Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2022, Vol. 42 Issue (6): 39-46    DOI: 10.13523/j.cb.2203005
技术与方法     
新型二合一PiggyBac转座系统的构建及功能验证*
张尧仓1,彭玉1,丁可昕2,台福敏2,郑晓飞2,秦宜德1(),付汉江1,2()
1.安徽医科大学基础医学院 合肥 230032
2.军事科学院军事医学研究院辐射医学研究所 放射生物学北京市重点实验室 北京 100850
Construction and Functional Verification of a Novel Two-in-one PiggyBac Transposon System
ZHANG Yao-cang1,PENG Yu1,DING Ke-xin2,TAI Fu-min2,ZHENG Xiao-fei2,QIN Yi-de1(),FU Han-jiang1,2()
1. School of Basic Medicine, Anhui Medical University, Hefei 230032, China
2. Beijing Key Laboratory of Radiobiology, Institute of Radiation Medicine, Academy of Military Medical Science, Beijing 100850, China
 全文: PDF(4276 KB)   HTML
摘要:

目的:PiggyBac(PB)转座子是一种可移动的遗传元件,采用“剪切和粘贴”机制在载体和染色体之间进行转座;通过将转座子元件和转座酶表达框整合到一个表达载体中,构建简便易用的二合一PB转座系统。方法:通过聚合酶链式反应(polymerase chain reaction,PCR)获取PiggyBac转座系统所需转座子元件和转座酶表达框,利用T4 DNA连接酶将转座酶表达框插入到pUC18载体上,再利用Gibson同源重组技术将转座子元件与重组载体结合构建二合一PB转座系统;使用该系统携带的增强型绿色荧光蛋白(enhanced green fluorescent protein,EGFP)以及功能性损伤抑制蛋白(damage-suppressing protein,DSUP)检测其有效性及可靠性。结果:在所有筛选获得的嘌呤霉素抗性细胞中,EGFP都是明亮可见;利用此二合一PB转座系统成功获得了可高效表达功能性损伤抑制蛋白的稳定细胞系,证明外源基因可被有效整合到基因组DNA中并表达。结论:成功构建了新型二合一PB转座系统,使稳定表达细胞系的建立更加经济简便。

关键词: PiggyBac转座子稳定转染EGFP    
Abstract:

Objective: The PiggyBac (PB) transposon is a mobile genetic element that transposes between vectors and chromosomes using a “cut and paste” mechanism. Transposon elements and transposase expression cassettes were integrated into an expression vector to construct an easy-to-use two-in-one PB transposon system. Methods: The transposon elements and transposase expression cassette required for the PiggyBac transposon system were obtained by polymerase chain reaction (PCR), and the transposase expression cassette was recombined with the original pUC18 vector using T4 DNA ligase. Gibson homologous recombination technology was used to combine transposon elements with recombination vector to construct a two-in-one PB transposon system. The system was tested for its efficacy and reliability using enhanced green fluorescent protein (EGFP) and functional damage suppressor protein (DSUP). Results: EGFP was visible and bright in all puromycin-resistant cells. In addition, a cell line stably expressing functional DSUP was obtained through the two-in-one PB transposon system, demonstrating that the foreign gene can be efficiently integrated into the genomic DNA and expressed. Conclusion: A new two-in-one PB transposition system was successfully constructed, which made the establishment of stable expression cell lines more convenient and economical.

Key words: PiggyBac transposon    Stable transfection    EGFP
收稿日期: 2022-03-03 出版日期: 2022-07-07
ZTFLH:  Q789  
基金资助: *国家自然科学基金(81773038);国家自然科学基金(32071290)
通讯作者: 秦宜德,付汉江     E-mail: fuhj75@126.com;yideqin@ahmu.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
张尧仓
彭玉
丁可昕
台福敏
郑晓飞
秦宜德
付汉江

引用本文:

张尧仓,彭玉,丁可昕,台福敏,郑晓飞,秦宜德,付汉江. 新型二合一PiggyBac转座系统的构建及功能验证*[J]. 中国生物工程杂志, 2022, 42(6): 39-46.

