Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2022, Vol. 42 Issue (6): 30-38    DOI: 10.13523/j.cb.2203051
技术与方法     
功能性新型冠状病毒RBD结构域在毕赤酵母表面的展示*
于璐1,胡暄1,张小鹃1,2,牛安娜1,张晓鹏1,**()
1.军事科学院军事医学研究院生物工程研究所 北京 100071
2.安徽大学物质科学与信息技术研究院 合肥 230601
Surface Display of Functional RBD of SARS-CoV-2 in Pichia pastoris
YU Lu1,HU Xuan1,ZHANG Xiao-juan1,2,NIU An-na1,ZHANG Xiao-peng1,**()
1. Institute of Biotechnology, Academy of Military Medical Science, Beijing 100071, China
2. Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
 全文: PDF(4694 KB)   HTML
摘要:

目的:设计并构建新型冠状病毒(SARS-CoV-2)受体结合结构域(receptor binding domain,RBD)在毕赤酵母表面的展示体系,并对表面展示的RBD进行功能性评价,从而为以RBD为靶点的高通量药物筛选平台奠定基础。方法:将四种锚定分子与新冠病毒RBD融合,电转化至毕赤酵母中;通过细胞免疫荧光分析,筛选能够成功展示RBD的锚定系统;进一步分析其与血管紧张素转化酶2(angiotensin-converting enzyme 2,ACE2)受体的亲和力,证明展示在细胞表面RBD分子的功能。结果:仅Sed1p锚定分子能够有效呈递RBD至毕赤酵母细胞表面,展示效率约为70%;亲和力分析结果表明,ACE2受体和表面展示RBD的亲和力(KD = 30.42 nmol/L)与溶液中RBD的亲和力(KD = 16.00 nmol/L)较为接近。结论:这一体系能够在毕赤酵母表面高效地展示具有生物学功能的RBD,可用于抗新冠病毒RBD药物的高通量筛选和评价。

关键词: 表面展示新型冠状病毒毕赤酵母受体结合结构域亲和力    
Abstract:

Objective: To establish a high-throughput platform for drug discovery targeting receptor binding domain (RBD) of SARS-CoV-2, a surface display system was designed and constructed to deliver functional RBD to the surface of Pichia pastoris. Methods: Four anchor molecules were fused to RBD, and then were transformed into Pichia pastoris by using electroporation. The surface display efficiency of RBD was measured using flow cytometry, and the affinity of RBD binding to the ACE2 receptor was further determined. Results: RBD-Sed1p system exhibited the highest surface display efficiency of 70%. The binding affinity to ACE2 of RBD displayed on the cellular surface (KD=30.42 nmol/L) was close to that of RBD in solution (KD=16.00 nmol/L). Conclusion: A surface display system of RBD was successfully developed in Pichia pastoris, which can be used for high-throughput screening and evaluation of anti-COVID-19 drugs.

Key words: Surface display    SARS-CoV-2    Pichia pastoris    Receptor binding domain(RBD)    Affinity
收稿日期: 2022-03-23 出版日期: 2022-07-07
ZTFLH:  Q789  
基金资助: *国家自然科学基金(82173787)
通讯作者: 张晓鹏     E-mail: zxp8565@aliyun.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
于璐
胡暄
张小鹃
牛安娜
张晓鹏

引用本文:

于璐,胡暄,张小鹃,牛安娜,张晓鹏. 功能性新型冠状病毒RBD结构域在毕赤酵母表面的展示*[J]. 中国生物工程杂志, 2022, 42(6): 30-38.

YU Lu,HU Xuan,ZHANG Xiao-juan,NIU An-na,ZHANG Xiao-peng. Surface Display of Functional RBD of SARS-CoV-2 in Pichia pastoris. China Biotechnology, 2022, 42(6): 30-38.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.2203051        https://manu60.magtech.com.cn/biotech/CN/Y2022/V42/I6/30

