Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2022, Vol. 42 Issue (8): 13-20    DOI: 10.13523/j.cb.2203065
研究报告     
牙源性干细胞复合微渠多孔羟基磷灰石支架成骨性能研究*
赖爽1,2,刘畅1,刘春晖2,刘聪2,任小华1,2,**(),牟雁东1,2,**()
1.电子科技大学附属医院 四川省人民医院 成都 610072
2.电子科技大学医学院 成都 610072
Osteogenic Properties of Dental-derived Stem Cell Composite with Grooved Porous Hydroxyapatite Scaffolds
LAI Shuang1,2,LIU Chang1,LIU Chun-hui2,LIU Cong2,REN Xiao-hua1,2,**(),MU Yan-dong1,2,**()
1. Affiliated Hospital of University of Electronic Science and Technology of China,Sichuan Provincial People’s Hospital, Chengdu 610072, China
2. University of Electronic Science and Technology of China, Medical School,Chengdu 610072, China
 全文: PDF(2454 KB)   HTML
摘要:

目的: 探讨牙源性干细胞复合微渠多孔羟基磷灰石支架(grooved porous hydroxyapatite scaffolds, HAG支架)的成骨性能,为骨缺损修复治疗提供新手段。方法: 从健康成人第三磨牙中提取牙周膜干细胞(periodontal ligament stem cells, PDLSCs)及牙髓干细胞(dental pulp stem cells, DPSCs)分别接种于HAG支架上,进行多向分化鉴定及碱性磷酸酶(alkaline phosphatase,ALP)活性测定;并通过CCK-8检测细胞增殖能力;逆转录聚合酶链反应(qRT-PCR)检测骨形态发生蛋白2(bone morphogenetic protein 2, BMP-2)、骨钙素(osteocalcin, OCN)和骨桥蛋白(osteopontin, OPN)等成骨相关基因的表达。体内研究中将搭载PDLSCs和DPSCs的HAG支架移植到裸鼠的背部皮下,8周后取材,组织切片后采用苏木精-伊红(HE)染色观察新骨形成,提取组织蛋白采用Western blot检测ALP、OCN等成骨相关蛋白的表达。结果: 体外研究中DPSCs复合HAG支架组的细胞增殖能力、ALP活性,以及成骨相关基因ALPBMP2OCN等的表达均高于PDLSCs复合HAG支架组。体内研究中HE染色显示,PDLSCs复合HAG支架组及DPSCs复合HAG支架组均较空白HAG支架组有更多细胞生长区、纤维细胞增生及骨基质形成,且DPSCs复合HAG支架组的骨基质面积更大,成纤维细胞数量更多;PDLSCs复合HAG支架组及DPSCs复合HAG支架组成骨相关蛋白的表达量均高于空白HAG组,且DPSCs复合HAG支架组中ALP蛋白表达量显著高于PDLSCs复合HAG支架组。结论: PDLSCs、DPSCs复合HAG支架在体内外均表现出良好的成骨性能,其中DPSCs复合HAG支架的成骨性能更为优异。

关键词: 羟基磷灰石牙髓干细胞牙周膜干细胞骨再生    
Abstract:

Objective: To investigate the osteogenic properties of dental-derived stem cell composite with grooved porous hydroxyapatite (HAG) scaffolds to provide a new approach for bone defect repair. Methods: Periodontal ligament stem cells (PDLSCs) and dental pulp stem cells (DPSCs) were separated from healthy adults’ third molars and seeded on HAG scaffolds for multi-directional differentiation identification and alkaline phosphatase (ALP) activity detection; the cell proliferation ability was detected by CCK-8; reverse transcription polymerase chain reaction (qRT-PCR) was used to detect bone morphogenetic protein 2 (BMP-2), osteocalcin (OCN) and osteopontin (OPN).In vivo study, the HAG scaffolds loaded with two kinds of cells were transplanted into the back subcutaneous tissue of nude mice, and the tissue engineered bones were taken after 8 weeks. After tissue sections, hematoxylin and eosin (HE) staining was used to observe the formation of new bones. Western blot was used to observe expressions of osteogenesis-related proteins such as ALP and OCN. Results: In the in vitro study, the cell proliferation ability, ALP activity, and the expressions of osteogenesis-related genes ALP, BMP2, and OCN in the DPSCs combined with HAG scaffold group were higher than those in the PDLSCs combined with HAG scaffold group. In vivo study, HE staining showed that the PDLSCs combined with HAG scaffold group and the DPSCs combined with HAG scaffold group had more cell growth areas, fibrocyte proliferation and bone matrix formation than the blank HAG scaffold group, and the DPSCs combined with HAG scaffold group had more bone matrix area. The expression of bone-related proteins in the PDLSCs combined with HAG scaffold group and the DPSCs combined with HAG scaffold group was higher than that in the blank HAG group, and the expression of ALP protein in the DPSCs combined with HAG scaffold group was significantly higher than that in the PDLSCs combined with HAG scaffold group. Conclusion: PDLSC and DPSC composites with HAG scaffolds showed good osteogenic properties in vitro and in vivo, and the osteogenic properties of DPSC composite with HAG scaffolds were even better.

