doi: 10.1104/pp.17.01399
[27] Wu H C, Bulgakov V P, Jinn T L. Pectin methylesterases: cell wall remodeling proteins are required for plant response to heat stress. Frontiers in Plant Science, 2018, 9: 1612.
doi: 10.3389/fpls.2018.01612
[28] Kohorn B D, Kohorn S L, Saba N J, et al. Requirement for pectin methyl esterase and preference for fragmented over native pectins for wall-associated kinase-activated, EDS1/PAD4-dependent stress response in Arabidopsis. Journal of Biological Chemistry, 2014, 289(27): 18978-18986.
doi: 10.1074/jbc.M114.567545 pmid: 24855660
[29] Nguyen H P, Jeong H Y, Jeon S H, et al. Rice pectin methylesterase inhibitor 28 (OsPMEI28) encodes a functional PMEI and its overexpression results in a dwarf phenotype through increased pectin methylesterification levels. Journal of Plant Physiology, 2017, 208: 17-25.
doi: 10.1016/j.jplph.2016.11.006
[30] Lin W W, Tang W X, Pan X, et al. Arabidopsis pavement cell morphogenesis requires FERONIA binding to pectin for activation of ROP GTPase signaling. Current Biology, 2022, 32(3): 497-507.e4.
doi: 10.1016/j.cub.2021.11.030
[31] Müller K, Levesque-Tremblay G, Fernandes A, et al. Overexpression of a pectin methylesterase inhibitor in Arabidopsis thaliana leads to altered growth morphology of the stem and defective organ separation. Plant Signaling & Behavior, 2013, 8(12): e26464.
[32] Sénéchal F, Mareck A, Marcelo P, et al. Arabidopsis PME17 activity can be controlled by pectin methylesterase Inhibitor4. Plant Signaling & Behavior, 2015, 10(2): e983351.
[33] Pinzon-Latorre D, Deyholos M K. Pectinmethylesterases (PME) and pectinmethylesterase inhibitors (PMEI) enriched during phloem fiber development in flax (Linum usitatissimum). PLoS One, 2014, 9(8): e105386.
doi: 10.1371/journal.pone.0105386
[34] 刘连. 人参PgPMEI09基因的克隆及转化胡萝卜干细胞的研究. 长春: 吉林农业大学, 2018.
Liu L. Cloning and transformation carrot stem cells research of the PgPMEI09 gene in Panax ginseng. Changchun: Jilin Agricultural University, 2018.
[35] Cruz-Valderrama J E, Jiménez-Durán K, Zúñiga-Sánchez E, et al. Degree of pectin methyl esterification in endosperm cell walls is involved in embryo bending in Arabidopsis thaliana. Biochemical and Biophysical Research Communications, 2018, 495(1): 639-645.
doi: S0006-291X(17)32255-6 pmid: 29137987
[36] Zuma B, Dana M B, Wang D F. Prolonged expression of a putative invertase inhibitor in micropylar endosperm suppressed embryo growth in Arabidopsis. Frontiers in Plant Science, 2018, 9: 61.
doi: 10.3389/fpls.2018.00061
[37] Hoffmann T, Shi X L, Hsu C Y, et al. The identification of type I MADS box genes as the upstream activators of an endosperm-specific invertase inhibitor in Arabidopsis. BMC Plant Biology, 2022, 22(1): 18.
doi: 10.1186/s12870-021-03399-3 pmid: 34991468
[38] Pérez-Pérez Y, Carneros E, Berenguer E, et al. Pectin de-methylesterification and AGP increase promote cell wall remodeling and are required during somatic embryogenesis of Quercus suber. Frontiers in Plant Science, 2019, 9: 1915.
doi: 10.3389/fpls.2018.01915
[39] Petrasch S, Silva C J, Mesquida-Pesci S D, et al. Infection strategies deployed by Botrytis cinerea, Fusarium acuminatum, and Rhizopus stolonifer as a function of tomato fruit ripening stage. Frontiers in Plant Science, 2019, 10: 223.
doi: 10.3389/fpls.2019.00223 pmid: 30881367
[40] Jonsson K, Lathe R S, Kierzkowski D, et al. Mechanochemical feedback mediates tissue bending required for seedling emergence. Current Biology, 2021, 31(6): 1154-1164.e3.
doi: 10.1016/j.cub.2020.12.016
[41] Hong M J, Kim D Y, Lee T G, et al. Functional characterization of pectin methylesterase inhibitor (PMEI) in wheat. Genes & Genetic Systems, 2010, 85(2): 97-106.
