Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2022, Vol. 42 Issue (8): 40-51    DOI: 10.13523/j.cb.2204006
技术与方法     
形貌调控与镀层修饰结合制备口服疫苗载体*
胡微1,2,吴颉2,中西秀树1,**()
1.江南大学生物工程学院 糖化学与生物技术教育部重点实验室 无锡 214122
2.中国科学院过程工程研究所生化工程国家重点实验室 北京 100190
Preparation of Oral Vaccine Carriers by Combining Morphology Control and Plating Modification
HU Wei1,2,WU Jie2,HIDEKI Nakanishi1,**()
1. Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education,School of Biotechnology, Jiangnan University, Wuxi 214122, China
2. State Key Laboratory of Biochemical Engineering, Institute of Process Engineering,Chinese Academy of Sciences, Beijing 100190, China
 全文: PDF(3864 KB)   HTML
摘要:

口服疫苗因其具有接种方便、能产生黏膜免疫等优点而备受关注,但胃肠道屏障、酸性环境和蛋白酶等不利条件制约了口服疫苗免疫效果的发挥。为提升其免疫效果,将形貌调控与镀层修饰策略结合制备新型口服疫苗载体,具体为将溶剂蒸发法与快速膜乳化法结合制备聚乳酸-羟基乙酸共聚物(PLGA)杆状颗粒,并采用能够增强免疫反应的β-葡聚糖及具有更高降解pH的硫醇化修饰的羟丙基甲基纤维素苯二甲酸酯(T-HPMCP)对PLGA杆状颗粒镀层修饰。在制备PLGA杆状颗粒时,通过对外水相条件的摸索制备出了适合小肠上皮细胞摄取的长度在2~4 μm、宽度在1~2 μm的PLGA杆状颗粒。体外实验结果表明通过T-HPMCP修饰的疫苗载体在酸性环境下保持稳定有利于抗原活性保护,同时能够在pH≥7.4时分解而使抗原释放。细胞和动物实验结果表明其特殊的杆状形貌可实现较高的肠道上皮摄取速率及转运效率,并且β-葡聚糖的修饰能活化树突状细胞(DC),提升OVA特异性IgA和IgG抗体水平。综上,制备的镀层PLGA杆状颗粒作为口服疫苗载体可提升机体免疫应答,为口服疫苗的研究提供了新的材料和思路。

关键词: 口服疫苗PLGA杆状颗粒β-葡聚糖树突状细胞黏膜免疫    
Abstract:

Oral vaccines have attracted much attention due to their advantages of high patient compliance, reduced generation of harmful waste, convenient vaccination, and their ability to cause mucosal immunity. However, unfavorable conditions such as the acidic environment of the stomach, proteases, intestinal mucus and tight junctions between intestinal epithelial cells make the gap between oral vaccines and injectable vaccines too large, which restricts the immune effect of oral vaccines. In order to improve the immune effect of oral vaccines, we combined morphology control and coating modification strategies to prepare a new type of oral vaccine carrier. Specifically, polylactic acid-glycolic acid copolymer (PLGA) rod-shaped particles were prepared by combining emulsion solvent evaporation method with fast membrane emulsification method, then β-glucan that enhances immune response and thiolated hydroxypropyl methyl cellulose phthalate (T-HPMCP) with higher degradation pH and stronger adhesion with intestinal epithelium were used for coating modification of PLGA rod-shaped particles. In the preparation of PLGA rod-shaped particles, the effects of PBS concentration and polyvinyl alcohol (PVA) concentration in the outer aqueous phase on the preparation of PLGA rod-shaped particles were explored. It is found that the deformation degree of PLGA particles first increased and then decreased with the increase of PBS concentration, but the deformation degree of PLGA particles always increased with the increase of PVA concentration. This is because PBS forms an electric double layer with -COO- of PLGA, which makes the emulsion more stable and makes deformation more difficult to occur. Finally, the optimal formula was determined to prepare PLGA rod-shaped particles with a length of 2-4 μm and a width of 1-2 μm suitable for the uptake of small intestinal epithelial cells. It is found that the protein entrapment rate of PLGA rod-shaped particles is higher than that of PLGA spherical particles because the electric double layer makes the emulsion more stable. The results of in vitro experiments show that the vaccine carrier modified by T-HPMCP is stable in an acidic environment and the amount of released protein is negligible, which can prevent the antigen from being corroded by the acidic environment and is conducive to the protection of antigen activity. It can be decomposed at pH ≥ 7.4 and then release antigen. The results of cell experiments show that its special rod-shaped morphology can be taken up by Caco-2 cells faster and can be rapidly transported by the Caco-2 cell monolayer model constructed in transwell chambers, and the modification of β-glucan can also promote dendritic cells (DCs) secretion of surface molecules MHC-I, MHC-II and CD80 to activate DCs. The results of animal experiments showed that PLGA rod-shaped particles modified by β-glucan and T-HPCMP could increase the levels of OVA-specific IgA and IgG antibodies, which reached their maximum on the 28th day, and they promoted immune central memory T cells and CD8+ effects generation of memory T cells. In conclusion, the prepared coated PLGA rod-shaped particles can improve the immune response of the body as an oral vaccine carrier, thereby producing a better immune effect and providing new materials and ideas for the research of oral vaccines.

