Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2022, Vol. 42 Issue (9): 1-16    DOI: 10.13523/j.cb.2204018
研究报告     
CPSF6在胶质母细胞瘤进展中的作用及相关调控机制研究*
黄进,娄哲琦,朱勇**()
重庆医科大学生命科学研究院 重庆 400016
The Role of CPSF6 in the Progression of Glioblastoma and Related Regulatory Mechanism
HUANG Jin,LOU Zhe-qi,ZHU Yong**()
Institute of Life Sciences, Chongqing Medical University, Chongqing 400016, China
 全文: PDF(5905 KB)   HTML
摘要:

目的: 研究mRNA前体切割和多聚腺苷酸化特异性因子6(polyadenylation specific factor 6,CPSF6)对人胶质母细胞瘤(glioblastoma,GBM)细胞系U87和U251的增殖、迁移、侵袭以及ATP水平的影响,进一步探究其相关调控机制。方法: 通过Western blot和免疫组化检测CPSF6在GBM组织中的表达水平,利用在线数据库分析CPSF6在GBM组织和配对的非肿瘤组织中的表达水平,同时分析CPSF6与GBM的组织学级别和患者预后的关系。构建敲低CPSF6的U87和U251稳定表达细胞株,并采用RT-qPCR和Western blot方法分别验证U87和U251细胞中CPSF6的敲低效率;利用CCK8和Transwell实验分别检测CPSF6敲降对细胞增殖、迁移和侵袭能力的影响;ATP实验检测细胞内的ATP水平变化,确定CPSF6在GBM中的致癌作用。通过RNA-seq分析敲低CPSF6后GBM内mRNA 3'UTR变化情况,KEGG富集分析差异靶基因相关的信号通路。在富集出的信号通路指示下,利用透射电镜和Western blot实验进一步验证敲低CPSF6后GBM自噬的发生情况。 结果: CPSF6在GBM组织中呈现出高表达,其表达水平随组织学级别的增加而升高,且与患者不良预后相关。在U87和U251中敲低CPSF6后,细胞的增殖、迁移及侵袭能力均明显降低,细胞内ATP水平下降。对RNA-seq结果分析表明,敲低CPSF6后发生3'UTR缩短事件的基因远多于3'UTR延长事件的基因;KEGG富集到自噬信号通路与肿瘤进展密切相关,透射电镜和Western blot实验验证敲低CPSF6可以促进自噬通路的激活。结论: CPSF6在GBM中高表达,且与GBM的组织学级别和患者不良预后呈正相关,CPSF6可能通过抑制自噬通路的激活来促进U87和U251细胞的增殖、迁移、侵袭以及ATP的生成,进而促进GBM发生、发展。

关键词: 切割和多聚腺苷酸化特异性因子6胶质母细胞瘤ATP自噬细胞增殖细胞迁移细胞侵袭    
Abstract:

Objective: To investigate the effects of cleavage and polyadenylation specific factor 6 (CPSF6) on the proliferation, migration, invasion and ATP production of human glioblastoma (GBM) cell lines U87 and U251, and to further investigate the related regulatory mechanism. Methods: First, the expression levels of CPSF6 in GBM tissues and paired non-tumor tissues were detected by western blot and immunohistochemistry and analyzed by an online database, and the relationship between CPSF6 and the histological grade of GBM and patient prognosis was also analyzed. CPSF6 was knocked down in U87 and U251 cells with short hairpin RNA (shCPSF6). The expression of CPSF6 in U87 and U251 cells was detected by real-time quantitative PCR and western blot, respectively. After knocking down CPSF6, the proliferation ability of GBM cells was tested by CCK8 assay, and the migration and invasion ability of GBM cells was detected by Transwell assay. ATP assay was performed to detect changes in intracellular ATP levels and to determine the oncogenic role of CPSF6 in GBM. RNA-seq was used to analyze mRNA 3'UTR changes in GBM after CPSF6 knockdown, and KEGG enrichment was used to analyze signal pathways related to different target genes. Under the instructions of the enriched signal pathway, the protein expression levels of LC3 and Beclin-1, which are related markers in the autophagy signaling pathway, were detected by western blot assay after knocking down CPSF6. Transmission electron microscopy was used to observe the occurrence of intracellular autophagy in GBM cells in the experimental and control groups. Results: CPSF6 was significantly up-regulated in GBM tissues compared with the paired non-tumor tissues, and the high expression of CPSF6 was associated with poor prognosis in patients. After CPSF6 was knocked down, the proliferation, migration and invasion of GBM cells were significantly reduced, and the intracellular ATP level was decreased. Bioinformatics analysis, transmission electron microscopy and western blot assay demonstrated that CPSF6 potentially promoted the activation of autophagy pathway. Conclusion: CPSF6 was upregulated in GBM. The high expression of CPSF6 is associated with poor prognosis in patients and is positively correlated with histological grade of GBM. CPSF6 exerts oncogenic effects in GBM, and potentially promotes the proliferation, migration, invasion and ATP production of U87 and U251 cells. Knockdown of CPSF6 potentially activates the autophagy pathway in GBM.