[42] Vissenberg K. Plant biology: positive feedback between auxin and cell wall mechanics during apical hook formation. Current Biology, 2021, 31(6): R306-R309.
doi: 10.1016/j.cub.2021.01.031
[43] Sun J H, Yuan C L, Wang M, et al. MUD1, a RING-v E3 ubiquitin ligase, has an important role in the regulation of pectin methylesterification in Arabidopsis seed coat mucilage. Plant Physiology and Biochemistry, 2021, 168: 230-238.
doi: 10.1016/j.plaphy.2021.10.001
[44] Shi D C, Ren A Y, Tang X F, et al. MYB52 negatively regulates pectin demethylesterification in seed coat mucilage. Plant Physiology, 2018, 176(4): 2737-2749.
doi: 10.1104/pp.17.01771
[45] Ding A M, Tang X F, Yang D H, et al. ERF4 and MYB 52 transcription factors play antagonistic roles in regulating homogalacturonan de-methylesterification in Arabidopsis seed coat mucilage. The Plant Cell, 2020, 33(2): 381-403.
doi: 10.1093/plcell/koaa031
[46] Rocchi V, Janni M, Bellincampi D, et al. Intron retention regulates the expression of pectin methyl esterase inhibitor (Pmei) genes during wheat growth and development. Plant Biology, 2012, 14(2): 365-373.
doi: 10.1111/j.1438-8677.2011.00508.x pmid: 21972933
[47] Fan T F, Park S, Shi Q, et al. Transformation of hard pollen into soft matter. Nature Communications, 2020, 11: 1449.
doi: 10.1038/s41467-020-15294-w
[48] Bosch M, Hepler P K. Pectin methylesterases and pectin dynamics in pollen tubes. The Plant Cell, 2005, 17(12): 3219-3226.
doi: 10.1105/tpc.105.037473
[49] Röckel N, Wolf S, Kost B, et al. Elaborate spatial patterning of cell-wall PME and PMEI at the pollen tube tip involves PMEI endocytosis, and reflects the distribution of esterified and de-esterified pectins. The Plant Journal, 2008, 53(1): 133-143.
doi: 10.1111/j.1365-313X.2007.03325.x
[50] Liu T T, Yu H, Xiong X P, et al. Genome-wide identification, molecular evolution, and expression profiling analysis of pectin methylesterase inhibitor genes in Brassica campestris ssp.chinensis. International Journal of Molecular Sciences, 2018, 19(5): 1338.
doi: 10.3390/ijms19051338
[51] Li W J, Shang H H, Ge Q, et al. Genome-wide identification, phylogeny, and expression analysis of pectin methylesterases reveal their major role in cotton fiber development. BMC Genomics, 2016, 17(1): 1000.
doi: 10.1186/s12864-016-3365-z
[52] An S H, Sohn K H, Choi H W, et al. Pepper pectin methylesterase inhibitor protein CaPMEI 1 is required for antifungal activity, basal disease resistance and abiotic stress tolerance. Planta, 2008, 228(1): 61-78.
doi: 10.1007/s00425-008-0719-z
[53] Qu L H, Wu C Y, Zhang F, et al. Rice putative methyltransferase gene OsTSD2 is required for root development involving pectin modification. Journal of Experimental Botany, 2016, 67(18): 5349-5362.
doi: 10.1093/jxb/erw297
[54] Leite D C C, Grandis A, Tavares E Q P, et al. Cell wall changes during the formation of aerenchyma in sugarcane roots. Annals of Botany, 2017, 120(5): 693-708.
doi: 10.1093/aob/mcx050 pmid: 29106454
[55] Chen J, Chen X H, Zhang Q F, et al. A cold-induced pectin methyl-esterase inhibitor gene contributes negatively to freezing tolerance but positively to salt tolerance in Arabidopsis. Journal of Plant Physiology, 2018, 222: 67-78.
doi: 10.1016/j.jplph.2018.01.003
[56] Li B, Wang H, He S, et al. Genome-wide identification of the PMEI gene family in tea plant and functional analysis of CsPMEI2 and CsPMEI 4 T hrough ectopic overexpression. Frontiers in Plant Science, 2022, 12: 807514.
doi: 10.3389/fpls.2021.807514
[57] Wu H C, Huang Y C, Stracovsky L, et al. Pectin methylesterase is required for guard cell function in response to heat. Plant Signaling & Behavior, 2017, 12(6): e1338227.