Key words: Hydroxyapatite    Periodontal stem cells    Dental pulp stem cells    Osteogenesis
收稿日期: 2022-03-28 出版日期: 2022-09-07
ZTFLH:  X703.5  
基金资助: * 国家自然科学基金(8207033598)
通讯作者: 任小华,牟雁东     E-mail: 1072718910@qq.com;995448060@qq.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
赖爽
刘畅
刘春晖
刘聪
任小华
牟雁东

引用本文:

赖爽,刘畅,刘春晖,刘聪,任小华,牟雁东. 牙源性干细胞复合微渠多孔羟基磷灰石支架成骨性能研究*[J]. 中国生物工程杂志, 2022, 42(8): 13-20.

LAI Shuang,LIU Chang,LIU Chun-hui,LIU Cong,REN Xiao-hua,MU Yan-dong. Osteogenic Properties of Dental-derived Stem Cell Composite with Grooved Porous Hydroxyapatite Scaffolds. China Biotechnology, 2022, 42(8): 13-20.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.2203065        https://manu60.magtech.com.cn/biotech/CN/Y2022/V42/I8/13

名称 序列
ALP (F)5'-CCTCATCATCTTCCTGGGCG-3'
(R)5'-CATGGCCAGGGGTATCTCAG-3'
BMP2 (F)5'-CGCTGTCTTCTAGCGTTGC-3'
(R)5'-CAACTCGAACTCGCTCAGGA-3'
OCN (F)5'-CTCACACTCCTCGCCCTATTG-3'
(R)5'-CGCCTGGGTCTCTTCACTAC-3'
COL-1 (F)5'-AGGGGTCTCCATGGTGAGTT-3'
(R)5'-GAAGGACCTCGGCTTCCAAT-3'
Runx2 (F)5'-TTCCAGAATGCTTCCGCCAT-3'
(R)5'-AACTGCTGTGGCTTCCATCA-3'
GAPDH (F)5'-TGCAATAACCACCCCTGACC-3'
(R)5'-ATTTGCCGAAGAGCCCTCAG-3'
表1  PCR实验引物序列
名称 来源
ALP 兔抗人多克隆抗体;abcam, ab83259
OCN 鼠抗人单克隆抗体;abcam, ab13420
VEGF 鼠抗人单克隆抗体;Santa Cruz, sc-7269
β-actin 兔抗人单克隆抗体;Abclonal, AC026
表2  Western blot实验抗体
图1  PDLSCs(a)和DPSCs(b)成骨诱导分化结果
图2  PDLSCs(a)和DPSCs(b)成脂诱导分化结果
图3  细胞增殖检测
图4  细胞复合HAG支架进行成骨诱导后ALP活性
图5  成骨相关基因的表达
图6  组织工程骨的组织切片染色
图7  组织工程骨中ALP、OCN和VEGF的Western blot条带
图8  组织工程骨中ALP、OCN和VEGF蛋白表达的定量分析
[1] Roseti L, Parisi V, Petretta M, et al. Scaffolds for Bone Tissue Engineering: state of the art and new perspectives. Materials Science and Engineering: C, 2017, 78: 1246-1262.
doi: 10.1016/j.msec.2017.05.017
[2] Qu H W, Fu H Y, Han Z Y, et al. Biomaterials for bone tissue engineering scaffolds: a review. RSC Advances, 2019, 9(45): 26252-26262.
doi: 10.1039/C9RA05214C
[3] Koons G L, Diba M N, Mikos A G. Materials design for bone-tissue engineering. Nature Reviews Materials, 2020, 5(8): 584-603.
doi: 10.1038/s41578-020-0204-2
[4] Shang F Q, Yu Y, Liu S Y, et al. Advancing application of mesenchymal stem cell-based bone tissue regeneration. Bioactive Materials, 2021, 6(3): 666-683.
doi: 10.1016/j.bioactmat.2020.08.014
[5] Song N, Scholtemeijer M, Shah K. Mesenchymal stem cell immunomodulation: mechanisms and therapeutic potential. Trends in Pharmacological Sciences, 2020, 41(9): 653-664.
doi: S0165-6147(20)30145-0 pmid: 32709406
[6] Wang H H, Zhong Q, Yang T S, et al. Comparative characterization of SHED and DPSCs during extended cultivation in vitro. Molecular Medicine Reports, 2018, 17(5): 6551-6559.
[7] Ansari S, Seagroves J T, Chen C, et al. Dental and orofacial mesenchymal stem cells in craniofacial regeneration: the prosthodontist’s point of view. The Journal of Prosthetic Dentistry, 2017, 118(4): 455-461.