图1  四种RBD表面展示质粒的设计与构建
图2  RBD表面展示质粒SacⅠ线性化结果
图3  RBD表面展示重组菌株的菌落PCR鉴定
图4  荧光显微镜和流式细胞术检测RBD展示重组菌株
图5  GS115/RBD-Sed1p展示及检测
图6  流式细胞术分析GS115/RBD-Sed1p与ACE2的结合活性
图7  RBD和ACE2受体结合亲和力
图8  GS115/RBD-Sed1p中和抗体竞争性结合检测
[1] Wang Q H, Zhang Y F, Wu L L, et al. Structural and functional basis of SARS-CoV-2 entry by using human ACE2. Cell, 2020, 181(4): 894-904.e9.
doi: 10.1016/j.cell.2020.03.045
[2] Wu L L, Chen Q, Liu K F, et al. Broad host range of SARS-CoV-2 and the molecular basis for SARS-CoV-2 binding to cat ACE2. Cell Discovery, 2020, 6: 68.
doi: 10.1038/s41421-020-00210-9
[3] Ju B, Zhang Q, Ge J W, et al. Human neutralizing antibodies elicited by SARS-CoV-2 infection. Nature, 2020, 584(7819): 115-119.
doi: 10.1038/s41586-020-2380-z
[4] Chen H Y, Ullah J, Jia J R. Progress in Bacillus subtilis spore surface display technology towards environment, vaccine development, and biocatalysis. Journal of Molecular Microbiology and Biotechnology, 2017, 27(3): 159-167.
[5] van Bloois E, Winter R T, Kolmar H, et al. Decorating microbes: surface display of proteins on Escherichia coli. Trends in Biotechnology, 2011, 29(2): 79-86.
doi: 10.1016/j.tibtech.2010.11.003 pmid: 21146237
[6] Kuroda K, Ueda M. Arming technology in yeast-novel strategy for whole-cell biocatalyst and protein engineering. Biomolecules, 2013, 3(3): 632-650.
doi: 10.3390/biom3030632
[7] Zhang Z, Liu J, Fan J, et al. Detection of catechol using an electrochemical biosensor based on engineered Escherichia coli cells that surface-display laccase. Analytica Chimica Acta, 2018, 1009: 65-72.
doi: S0003-2670(18)30072-2 pmid: 29422133
[8] Peltomaa R, Benito-Peña E, Barderas R, et al. Phage display in the quest for new selective recognition elements for biosensors. ACS Omega, 2019, 4(7): 11569-11580.
doi: 10.1021/acsomega.9b01206 pmid: 31460264
[9] Karbalaei M, Rezaee S A, Farsiani H. Pichia pastoris: a highly successful expression system for optimal synthesis of heterologous proteins. Journal of Cellular Physiology, 2020, 235(9): 5867-5881.
doi: 10.1002/jcp.29583 pmid: 32057111
[10] Cherf G M, Cochran J R. Applications of yeast surface display for protein engineering. Methods, in Molecular Biology, 2015, 1319:155.
[11] Lozanċić M, Hossain S A, Mrša V, et al. Surface display- an alternative to classic enzyme immobilization. Catalysts, 2019, 9(9): 728.
doi: 10.3390/catal9090728
[12] Klis F M, Mol P, Hellingwerf K, et al. Dynamics of cell wall structure in Saccharomyces cerevisiae. FEMS Microbiology Reviews, 2002, 26(3): 239-256.
doi: 10.1111/j.1574-6976.2002.tb00613.x
[13] Yang N, Yu Z F, Jia D C, et al. The contribution of Pir protein family to yeast cell surface display. Applied Microbiology and Biotechnology, 2014, 98(7): 2897-2905.
doi: 10.1007/s00253-014-5538-5 pmid: 24493571
[14] Dong J X, Xie X, He Y S, et al. Surface display and bioactivity of Bombyx mori acetylcholinesterase on Pichia pastoris. PLoS One, 2013, 8(8): e70451.
doi: 10.1371/journal.pone.0070451
[15] Liu Y H, Huang L, Fu Y, et al. A novel process for phosphatidylserine production using a Pichia pastoris whole-cell biocatalyst with overexpression of phospholipase D from Streptomyces halstedii in a purely aqueous system. Food Chemistry, 2019, 274: 535-542.
doi: 10.1016/j.foodchem.2018.08.105
[16] Sena R O, Carneiro C, Moura M V H, et al. Application of Rhizomucor miehei lipase-displaying Pichia pastoris whole cell for biodiesel production using agro-industrial residuals as substrate. International Journal of Biological Macromolecules, 2021, 189: 734-743.