[58] Jithesh M N, Wally O S D, Manfield I, et al. Analysis of seaweed extract-induced transcriptome leads to identification of a negative regulator of salt tolerance in Arabidopsis. HortScience, 2012, 47(6): 704-709.
doi: 10.21273/HORTSCI.47.6.704
[59] Weber M, Deinlein U, Fischer S, et al. A mutation in the Arabidopsis thaliana cell wall biosynthesis gene pectin methylesterase 3 as well as its aberrant expression cause hypersensitivity specifically to Zn. The Plant Journal, 2013, 76(1): 151-164.
[60] Geng X Y, Horst W J, Golz J F, et al. LEUNIG_HOMOLOG transcriptional co-repressor mediates aluminium sensitivity through PECTIN METHYLESTERASE46-modulated root cell wall pectin methylesterification in Arabidopsis. The Plant Journal, 2017, 90(3): 491-504.
doi: 10.1111/tpj.13506
[61] Wu X W, Tian H, Li L, et al. Higher Cd-accumulating oilseed rape has stronger Cd tolerance due to stronger Cd fixation in pectin and hemicellulose and higher Cd chelation. Environmental Pollution, 2021, 285: 117218.
doi: 10.1016/j.envpol.2021.117218
[62] Engelsdorf T, Gigli-Bisceglia N, Veerabagu M, et al. The plant cell wall integrity maintenance and immune signaling systems cooperate to control stress responses in Arabidopsis thaliana. Science Signaling, 2018, 11(536): eaao3070.
doi: 10.1126/scisignal.aao3070
[63] Lionetti V, Fabri E, de Caroli M, et al. Three pectin methylesterase inhibitors protect cell wall integrity for Arabidopsis immunity to Botrytis. Plant Physiology, 2017, 173(3): 1844-1863.
doi: 10.1104/pp.16.01185
[64] Tundo S, Kalunke R, Janni M, et al. Pyramiding PvPGIP2 and TAXI-III but not PvPGIP2 and PMEI enhances resistance against Fusarium graminearum. Molecular Plant-Microbe Interactions: MPMI, 2016, 29(8): 629-639.
doi: 10.1094/MPMI-05-16-0089-R
[65] Marzin S, Hanemann A, Sharma S, et al. Are pectin esterase inhibitor genes involved in mediating resistance to Rhynchosporium commune in barley? PLoS One, 2016, 11(3): e0150485.
doi: 10.1371/journal.pone.0150485
[66] Stefanowicz K, Szymanska-Chargot M, Truman W, et al. Plasmodiophora brassicae-triggered cell enlargement and loss of cellular integrity in root systems are mediated by pectin demethylation. Frontiers in Plant Science, 2021, 12: 711838.
doi: 10.3389/fpls.2021.711838
[67] Lionetti V, Cervone F, Bellincampi D. Methyl esterification of pectin plays a role during plant-pathogen interactions and affects plant resistance to diseases. Journal of Plant Physiology, 2012, 169(16): 1623-1630.
doi: 10.1016/j.jplph.2012.05.006
[68] Li H, Chen Y, Zhang Z Q, et al. Pathogenic mechanisms and control strategies of Botrytis cinerea causing post-harvest decay in fruits and vegetables. Food Quality and Safety, 2018, 2(3): 111-119.
doi: 10.1093/fqsafe/fyy016
[69] Zehra A, Raytekar N A, Meena M, et al. Efficiency of microbial bio-agents as elicitors in plant defense mechanism under biotic stress: a review. Current Research in Microbial Sciences, 2021, 2: 100054.
doi: 10.1016/j.crmicr.2021.100054
[70] Lionetti V, Raiola A, Cervone F, et al. Transgenic expression of pectin methylesterase inhibitors limits Tobamovirus spread in tobacco and Arabidopsis. Molecular Plant Pathology, 2014, 15(3): 265-274.
doi: 10.1111/mpp.12090
[71] 颉永红, 魏运民, 韩蓉蓉, 等. GmPME2基因的功能鉴定及对烟草耐铝性的影响. 农业生物技术学报, 2020, 28(5): 823-835.