Key words: Cleavage and polyadenylation specific factor 6 (CPSF6)    Glioblastoma    ATP    Autophagy    Cell proliferation    Cell migration    Cell invasion
收稿日期: 2022-04-08 出版日期: 2022-10-10
ZTFLH:  R739  
基金资助: * 重庆市留学人员回国创业创新支持计划(cx2019003)
通讯作者: 朱勇     E-mail: yongz59@cqmu.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
黄进
娄哲琦
朱勇

引用本文:

黄进,娄哲琦,朱勇. CPSF6在胶质母细胞瘤进展中的作用及相关调控机制研究*[J]. 中国生物工程杂志, 2022, 42(9): 1-16.

HUANG Jin,LOU Zhe-qi,ZHU Yong. The Role of CPSF6 in the Progression of Glioblastoma and Related Regulatory Mechanism. China Biotechnology, 2022, 42(9): 1-16.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.2204018        https://manu60.magtech.com.cn/biotech/CN/Y2022/V42/I9/1

Name Sequence
shCPSF6-1 Forward primer (5'→3'):CCGGGTTGTAACTCCATGCAATAAACTCGAGTTTATTGCATGGAGTTACAACTTTTTG
Reverse primer (5'→3'):AATTCAAAAAGTTGTAACTCCATGCAATAAACTCGAGTTTATTGCATGGAGTTACAAC
shCPSF6-2 Forward primer (5'→3'):CCGGGGTGATTATGGGAGTGCTATTCTCGAGAATAGCACTCCCATAATCACCTTTTTG
Reverse primer (5'→3'):AATTCAAAAAGGTGATTATGGGAGTGCTATTCTCGAGAATAGCACTCCCATAATCACC
CPSF6 Forward primer (5'→3'): TGGTGTTGGATCTGAAGCATC
Reverse primer (5'→3'): CCCAGACATTTGTCCTGATTGT
GAPDH Forward primer (5'→3'): GTCCACTGGCGTCTTCAC
Reverse primer (5'→3'): CTTGAGGCTGTTGTCATACTTC
表1  引物序列
图1  CPSF6在胶质母细胞瘤组织中表达上调
图2  CPSF6基因在GBM中拷贝数变异与生存分析
图3  CPSF6 在U87和U251细胞中的敲降效率检测
图4  CPSF6促进GBM细胞增殖和ATP生成
图5  CPSF6促进GBM细胞迁移和侵袭
图6  GBM细胞中敲低CPSF6的火山图
图7  差异基因KEGG富集的相关信号通路
图8  敲低CPSF6激活U87和U251细胞自噬
[1] Majc B, Novak M, Kopitar-Jerala N, et al. Immunotherapy of glioblastoma: current strategies and challenges in tumor model development. Cells, 2021, 10(2): 265.
doi: 10.3390/cells10020265
[2] Lim M, Xia Y X, Bettegowda C, et al. Current state of immunotherapy for glioblastoma. Nature Reviews Clinical Oncology, 2018, 15(7): 422-442.
doi: 10.1038/s41571-018-0003-5 pmid: 29643471
[3] Wen P Y, Kesari S. Malignant gliomas in adults. New England Journal of Medicine, 2008, 359(17): 1850.