ZHANG Yao-cang,PENG Yu,DING Ke-xin,TAI Fu-min,ZHENG Xiao-fei,QIN Yi-de,FU Han-jiang. Construction and Functional Verification of a Novel Two-in-one PiggyBac Transposon System. China Biotechnology, 2022, 42(6): 39-46.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.2203005        https://manu60.magtech.com.cn/biotech/CN/Y2022/V42/I6/39

Name Sequence(5' to 3')
FALG-P2A-PuroR-F TACAAGTCCGGACTCAGATCTGGTACCGATTACAAAGACGATGACGATAAGG
FLAG-P2A-PuroR-R TCAGTTATCTAGATCCGGTGTCAGGCACCGGGCTTGCG
CMV-F TACGTTAAAGATAATCATGCGTAAAATTGACGCATGCCACCTCTGACTTGAGCGTCGAT
CMV-R CACCCTAGAAAGATAGTCTGCGTAAAATTGACGCATGGACTCTTGTTCCAAACTGGAAC
PiggyBac-F GTGTGGGAGGTTTTTTCGAGCCCTAGAAAGATAATCATATTGTGACGTACGTTAAAGATAATCATGCGT
PiggyBac-R GAGCTCGGTACATTACGCCACCCTAGAAAGATAGTCTGC
Transposase F TAAAACGACGGCCAGTGCCATGCCTAATGCGGCCGCCA
Transposase R TACGAATTCGAGCTCGGTACATTACGCCAAGCTTCAGGTCGAC
DSUP-F TTAGTGAACCGTCAGATCCGCTAGCGCTACCGGTCGCCACCATGGCATCCACACACCAATC
DSUP-R ATCGTCTTTGTAATCGGTACCCTTCCTCTTCCGTCCTCCAG
PEP-F CAGAGTGTCCGCCCTGAA
PEP-R CGGCGTTTGTCCACTTCA
PDP-F AGTGAGCAATGCAATTCTGGGAATGTTCAGGCTCTC
PDP-R CATCTTAAAACATGTTTATTTTTCCATTTCATCTTT
表1  PCR引物序列
图1  二合一PiggyBac转座系统构建
图2  载体的菌落聚合酶链式反应(PCR)验证
图3  二合一PiggyBac转座系统的可用性验证
图4  基因组DNA上插入片段检测
图5  使用二合一PiggyBac转座子系统建立稳定表达功能性DSUP蛋白的HEK-293T细胞系
[1] Kaestner L, Scholz A, Lipp P. Conceptual and technical aspects of transfection and gene delivery. Bioorganic & Medicinal Chemistry Letters, 2015, 25(6): 1171-1176.
doi: 10.1016/j.bmcl.2015.01.018
[2] Unciti-Broceta A, Bacon M N, Bradley M. Strategies for the preparation of synthetic transfection vectors. Topics in Current Chemistry, 2010, 296: 15-49.
[3] Klein P M, Wagner E. Bioreducible polycations as shuttles for therapeutic nucleic acid and protein transfection. Antioxidants & Redox Signaling, 2014, 21(5): 804-817.
[4] Prados J, Alvarez P J, Melguizo C, et al. How is gene transfection able to improve current chemotherapy? The role of combined therapy in cancer treatment. Current Medicinal Chemistry, 2012, 19(12): 1870-1888.
doi: 10.2174/092986712800099820
[5] Stepanenko A A, Heng H H. Transient and stable vector transfection: pitfalls, off-target effects, artifacts. Mutation Research/Reviews in Mutation Research, 2017, 773: 91-103.
doi: 10.1016/j.mrrev.2017.05.002
[6] Zhou Y, Liang Q L, Ou W T, et al. Effect of stable transfection with PHD 3 on growth and proliferation of HepG2 cells in vitro and in vivo. International Journal of Clinical and Experimental Medicine, 2014, 7(8): 2197-2203.