Xie Y H, Wei Y M, Han R R, et al. Functional identification of GmPME2 gene and effects on aluminum resistance in tobacco(Nicotiana tabacum). Journal of Agricultural Biotechnology, 2020, 28(5): 823-835.
[72] Silva-Sanzana C, Celiz-Balboa J, Garzo E, et al. Pectin methylesterases modulate plant homogalacturonan status in defenses against the aphid Myzus persicae. The Plant Cell, 2019, 31(8): 1913-1929.
doi: 10.1105/tpc.19.00136 pmid: 31126981
[73] Hewezi T, Howe P, Maier T R, et al. Cellulose binding protein from the parasitic nematode Heterodera schachtii interacts with Arabidopsis pectin methylesterase: cooperative cell wall modification during parasitism. The Plant Cell, 2008, 20(11): 3080-3093.
doi: 10.1105/tpc.108.063065
[74] Tavormina P, de Coninck B, Nikonorova N, et al. The plant peptidome: an expanding repertoire of structural features and biological functions. The Plant Cell, 2015, 27(8): 2095-2118.
doi: 10.1105/tpc.15.00440 pmid: 26276833
[75] Lee M W, Huffaker A, Crippen D, et al. Plant elicitor peptides promote plant defences against Nematodes in soybean. Molecular Plant Pathology, 2018, 19(4): 858-869.
doi: 10.1111/mpp.12570
[1] 王艳梅,寇航,马梅,申玉玉,赵宝顶,路福平,黎明. 利用CRISPR-Cas9技术失活黑曲霉中果胶酶基因及突变株性能评价*[J]. 中国生物工程杂志, 2021, 41(5): 35-44.
[2] 赵悦,吴昊,乔建军. 细菌细胞壁生长调控机制研究进展 *[J]. 中国生物工程杂志, 2018, 38(8): 92-99.
[3] 段盛文, 刘正初, 郑科, 冯湘沅, 成莉凤, 郑霞. 从富集液中发掘麻类脱胶果胶酶基因的技术[J]. 中国生物工程杂志, 2014, 34(1): 86-89.
[4] 陈武, 黎定军, 丁彦, 张旭, 肖启明, 周清明. 病原微生物对抗菌肽抗性机制的研究进展[J]. 中国生物工程杂志, 2012, 32(05): 97-106.
[5] 陈丽娜 应向贤 薛群 汪钊. 细菌碱性果胶酶的酶学特性及其应用研究[J]. 中国生物工程杂志, 2010, 30(04): 125-130.
[6] 葛菁萍, 凌宏志, 宋刚, 平文祥. 果胶酶产生菌的分离及培养条件研究[J]. 中国生物工程杂志, 2004, 24(8): 93-95.
[7] 贾月, 白志辉, 弓爱君, 张洪勋. 果胶酶亲和吸附剂的制备及其性能比较[J]. 中国生物工程杂志, 2004, 24(1): 70-73.
[8] 郑文光, 王晓武, 高必达. 植物病毒胞间运动分子生物学研究进展[J]. 中国生物工程杂志, 2003, 23(2): 52-58.
[9] 高必达. 真菌果胶酶的分子生物学研究进展[J]. 中国生物工程杂志, 2000, 20(6): 14-18.
[10] 冯建民, 王宾. DNA疫苗研究现状和展望[J]. 中国生物工程杂志, 1997, 17(6): 48-50.
[11] 秦松. 海洋藻类细胞工程的重要突破——不同门间藻细胞原生质体的融合[J]. 中国生物工程杂志, 1990, 10(4): 52-53.
[12] 何丰, 柯为. 分子遗传学术语解释(续)[J]. 中国生物工程杂志, 1983, 3(2): 79-81.
[13] RoyCurtiss, 乃晨. 遗传饰变的微生物及其制备和使用方法(续)[J]. 中国生物工程杂志, 1982, 2(2): 51-55.
[14] 刘信. 日本用放线菌作寄主菌进行基因工程研究获成功[J]. 中国生物工程杂志, 1982, 2(1): 84-84.
[15] 郭丽华. 应用遗传工程的新方法[J]. 中国生物工程杂志, 1981, 1(4): 68-68.