doi: 10.1016/j.prosdent.2016.11.021
[8] Kim B C, Bae H, Kwon I K, et al. Osteoblastic/cementoblastic and neural differentiation of dental stem cells and their applications to tissue engineering and regenerative medicine. Tissue Engineering Part B, Reviews, 2012, 18(3): 235-244.
doi: 10.1089/ten.teb.2011.0642
[9] Volponi A A, Pang Y, Sharpe P T. Stem cell-based biological tooth repair and regeneration. Trends in Cell Biology, 2010, 20(12): 715-722.
doi: 10.1016/j.tcb.2010.09.012
[10] 黄智蕴, 王娟, 叶青松, 等. 牙髓干细胞治疗颌面部缺损的应用潜力. 临床口腔医学杂志, 2021, 37(7): 436-439.
Huang Z Y, Wang J, Ye Q S, et al. Application potential of dental pulp stem cells in the treatment of maxillofacial defects. Journal of Clinical Stomatology, 2021, 37(7): 436-439.
[11] 赵艳, 刘佳, 秦文, 等. 不同等级应力对人炎症牙周膜干细胞分化及细胞骨架重组的研究. 临床口腔医学杂志, 2019, 35(3): 131-135.
Zhao Y, Liu J, Qin W, et al. The effects of different magnitudes of static mechanical strain on the differentiation and cytoskeletal reorganization of human periodontal ligament stem cells in an inflammatory condition in vitro. Journal of Clinical Stomatology, 2019, 35(3): 131-135.
[12] Sequeira D B, Oliveira A R, Seabra C M, et al. Regeneration of pulp-dentin complex using human stem cells of the apical papilla: in vivo interaction with two bioactive materials. Clinical Oral Investigations, 2021, 25(9): 5317-5329.
doi: 10.1007/s00784-021-03840-9 pmid: 33630165
[13] Yamakawa D, Kawase-Koga Y, Fujii Y, et al. Effects of helioxanthin derivative-treated human dental pulp stem cells on fracture healing. International Journal of Molecular Sciences, 2020, 21(23): 9158.
doi: 10.3390/ijms21239158
[14] Mondal B, Mondal S, Mondal A, et al. Fish scale derived hydroxyapatite scaffold for bone tissue engineering. Materials Characterization, 2016, 121: 112-124.
doi: 10.1016/j.matchar.2016.09.034
[15] Ren X H, Tuo Q, Tian K, et al. Enhancement of osteogenesis using a novel porous hydroxyapatite scaffold in vivo and vitro. Ceramics International, 2018, 44(17): 21656-21665.
doi: 10.1016/j.ceramint.2018.08.249
[16] Li C L, Yang L, Ren X H, et al. Groove structure of porous hydroxyapatite scaffolds (HAS) modulates immune environment via regulating macrophages and subsequently enhances osteogenesis. JBIC Journal of Biological Inorganic Chemistry, 2019, 24(5): 733-745.
doi: 10.1007/s00775-019-01687-w
[17] 温永梅, 牟雁东, 伍佳, 等. 新型多孔羟基磷灰石陶瓷支架在骨内成骨的初步评价. 中国口腔种植学杂志, 2017, 22(1): 9-12, 28.
Wen Y M, Mu Y D, Wu J, et al. New type of porous hydroxyapatite ceramic scaffolds in bone ossification of preliminary evaluation. Chinese Journal of Oral Implantology, 2017, 22(1): 9-12, 28.
[18] 吕欣荣, 温永梅, 伍佳, 等. 微渠表面多孔羟基磷灰石支架体内异位成骨性的研究. 实用医院临床杂志, 2017, 14(3): 28-31.
Lv X R, Wen Y M, Wu J, et al. Osteogenesis of micro-grooved patterns of porous hydroxyapatite scaffolds in non-osseous tissue. Practical Journal of Clinical Medicine, 2017, 14(3): 28-31.