[7] Poulain A, Perret S, Malenfant F, et al. Rapid protein production from stable CHO cell pools using plasmid vector and the cumate gene-switch. Journal of Biotechnology, 2017, 255: 16-27.
doi: 10.1016/j.jbiotec.2017.06.009
[8] Solodushko V, Bitko V, Fouty B. Minimal piggyBac vectors for chromatin integration. Gene Therapy, 2014, 21(1): 1-9.
doi: 10.1038/gt.2013.52 pmid: 24131979
[9] Ding S, Wu X H, Li G, et al. Efficient transposition of the piggyBac (PB) transposon in mammalian cells and mice. Cell, 2005, 122(3): 473-483.
doi: 10.1016/j.cell.2005.07.013
[10] Li L, Liu P, Sun L, et al. PiggyBac transposon-based polyadenylation-signal trap for genome-wide mutagenesis in mice. Scientific Reports, 2016, 6: 27788.
doi: 10.1038/srep27788
[11] Elick T A, Bauser C A, Fraser M J. Excision of the piggyBac transposable element in vitro is a precise event that is enhanced by the expression of its encoded transposase. Genetica, 1996, 98(1): 33-41.
pmid: 8765680
[12] Woodard L E, Wilson M H. PiggyBac-ing models and new therapeutic strategies. Trends in Biotechnology, 2015, 33(9): 525-533.
doi: 10.1016/j.tibtech.2015.06.009 pmid: 26211958
[13] Wang G, Yang L, Grishin D, et al. Efficient, footprint-free human iPSC genome editing by consolidation of Cas9/CRISPR and piggyBac technologies. Nature Protocols, 2017, 12(1): 88-103.
doi: 10.1038/nprot.2016.152
[14] 刘琳, 张美丽, 黄粤. DNA转座子在小鼠基因功能研究中的应用. 遗传, 2011, 33(5): 485-493.
Liu L, Zhang M L, Huang Y. Applications of DNA transposons to the study of gene function in mice. Hereditas(Beijing), 2011, 33(5): 485-493.
[15] Lacoste A, Berenshteyn F, Brivanlou A H. An efficient and reversible transposable system for gene delivery and lineage-specific differentiation in human embryonic stem cells. Cell Stem Cell, 2009, 5(3): 332-342.
doi: 10.1016/j.stem.2009.07.011 pmid: 19733544
[16] Urschitz J, Kawasumi M, Owens J, et al. Helper-independent piggyBac plasmids for gene delivery approaches: strategies for avoiding potential genotoxic effects. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(18): 8117-8122.
[17] Wang W, Lin C Y, Lu D, et al. Chromosomal transposition of piggyBac in mouse embryonic stem cells. PNAS, 2008, 105(27): 9290-9295.
doi: 10.1073/pnas.0801017105 pmid: 18579772
[18] Chew S K, Rad R, Futreal P A, et al. Genetic screens using the piggyBac transposon. Methods, 2011, 53(4): 366-371.
doi: 10.1016/j.ymeth.2010.12.022 pmid: 21185377