Key words: Oral vaccine    PLGA rod-shaped particles    β-glucan    Dendritic cells (DCs)    Mucosal immunity
收稿日期: 2022-04-04 出版日期: 2022-09-07
ZTFLH:  Q819  
基金资助: * 国家自然科学基金(22078335);国家自然科学基金(21776287)
通讯作者: 中西秀树     E-mail: hideki@jiangnan.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
胡微
吴颉
中西秀树

引用本文:

胡微,吴颉,中西秀树. 形貌调控与镀层修饰结合制备口服疫苗载体*[J]. 中国生物工程杂志, 2022, 42(8): 40-51.

HU Wei,WU Jie,HIDEKI Nakanishi. Preparation of Oral Vaccine Carriers by Combining Morphology Control and Plating Modification. China Biotechnology, 2022, 42(8): 40-51.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.2204006        https://manu60.magtech.com.cn/biotech/CN/Y2022/V42/I8/40

图1  镀层PLGA杆状颗粒制备流程示意图
Group Oral dose/μL Antigen/μg
OVA Oral 400 10
PLGA spherical 400 10
PLGA rod-shaped 400 10
T-Chitosan 400 10
T-β-Glucan 400 10
表1  每只小鼠每次免疫剂量
图2  不同PBS浓度下制备的PLGA颗粒
图3  不同PVA浓度下制备的PLGA颗粒
图4  PLGA杆状颗粒(a)、PLGA球状颗粒(b)和不同形貌PLGA颗粒(c)的X射线衍射图
图5  不同形貌PLGA颗粒的BET比表面积(a)和蛋白质包埋率(b)
图6  T-HPMCP的红外光谱图(a)和核磁共振图谱(b)
图7  镀层电位分布图
图8  不同pH敏感性外壳的PLGA颗粒的体外蛋白质释放曲线
图9  Caco-2细胞单层模型考察PLGA颗粒透膜速率
图10  激光共聚焦表征Caco-2细胞对镀层PLGA杆状颗粒的摄取(a)和流式细胞仪表征Caco-2细胞对不同形貌PLGA颗粒的摄取(b)
图11  不同表面镀层的PLGA颗粒对DC表面分子的活化效果
图12  OVA特异性抗体分泌
图13  记忆性T细胞活化分子表达
[1] Shamsuzzaman S, Ahmed T, Mannoor K, et al. Robust gut associated vaccine-specific antibody-secreting cell responses are detected at the mucosal surface of Bangladeshi subjects after immunization with an oral killed bivalent V. cholerae O1/O 139 whole cell cholera vaccine: comparison with other mucosal and systemic responses. Vaccine, 2009, 27(9): 1386-1392.
doi: 10.1016/j.vaccine.2008.12.041 pmid: 19146897
[2] Drucker D J. Advances in oral peptide therapeutics. Nature Reviews Drug Discovery, 2020, 19(4): 277-289.
doi: 10.1038/s41573-019-0053-0 pmid: 31848464
[3] Ferber S, Gonzalez R J, Cryer A M, et al. Immunology-guided biomaterial design for mucosal cancer vaccines. Advanced Materials, 2020, 32(13): 1903847.
doi: 10.1002/adma.201903847
[4] Lee K Y, Mooney D J. Alginate: properties and biomedical applications. Progress in Polymer Science, 2012, 37(1): 106-126.
doi: 10.1016/j.progpolymsci.2011.06.003
[5] Singh B, Maharjan S, Jiang T, et al. Attuning hydroxypropyl methylcellulose phthalate to oral delivery vehicle for effective and selective delivery of protein vaccine in ileum. Biomaterials, 2015, 59: 144-159.
doi: 10.1016/j.biomaterials.2015.04.017
[6] Banerjee A, Qi J P, Gogoi R, et al. Role of nanoparticle size, shape and surface chemistry in oral drug delivery. Journal of Controlled Release, 2016, 238: 176-185.
doi: S0168-3659(16)30497-7 pmid: 27480450
[7] Dendukuri D, Pregibon D C, Collins J, et al. Continuous-flow lithography for high-throughput microparticle synthesis. Nature Materials, 2006, 5(5): 365-369.
doi: 10.1038/nmat1617
[8] Dendukuri D, Tsoi K, Hatton T A, et al. Controlled synthesis of nonspherical microparticles using microfluidics. Langmuir: the ACS Journal of Surfaces and Colloids, 2005, 21(6): 2113-2116.
doi: 10.1021/la047368k
[9] Fan Q Z, Qi F, Miao C Y, et al. Direct and controllable preparation of uniform PLGA particles with various shapes and surface morphologies. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 500: 177-185.
doi: 10.1016/j.colsurfa.2016.04.028
[10] de Smet R, Demoor T, Verschuere S, et al. Β-Glucan microparticles are good candidates for mucosal antigen delivery in oral vaccination. Journal of Controlled Release: Official Journal of the Controlled Release Society, 2013, 172(3): 671-678.