doi: 10.1016/j.ijbiomac.2021.08.173
[17] 代敏, 纪昌涛, 汪小锋, 等. 疏棉状嗜热丝孢菌脂肪酶在毕赤酵母中的表面展示及酶学性质. 微生物学报, 2012, 52(7): 857-865.
Dai M, Ji C T, Wang X F, et al. Cell surface display of Thermomyces lanuginosus lipase in Pichia pastoris and its characterization. Acta Microbiologica Sinica, 2012, 52(7): 857-865.
[18] Shaheen H H, Prinz B, Chen M T, et al. A dual-mode surface display system for the maturation and production of monoclonal antibodies in glyco-engineered Pichia pastoris. PLoS One, 2013, 8(7): e70190.
doi: 10.1371/journal.pone.0070190
[19] Li Z S, Miao Y L, Yang J M, et al. Efficient improvement of surface displayed lipase from Rhizomucor miehei in PichiaPinkTM protease-deficient system. Protein Expression and Purification, 2021, 180: 105804.
doi: 10.1016/j.pep.2020.105804
[20] Yang J M, Huang K, Xu X M, et al. Cell surface display of Thermomyces lanuginosus lipase in Pichia pastoris. Frontiers in Bioengineering and Biotechnology, 2020, 8: 544058.
doi: 10.3389/fbioe.2020.544058
[21] Zhang L, Liang S L, Zhou X Y, et al. Screening for glycosylphosphatidylinositol-modified cell wall proteins in Pichia pastoris and their recombinant expression on the cell surface. Applied and Environmental Microbiology, 2013, 79(18): 5519-5526.
doi: 10.1128/AEM.00824-13 pmid: 23835174
[22] Boder E T, Wittrup K D. Yeast surface display for screening combinatorial polypeptide libraries. Nature Biotechnology, 1997, 15(6): 553-557.
pmid: 9181578
[23] Naqvi A A T, Fatima K, Mohammad T, et al. Insights into SARS-CoV-2 genome, structure, evolution, pathogenesis and therapies: structural genomics approach. Biochimica et Biophysica Acta Molecular Basis of Disease, 2020, 1866(10): 165878.
doi: 10.1016/j.bbadis.2020.165878
[24] Routhu N K, Cheedarla N, Bollimpelli V S, et al. SARS-CoV-2 RBD trimer protein adjuvanted with Alum-3M-052 protects from SARS-CoV-2 infection and immune pathology in the lung. Nature Communications, 2021, 12(1): 3587.
doi: 10.1038/s41467-021-23942-y
[25] Walls A C, Fiala B, Schäfer A, et al. Elicitation of potent neutralizing antibody responses by designed protein nanoparticle vaccines for SARS-CoV-2. Cell, 2020, 183(5): 1367-1382, e17.
doi: 10.1016/j.cell.2020.10.043
[1] 杨依,张晴云,梅坤荣. 新型冠状病毒亚单位疫苗研究进展及现状*[J]. 中国生物工程杂志, 2022, 42(5): 124-138.
[2] 钱曼云,王继伟,李颢泽,王瑞华,刘云,李亚峰. SARS-CoV-2重组S1和S蛋白疫苗诱导保护性免疫的研究*[J]. 中国生物工程杂志, 2022, 42(5): 106-116.
[3] 刘明珠,张良,郭芳,李春,冯旭东. 酵母表面展示体系的构建及在纤维素降解中的应用*[J]. 中国生物工程杂志, 2022, 42(5): 91-99.
[4] 李丁,李兰,安允飞,毕振威,于晓明,陈瑾,郑其升. 联合策略优化犬α干扰素的酵母表达*[J]. 中国生物工程杂志, 2022, 42(1/2): 88-95.
[5] 贠涛,巩玥,谷芃,徐冰冰,李瑾,赵洗尘. 中国与“一带一路”参与国家抗击新冠肺炎疫情的国际科技合作现状与展望[J]. 中国生物工程杂志, 2021, 41(7): 110-121.
[6] 史瑞,严景华. 抗新型冠状病毒单克隆中和抗体药物研发进展*[J]. 中国生物工程杂志, 2021, 41(6): 129-135.
[7] 张赛,王刚,刘仲明,李辉军,汪大明,钱纯亘. 新型冠状病毒胶体金抗原快速检测试剂的研制及性能评价*[J]. 中国生物工程杂志, 2021, 41(5): 27-34.
[8] 范月蕾,王跃,王恒哲,李丹丹,毛开云. 新型冠状病毒体外诊断技术研发现状与展望 *[J]. 中国生物工程杂志, 2021, 41(2/3): 150-161.
[9] 陈中伟,郑璞,陈鹏程,吴丹. 耐热植酸酶突变体的筛选及性质研究 *[J]. 中国生物工程杂志, 2021, 41(2/3): 30-37.
[10] 唐跃威,刘治平. 基于深度学习与多层次信息融合的药物靶标亲和力预测*[J]. 中国生物工程杂志, 2021, 41(11): 40-47.
[11] 陈鑫洁,钱芷兰,刘启,赵清,张元兴,蔡孟浩. 毕赤酵母底盘芳香族氨基酸合成途径改造生产肉桂酸及对香豆酸*[J]. 中国生物工程杂志, 2021, 41(10): 52-61.
[12] 石鹏程, 纪晓俊. 酵母系统表达人表皮生长因子研究进展 *[J]. 中国生物工程杂志, 2021, 41(1): 72-79.
[13] 郭二鹏, 张建志, 司同. 羊毛硫肽的高通量工程改造方法新进展 *[J]. 中国生物工程杂志, 2021, 41(1): 30-41.
[14] 张赛,向乐,李林海,李辉军,王刚,钱纯亘. 新型冠状病毒(2019-nCoV)IgM /IgG抗体检测试剂的研制及性能评价[J]. 中国生物工程杂志, 2020, 40(8): 1-9.
[15] 岑黔鸿,高彤,任怡,雷涵. 重组酿酒酵母表达幽门螺杆菌VacA蛋白及其免疫原性分析*[J]. 中国生物工程杂志, 2020, 40(5): 15-21.