[4] Ostrom Q T, Gittleman H, Farah P, et al. CBTRUS statistical report: primary brain and central nervous system tumors diagnosed in the United States in 2006-2010. Neuro-oncology, 2013, 15(Suppl 2): ii1-56.
[5] Tian B, Manley J L. Alternative polyadenylation of mRNA precursors. Nature Reviews Molecular Cell Biology, 2017, 18(1): 18-30.
doi: 10.1038/nrm.2016.116 pmid: 27677860
[6] Lan Y L, Zhang J M. Modulation of untranslated region alternative polyadenylation in glioma tumorigenesis. Biomedicine & Pharmacotherapy, 2021, 137: 111416.
doi: 10.1016/j.biopha.2021.111416
[7] Xia Z, Donehower L A, Cooper T A, et al. Dynamic analyses of alternative polyadenylation from RNA-seq reveal a 3'-UTR landscape across seven tumour types. Nature Communications, 2014, 5: 5274.
doi: 10.1038/ncomms6274 pmid: 25409906
[8] Chang J W, Zhang W, Yeh H S, et al. mRNA 3'-UTR shortening is a molecular signature of mTORC1 activation. Nature Communications, 2015, 6: 7218.
doi: 10.1038/ncomms8218
[9] Lin Y F, Li Z H, Ozsolak F, et al. An in-depth map of polyadenylation sites in cancer. Nucleic Acids Research, 2012, 40(17): 8460-8471.
pmid: 22753024
[10] Xiang Y, Ye Y Q, Lou Y Y, et al. Comprehensive characterization of alternative polyadenylation in human cancer. Journal of the National Cancer Institute, 2018, 110(4): 379-389.
doi: 10.1093/jnci/djx223 pmid: 29106591
[11] Lembo A, di Cunto F, Provero P. Shortening of 3'UTRs correlates with poor prognosis in breast and lung cancer. PLoS One, 2012, 7(2): e31129.
doi: 10.1371/journal.pone.0031129
[12] Masamha C P, Xia Z, Yang J X, et al. CFIm25 links alternative polyadenylation to glioblastoma tumour suppression. Nature, 2014, 510(7505): 412-416.
doi: 10.1038/nature13261
[13] Mayr C, Bartel D P. Widespread shortening of 3'UTRs by alternative cleavage and polyadenylation activates oncogenes in cancer cells. Cell, 2009, 138(4): 673-684.
doi: 10.1016/j.cell.2009.06.016 pmid: 19703394
[14] Hardy J G, Norbury C J. Cleavage factor Im (CFIm) as a regulator of alternative polyadenylation. Biochemical Society Transactions, 2016, 44(4): 1051-1057.
doi: 10.1042/BST20160078 pmid: 27528751
[15] Rüegsegger U, Beyer K, Keller W. Purification and characterization of human cleavage factor im involved in the 3' end processing of messenger RNA precursors. Journal of Biological Chemistry, 1996, 271(11): 6107-6113.
doi: 10.1074/jbc.271.11.6107 pmid: 8626397
[16] Yang Q, Gilmartin G M, Doublié S. Structural basis of UGUA recognition by the Nudix protein CFI(m)25 and implications for a regulatory role in mRNA 3' processing. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(22): 10062-10067.
[17] Brown K M, Gilmartin G M. A mechanism for the regulation of pre-mRNA 3' processing by human cleavage factor im. Molecular Cell, 2003, 12(6): 1467-1476.
pmid: 14690600
[18] Rüegsegger U, Blank D, Keller W. Human pre-mRNA cleavage factor im is related to spliceosomal SR proteins and can be reconstituted in vitro from recombinant subunits. Molecular Cell, 1998, 1(2): 243-253.
pmid: 9659921
[19] Zhu Y, Wang X Y, Forouzmand E, et al. Molecular mechanisms for CFIm-mediated regulation of mRNA alternative polyadenylation. Molecular Cell, 2018, 69(1): 62-74, e4.
doi: S1097-2765(17)30890-0 pmid: 29276085
[20] Gruber A R, Martin G, Keller W, et al. Cleavage factor Im is a key regulator of 3' UTR length. RNA Biology, 2012, 9(12): 1405-1412.