doi: 10.1016/j.jconrel.2013.09.007
[11] Liu H, Jia Z H, Yang C M, et al. Aluminum hydroxide colloid vaccine encapsulated in yeast shells with enhanced humoral and cellular immune responses. Biomaterials, 2018, 167: 32-43.
doi: 10.1016/j.biomaterials.2018.03.014
[12] Nan F F, Wu J, Qi F, et al. Preparation of uniform-sized colloidosomes based on chitosan-coated alginate particles and its application for oral insulin delivery. Journal of Materials Chemistry B, 2014, 2(42): 7403-7409.
doi: 10.1039/C4TB01259C
[13] Quan J S, Jiang H L, Kim E M, et al. pH-sensitive and mucoadhesive thiolated eudragit-coated chitosan microspheres. International Journal of Pharmaceutics, 2008, 359(1-2): 205-210.
doi: 10.1016/j.ijpharm.2008.04.003 pmid: 18490120
[14] Lv P P, Wei W, Yue H, et al. Porous quaternized chitosan nanoparticles containing paclitaxel nanocrystals improved therapeutic efficacy in non-small-cell lung cancer after oral administration. Biomacromolecules, 2011, 12(12): 4230-4239.
doi: 10.1021/bm2010774
[15] Heslinga M J, Mastria E M, Eniola-Adefeso O. Fabrication of biodegradable spheroidal microparticles for drug delivery applications. Journal of Controlled Release, 2009, 138(3): 235-242.
doi: 10.1016/j.jconrel.2009.05.020 pmid: 19467275
[16] Delon L, Gibson R J, Prestidge C A, et al. Mechanisms of uptake and transport of particulate formulations in the small intestine. Journal of Controlled Release, 2022, 343: 584-599.
doi: 10.1016/j.jconrel.2022.02.006
[17] Mohan S, Jayaprakash A, Jose S P. Fourier transform Raman and infrared spectral investigations of 2, 6-dimethyl-2, 5-heptadien-4-one. AIP Conference Proceedings, 2010, 1267(1): 1209-1210.
[18] Xiong X B, Mahmud A, Uludağ H, et al. Conjugation of arginine-glycine-aspartic acid peptides to poly (ethylene oxide)-b-poly(ε-caprolactone) micelles for enhanced intracellular drug delivery to metastatic tumor cells. Biomacromolecules, 2007, 8(3): 874-884.
doi: 10.1021/bm060967g
[19] Sharma G, Valenta D T, Altman Y, et al. Polymer particle shape independently influences binding and internalization by macrophages. Journal of Controlled Release, 2010, 147(3): 408-412.
doi: 10.1016/j.jconrel.2010.07.116
[20] Huang H B, Ostroff G R, Lee C K, et al. Robust stimulation of humoral and cellular immune responses following vaccination with antigen-loaded beta-glucan particles. mBio, 2010, 1(3): e00164-e00110.
[21] Cornel A M, Mimpen I L, Nierkens S. MHC class I downregulation in cancer: underlying mechanisms and potential targets for cancer immunotherapy. Cancers, 2020, 12(7): 1760.
doi: 10.3390/cancers12071760
[1] 刘地, 晏婷, 何秀娟, 郑文云, 马兴元. 细菌性腹泻三联口服疫苗的研制及其免疫效果的初步评价[J]. 中国生物工程杂志, 2017, 37(7): 18-26.
[2] 王佃亮. 讲座细胞药物的制备工艺——细胞药物连载之二[J]. 中国生物工程杂志, 2016, 36(7): 127-133.
[3] 谢雯琦, 马三梅, 王永飞, 孙小武. 转基因番茄口服疫苗的现状,问题及对策[J]. 中国生物工程杂志, 2014, 34(10): 94-100.
[4] 李玲玲, 周伟. PEG10基因转染的树突状细胞疫苗对肝癌细胞的杀伤实验研究[J]. 中国生物工程杂志, 2011, 31(03): 35-38.
[5] 崔巍,沈秉谦,杨胜利. 树突状细胞对海藻酸钙纳米胶囊的吞噬作用与功能诱导[J]. 中国生物工程杂志, 2008, 28(7): 26-31.
[6] 郑克孝,崔巍,沈秉谦,杨胜利. 具有佐剂效果的海藻酸钙纳米胶囊制备[J]. 中国生物工程杂志, 2008, 28(1): 49-54.
[7] 张娅, 曾君祉, 周志勇, 陈毓荃, 黄华樑. 植物性口服疫苗研究进展[J]. 中国生物工程杂志, 2004, 24(9): 12-15.
[8] 张士猛, 刘志敏. 热休克蛋白gp96作为抗原载体的研究进展[J]. 中国生物工程杂志, 2003, 23(5): 12-16.
[9] 耿德贵, 王义琴, 李文彬, 孙勇如. 利用转基因植物生产口服疫苗的研究现状[J]. 中国生物工程杂志, 2002, 22(1): 19-21,14.