[19] Al-Habib M, Huang G T J. Dental mesenchymal stem cells: dental pulp stem cells, periodontal ligament stem cells, apical papilla stem cells, and primary teeth stem cells-isolation, characterization, and expansion for tissue engineering. Methods in Molecular Biology (Clifton, N J), 2019, 1922: 59-76.
[20] di Cosola M, Cantore S, Balzanelli M G, et al. Dental-derived stem cells and biowaste biomaterials: What’s next in bone regenerative medicine applications. BIOCELL, 2022, 46(4): 923-929.
doi: 10.32604/biocell.2022.018409
[21] Fang F C, Zhang K Y, Chen Z, et al. Noncoding RNAs: new insights into the odontogenic differentiation of dental tissue-derived mesenchymal stem cells. Stem Cell Research & Therapy, 2019, 10(1): 297.
[22] Osathanon T, Manokawinchoke J, Nowwarote N, et al. Notch signaling is involved in neurogenic commitment of human periodontal ligament-derived mesenchymal stem cells. Stem Cells and Development, 2013, 22(8): 1220-1231.
doi: 10.1089/scd.2012.0430
[23] Chen Y T, Huang H C, Li G X, et al. Dental-derived mesenchymal stem cell sheets: a prospective tissue engineering for regenerative medicine. Stem Cell Research & Therapy, 2022, 13(1): 38.
[24] Mahmoud E M, Sayed M, El-Kady A M, et al. In vitro and in vivo study of naturally derived alginate/hydroxyapatite bio composite scaffolds. International Journal of Biological Macromolecules, 2020, 165: 1346-1360.
doi: 10.1016/j.ijbiomac.2020.10.014 pmid: 33038401
[25] Vasandan A B, Shankar S R, Prasad P, et al. Functional differences in mesenchymal stromal cells from human dental pulp and periodontal ligament. Journal of Cellular and Molecular Medicine, 2014, 18(2): 344-354.
doi: 10.1111/jcmm.12192 pmid: 24393246
[26] Lei M, Li K, Li B, et al. Mesenchymal stem cell characteristics of dental pulp and periodontal ligament stem cells after in vivo transplantation. Biomaterials, 2014, 35(24): 6332-6343.
doi: 10.1016/j.biomaterials.2014.04.071
[27] Zhou L L, Liu W, Wu Y M, et al. Oral mesenchymal stem/progenitor cells: the immunomodulatory Masters. Stem Cells International, 2020, 2020: 1327405.
[28] Wada N, Menicanin D, Shi S T, et al. Immunomodulatory properties of human periodontal ligament stem cells. Journal of Cellular Physiology, 2009, 219(3): 667-676.
doi: 10.1002/jcp.21710
[1] 邓义熹, 李继东, 李乐, 蒙国基, 于玉根. 添加SNS能显著提高CHT填料使用寿命的研究[J]. 中国生物工程杂志, 2017, 37(1): 81-88.
[2] 孟纯阳,蒋电明,安洪,黄伟,左弈,李玉宝. 多孔n-HA/PA66支架复合rhBMP-2修复兔桡骨缺损的实验研究[J]. 中国生物工程杂志, 2009, 29(08): 8-13.
[3] 刘魁,郭磊,黄晶晶,杨柯. AZ31B镁合金植入小鼠的生物相容性考察[J]. 中国生物工程杂志, 2008, 28(3): 59-63.
[4] 茆灿泉, 刘畅, 马春燕, 徐柳, 佟鑫, 郭泰林, 李学如, 吴坚. HA结合肽的筛选与序列分析[J]. 中国生物工程杂志, 2005, 25(10): 25-28.
[5] 余晓英, 周纯益, 余贤真, 欧阳藩. 新型、高效球形羟基磷灰石分离介质[J]. 中国生物工程杂志, 1996, 16(4): 17-19.
[6] M·Shoyab, 戴秀玉. 羟基磷灰石层析分离染色体外DNA[J]. 中国生物工程杂志, 1982, 2(1): 38-41.