Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2022, Vol. 42 Issue (6): 86-101    DOI: 10.13523/j.cb.2201015
综述     
合成生物学指导下芽孢杆菌合成环脂肽的研究进展*
靳佳琦,闻建平()
天津大学化工学院 系统生物工程教育部重点实验室 天津 300072
Research Progress of Cyclic Lipopeptides Synthesized by Bacillus under the Guidance of Synthetic Biology
JIN Jia-qi,WEN Jian-ping()
Key Laboratory of Systems Bioengineering of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
 全文: PDF(4581 KB)   HTML
摘要:

近年来,合成生物学借助工程化在人工生命系统的设计与构建方面取得了长足进展,特别是“细胞工厂”的开发和应用为天然产物的合成带来了深刻变革。环脂肽是一类新型的天然表面活性剂,因其特殊的结构和功能亦可作为抗生素使用。目前,合成环脂肽最理想的微生物底盘是芽孢杆菌。因此,许多研究者致力于通过合成生物学技术来提升芽孢杆菌作为环脂肽细胞工厂的性能。首先,对芽孢杆菌中环脂肽的非核糖体肽合成途径进行概述;其次,重点介绍与环脂肽合成相关的调控因子;再次,从底盘细胞的选择、基因编辑工具的开发、合成路径的优化及发酵过程的优化等四个方面对合成生物学指导下环脂肽的相关研究进展进行总结;最后,讨论环脂肽合成中可能存在的挑战,并就未来研究趋势进行展望,以期为高效环脂肽细胞工厂的开发提供参考。

关键词: 环脂肽非核糖体肽合成途径调控因子合成路径优化发酵过程优化    
Abstract:

In recent years, synthetic biology has made great progress in the design and construction of artificial life systems with the help of engineering ideas. In particular, the development and application of “cell factories” have brought profound changes to the synthesis of natural products. Cyclic lipopeptides are new natural surfactants. They can also be used as antibiotics because of their special structures and functions. At present, Bacillus are the most ideal microbial chassis for cyclic lipopeptides synthesis. Therefore, many researchers are devoted to improving the performance of Bacillus as cyclic lipopeptides cell factories through synthetic biology techniques. In this paper, the non-ribosomal peptide synthesis pathway of cyclic lipopeptides synthesized by Bacillus is first reviewed. Second, the regulatory factors related to the synthesis of cyclic lipopeptides are introduced. Third, the research progress of cyclic lipopeptides synthesis under the guidance of synthetic biology are summarized from the aspects including the selection of chassis cells, the development of gene editing tools, the optimization of synthesis pathway and the optimization of fermentation process. Finally, the possible challenges in cyclic lipopeptides synthesis are discussed and the future research trends are prospected. These will provide reference for the development of efficient cyclic lipopeptides cell factories.

Key words: Cyclic lipopeptides    Non-ribosomal peptide synthesis pathway    Regulatory factors    Synthesis pathway optimization    Fermentation process optimization
收稿日期: 2022-01-13 出版日期: 2022-07-07
ZTFLH:  Q939  
基金资助: *国家重点研发计划(2018YFA0902201)
通讯作者: 闻建平     E-mail: jpwen@tju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
靳佳琦
闻建平

引用本文:

靳佳琦,闻建平. 合成生物学指导下芽孢杆菌合成环脂肽的研究进展*[J]. 中国生物工程杂志, 2022, 42(6): 86-101.

JIN Jia-qi,WEN Jian-ping. Research Progress of Cyclic Lipopeptides Synthesized by Bacillus under the Guidance of Synthetic Biology. China Biotechnology, 2022, 42(6): 86-101.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.2201015        https://manu60.magtech.com.cn/biotech/CN/Y2022/V42/I6/86