doi: 10.4161/rna.22570 pmid: 23187700
[21] Martin G, Gruber A R, Keller W, et al. Genome-wide analysis of pre-mRNA 3' end processing reveals a decisive role of human cleavage factor I in the regulation of 3' UTR length. Cell Reports, 2012, 1(6): 753-763.
doi: 10.1016/j.celrep.2012.05.003 pmid: 22813749
[22] Tan S, Zhang M, Shi X L, et al. CPSF6 links alternative polyadenylation to metabolism adaption in hepatocellular carcinoma progression. Journal of Experimental & Clinical Cancer Research, 2021, 40(1): 85.
[23] Shi X L, Ding K S, Zhao Q, et al. Suppression of CPSF 6 enhances apoptosis through alternative polyadenylation-mediated shortening of the VHL 3'UTR in gastric cancer cells. Frontiers in Genetics, 2021, 12: 707644.
doi: 10.3389/fgene.2021.707644
[24] Binothman N, Hachim I Y, Lebrun J J, et al. CPSF6 is a clinically relevant breast cancer vulnerability target: role of CPSF6 in breast cancer. EBioMedicine, 2017, 21: 65-78.
doi: S2352-3964(17)30258-X pmid: 28673861
[25] Schonberg D L, Lubelski D, Miller T E, et al. Brain tumor stem cells: molecular characteristics and their impact on therapy. Molecular Aspects of Medicine, 2014, 39: 82-101.
doi: 10.1016/j.mam.2013.06.004 pmid: 23831316
[26] Gimple R C, Bhargava S, Dixit D, et al. Glioblastoma stem cells: lessons from the tumor hierarchy in a lethal cancer. Genes & Development, 2019, 33(11-12): 591-609.
doi: 10.1101/gad.324301.119
[27] Chu Y, Elrod N, Wang C J, et al. Nudt21 regulates the alternative polyadenylation of Pak1 and is predictive in the prognosis of glioblastoma patients. Oncogene, 2019, 38(21): 4154-4168.
doi: 10.1038/s41388-019-0714-9 pmid: 30705404
[28] Masamha C P, Wagner E J. The contribution of alternative polyadenylation to the cancer phenotype. Carcinogenesis, 2018, 39(1): 2-10.
doi: 10.1093/carcin/bgx096 pmid: 28968750
[29] Chen X, Zhang J X, Luo J H, et al. CSTF2-induced shortening of the RAC 1 3'UTR promotes the pathogenesis of urothelial carcinoma of the bladder. Cancer Research, 2018, 78(20): 5848-5862.
doi: 10.1158/0008-5472.CAN-18-0822 pmid: 30143523
[30] Kim S, Yamamoto J, Chen Y X, et al. Evidence that cleavage factor Im is a heterotetrameric protein complex controlling alternative polyadenylation. Genes to Cells, 2010, 15(9): 1003-1013.
doi: 10.1111/j.1365-2443.2010.01436.x pmid: 20695905
[31] Brumbaugh J, di Stefano B, Wang X Y, et al. Nudt21 controls cell fate by connecting alternative polyadenylation to chromatin signaling. Cell, 2018, 172(1-2): 106-120, e21.
doi: S0092-8674(17)31370-3 pmid: 29249356
[32] Jafari Najaf Abadi M H, Shafabakhsh R, Asemi Z, et al. CFIm25 and alternative polyadenylation: conflicting roles in cancer. Cancer Letters, 2019, 459: 112-121.
doi: S0304-3835(19)30352-0 pmid: 31181319
[33] Tan S, Li H, Zhang W J, et al. NUDT21 negatively regulates PSMB2 and CXXC5 by alternative polyadenylation and contributes to hepatocellular carcinoma suppression. Oncogene, 2018, 37(35): 4887-4900.
doi: 10.1038/s41388-018-0280-6 pmid: 29780166
[34] Zhang L, Zhang W H. Knockdown of NUDT21 inhibits proliferation and promotes apoptosis of human K562 leukemia cells through ERK pathway. Cancer Management and Research, 2018, 10: 4311-4323.
doi: 10.2147/CMAR.S173496 pmid: 30349365
[35] Yang Q, Coseno M, Gilmartin G M, et al. Crystal structure of a human cleavage factor CFIm25/CFIm68/RNA complex provides an insight into poly(A) site recognition and RNA looping. Structure (London, England: 1993), 2011, 19(3): 368-377.
doi: 10.1016/j.str.2010.12.021
[36] Sowd G A, Serrao E, Wang H, et al. A critical role for alternative polyadenylation factor CPSF6 in targeting HIV-1 integration to transcriptionally active chromatin. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(8): E1054-E1063.