[19] Zhao S, Jiang E Z, Chen S S, et al. PiggyBac transposon vectors: the tools of the human gene encoding. Translational Lung Cancer Research, 2016, 5(1): 120-125.
[20] Hashimoto T, Horikawa D D, Saito Y, et al. Extremotolerant tardigrade genome and improved radiotolerance of human cultured cells by tardigrade-unique protein. Nature Communications, 2016, 7: 12808.
doi: 10.1038/ncomms12808 pmid: 27649274
[21] Mirzaei H, Sahebkar A, Jaafari M R, et al. PiggyBac as a novel vector in cancer gene therapy: current perspective. Cancer Gene Therapy, 2016, 23(2-3): 45-47.
doi: 10.1038/cgt.2015.68 pmid: 26742580
[22] Park T S, Han J Y. PiggyBac transposition into primordial germ cells is an efficient tool for transgenesis in chickens. PNAS, 2012, 109(24): 9337-9341.
doi: 10.1073/pnas.1203823109 pmid: 22645326
[23] Yusa K, Rad R, Takeda J, et al. Generation of transgene-free induced pluripotent mouse stem cells by the piggyBac transposon. Nature Methods, 2009, 6(5): 363-369.
doi: 10.1038/nmeth.1323
[24] Cheng M, Jin X B, Mu L L, et al. Combination of the clustered regularly interspaced short palindromic repeats (CRISPR)-associated 9 technique with the piggybac transposon system for mouse in utero electroporation to study cortical development. Journal of Neuroscience Research, 2016, 94(9): 814-824.
doi: 10.1002/jnr.23776 pmid: 27317429
[1] 马占兵,党洁,杨继辉,霍正浩,徐广贤. 基于慢病毒系统的双荧光标记多功能自噬流监测系统建立与应用 *[J]. 中国生物工程杂志, 2019, 39(5): 88-95.
[2] 叶雨辰, 赵俊龙, 王琳, 段娟丽, 高春辰, 秦鸿雁, 窦科峰. EGFP-Luc-Hepa1-6细胞系的构建及其在小鼠肝癌模型中的应用[J]. 中国生物工程杂志, 2015, 35(5): 1-7.
[3] 吴琛, 田焕娜, 王媛媛, 刘芳铭, 张晓康, 李秦剑, 谢园园. GALNT14对人乳腺癌MCF-7细胞迁移的影响[J]. 中国生物工程杂志, 2012, 32(07): 8-15.
[4] 闫兴, 师明磊, 陈娜, 王洋, 张彦, 王政, 李晓晨, 赵志虎. HCV NS3/4A蛋白酶胞内荧光检测方法的建立[J]. 中国生物工程杂志, 2012, 32(07): 84-88.
[5] 杜寿文, 李昌, 王宇航, 任大勇, 刘存霞, 孙丹丹, 朱娜, 李沂, 秦艳青, 金宁一. 新型双基因表达盒真核载体的构建及功能验证[J]. 中国生物工程杂志, 2011, 31(9): 14-20.
[6] 李培培, 游雷鸣, 罗俊, 鄂魏, 蒋志政, 郅玉宝, 张改平, 王爱萍. 鸡源细胞基因沉默及快速筛选的实用型双标记RNAi载体[J]. 中国生物工程杂志, 2011, 31(11): 81-89.
[7] 李国才,王劲松,焦红梅,朱立天,潘兴元,季明春. 人CD46启动子真核表达载体的构建[J]. 中国生物工程杂志, 2007, 27(11): 11-15.
[8] 李新建,曹以诚,杜正平,杨化强,张珍武,卓敏. 新型真核表达质粒pcDNA6/myc-his-EGFP B 的构建及其在重组基因表达中的应用[J]. 中国生物工程杂志, 2006, 26(12): 22-28.
[9] 雷卫祺,马海蓉,孙怡,曹旭. 利用GFP表达系统检测雌激素类化合物的研究[J]. 中国生物工程杂志, 2006, 26(10): 24-29.
[10] 王伟, 孟超, 朱平, 程克棣. 绿色荧光蛋白标记的表达载体pHis-EGFP的构建[J]. 中国生物工程杂志, 2005, 25(9): 35-39.
[11] 孟葆林, 李维琪, 毛建平, 曹旭. 人apoA-I分泌型表达调控细胞模型构建[J]. 中国生物工程杂志, 2005, 25(8): 39-44.
[12] 蹇锐, 程小星, 彭涛, 邓少丽, 蒋静. U6和H1双启动子载体用于RNAi的实验研究[J]. 中国生物工程杂志, 2004, 24(11): 26-30.
[13] ANNM.FALLON, JUDITHH.WILLIS, 荣瑞章. 昆虫细胞中的基因转移[J]. 中国生物工程杂志, 1986, 6(3): 57-58.