[1] 邓嘉强, 李韦瑶, 钟丽君, 余树民. 自噬与间充质干细胞衰老的关系研究进展[J]. 中国生物工程杂志, 2022, 42(3): 55-61.
[2] 李潇瑾,李艳萌,李振坤,徐安健,杨晓曦,黄坚. 基于转录组测序探究ATP7B基因缺陷小鼠铜累积诱导肝细胞自噬的相关机制*[J]. 中国生物工程杂志, 2021, 41(9): 10-19.
[3] 董雪迎,梁凯,叶克应,周策凡,唐景峰. 受体酪氨酸激酶对自噬的调控及其研究进展*[J]. 中国生物工程杂志, 2021, 41(5): 72-78.
[4] 路玉祥,李元,方丹丹,王学博,杨万鹏,楚元奎,杨华. MiR-5047在乳腺癌细胞增殖迁移中的作用及表达调控*[J]. 中国生物工程杂志, 2021, 41(4): 9-17.
[5] 蔡润泽,王正波,陈永昌. Mecp2影响Rett综合征中代谢功能的研究进展 *[J]. 中国生物工程杂志, 2021, 41(2/3): 89-97.
[6] 韩雪怡,李一帆,陆玥达,熊国良,喻长远. 具有自噬抑制作用的卟啉金属有机框架的制备及其光动力癌症治疗的研究*[J]. 中国生物工程杂志, 2021, 41(11): 48-54.
[7] 张晨阳,黑常春,袁仕林,周玉佳,曹美玲,秦亦欣,杨笑. SIRT3抑制线粒体自噬并减轻高糖加重的神经元缺氧再灌注损伤*[J]. 中国生物工程杂志, 2021, 41(11): 1-13.
[8] 曾祥意,潘杰. 自噬调控白色脂肪细胞棕色化的研究进展 *[J]. 中国生物工程杂志, 2020, 40(6): 63-73.
[9] 戴奇男,张景红. 肿瘤多药耐药与自噬、DNA修复和肿瘤干细胞相关的分子机制研究进展 *[J]. 中国生物工程杂志, 2020, 40(4): 69-77.
[10] 杨丹,田海山,李校堃. 成纤维细胞生长因子5的研究进展 *[J]. 中国生物工程杂志, 2020, 40(3): 117-124.
[11] 胡妍,李辉,何承文,朱婧,谢志平. 酵母亚细胞结构分离效率评估菌株的构建 *[J]. 中国生物工程杂志, 2020, 40(10): 10-23.
[12] 朱永朝,陶金,任萌萌,熊燃,何亚琴,周瑜,卢震辉,杜勇,杨芝红. 自噬抑制肿瘤坏死因子α诱导人胎盘胎儿来源间充质干细胞发生凋亡 *[J]. 中国生物工程杂志, 2019, 39(9): 62-67.
[13] 杨晓燕,毛景东,李树森,张新颖,杜立银. 细胞自噬对中性粒细胞功能调节的研究进展 *[J]. 中国生物工程杂志, 2019, 39(6): 84-90.
[14] 洪丹彤,张帆,王淑娥,王红霞,刘昆梅,徐广贤,霍正浩,郭乐. miR-17-5p靶向自噬相关蛋白ATG7调控巨噬细胞抗结核分枝杆菌感染作用的研究 *[J]. 中国生物工程杂志, 2019, 39(6): 1-8.
[15] 刘艳,戴鹏,朱运峰. 外泌体与自噬体相互关系研究进展 *[J]. 中国生物工程杂志, 2019, 39(6): 78-83.