图1  环脂肽家族分类
图2  肽链延伸机制及丰原素的生物合成过程[36-37]
图3  环脂肽合成的关键调控因子[28,51⇓-53]
底盘细胞 环脂肽 参考文献
B. subtilis EA-CB0015 表面活性素、伊枯草菌素、丰原素 [7]
B. subtilis BBK-1 表面活性素、杆菌抗霉素L、制磷脂菌素 [80]
B. subtilis S499 表面活性素、伊枯草菌素、丰原素 [81]
B. subtilis pB2-L 表面活性素、制磷脂菌素 [82]
B. subtilis ATCC21332 表面活性素、丰原素 [83]
B. subtilis B3 丰原素、伊枯草菌素 [84]
B. subtilis THY-7 表面活性素 [85]
B. subtilis DSM7T 表面活性素 [86]
B. subtilis MT45 表面活性素 [87]
B. subtilis fmbJ 丰原素 [88]
B. subtilis NCD-2 丰原素 [89]
B. velezensis P45 表面活性素、伊枯草菌素、丰原素 [90]
B. velezensis BA-26 表面活性素、伊枯草菌素 [91]
B. amyloliquefaciens fmbJ 表面活性素、杆菌抗霉素D、丰原素 [60]
B. amyloliquefaciens FZB42 表面活性素、杆菌抗霉素D、丰原素 [92]
B. amyloliquefaciens BC32-1 表面活性素、伊枯草菌素、丰原素 [93]
B. amyloliquefaciens C06 杆菌抗霉素D、丰原素 [94]
B. amyloliquefaciens fmb-60 丰原素 [95]
B. amyloliquefaciens BA-16-8 丰原素 [96]
B. pumilus HY1 表面活性素 [97]
表1  芽孢杆菌底盘细胞及其合成的环脂肽类型
基因编辑工具 原理 步骤 主要特点 应用
Cre/loxP(Cre/
loxP重组技术)
Cre重组酶介导两个loxP位点间的特异性重组 宿主范围广、特异性强、效率高;但是需要引入识别位点 基因敲除、激活和易位;loxP位点的突变可实现多基因敲除
TALEN(类转录激活因子效应物核酸酶技术) TALE识别并结合目标序列,Fok I发挥切割活性,诱发DNA损伤修复机制 同源重组频率高,遗传稳定性好,基因改造效率高,可实现无标记敲除;但工具载体不易构建,多基因敲除存在挑战 基因的敲除、转录与修饰
CRISPR(规律间隔成簇短回文重复序列编辑技术) sgRNA引导Cas9或dCas9对靶位点切割,从而实现基因定向编辑 稳定性、特异性、生物编辑性良好,可同时敲除多个靶基因;但存在修复机制的差异与脱靶效应 基因敲除、插入、激活与抑制
Red/ET(Red/ET重组技术) λ噬菌体Red操纵子和Rac噬菌体RecE/RecT系统介导的DNA同源重组 所需同源序列短,突变率低,无限制性内切酶位点限制和DNA大小限制;但操作复杂 细菌人工染色体长片段基因的克隆、亚克隆及快速修饰
GenomeShuffling(基因组改组
技术)
递推式原生质体融合实现亲本基因的重组 不受种属限制,对微生物的快速改良无需清晰的遗传背景要求,在应用方面克服了“转基因生物”的限制;高通量筛选方法的建立比较复杂 激活沉默基因;获得理想的微生物表型
表2  常用的基因编辑工具
图4  环脂肽合成的路径模块优化[104]
环脂肽 底盘细胞 启动子改造 产量 参考文献
表面活性素 B.subtilis fmbR Pspac替换PsrfA 3.87 g/L [116]
B. subtilis 3A38 Pveg替换PsrfA 0.26 g/L [106]
B. subtilis THY-7 Pg3替换PsrfA 9.74 g/L [109]
B. subtilis MG13 PnasD替换PsrfA 0.696 g/L [114]
B. amyloliquefaciens GR167IDS PRsuc替换PsrfA 0.322 g/L [98]
丰原素 B. subtilis 2508 PamyQ替换Ppps 0.434 g/L [117]
B. subtilis BMG03 PrepU替换Ppps 0.507 g/L [118]
B. subtilis BBG203 Pfen替换Ppps 增加了10倍 [108]
B. subtilis BMV11 Pveg替换Ppps 0.07 g/L [119]
伊枯草菌素 B. subtilis RB14 PrepU替换Pitu 增加了3倍 [120]
B. amyloliquefaciens HZ-12 PbacA替换Pitu 0.950 g/L [48]
B. amyloliquefaciens C2LP C2up替换Pitu 0.037 g/L [107]
表3  优化环脂肽合成的启动子改造策略
[1] Stein T. Bacillus subtilis antibiotics: structures, syntheses and specific functions. Molecular Microbiology, 2005, 56(4): 845-857.
doi: 10.1111/j.1365-2958.2005.04587.x
[2] Chen X H, Koumoutsi A, Scholz R, et al. Comparative analysis of the complete genome sequence of the plant growth-promoting bacterium Bacillus amyloliquefaciens FZB42. Nature Biotechnology, 2007, 25(9): 1007-1014.
doi: 10.1038/nbt1325
[3] Chen X H, Koumoutsi A, Scholz R, et al. Genome analysis of Bacillus amyloliquefaciens FZB 42 reveals its potential for biocontrol of plant pathogens. Journal of Biotechnology, 2009, 140(1-2): 27-37.
doi: 10.1016/j.jbiotec.2008.10.011 pmid: 19041913
[4] Wan C P, Fan X Y, Lou Z X, et al. Iturin: cyclic lipopeptide with multifunction biological potential. Critical Reviews in Food Science and Nutrition, 2021: 1-13.
[5] Liu W X, Sun C M. C17-fengycin B, produced by deep-sea-derived Bacillus subtilis, possessing a strong antifungal activity against Fusarium solani. Journal of Oceanology and Limnology, 2021, 39(5): 1938-1947.
doi: 10.1007/s00343-020-0215-2
[6] Hanif A, Zhang F, Li P P, et al. Fengycin produced by Bacillus amyloliquefaciens FZB 42 inhibits Fusarium graminearum growth and mycotoxins biosynthesis. Toxins, 2019, 11(5): 295.
doi: 10.3390/toxins11050295
[7] Villegas-Escobar V, Ceballos I, Mira J J, et al. Fengycin C produced by Bacillus subtilis EA-CB0015. Journal of Natural Products, 2013, 76(4): 503-509.
doi: 10.1021/np300574v pmid: 23461648
[8] Lee J H, Nam S H, Seo W T, et al. The production of surfactin during the fermentation of cheonggukjang by potential probiotic Bacillus subtilis CSY191 and the resultant growth suppression of MCF-7 human breast cancer cells. Food Chemistry, 2012, 131(4): 1347-1354.
doi: 10.1016/j.foodchem.2011.09.133
[9] Ceresa C, Rinaldi M, Chiono V, et al. Lipopeptides from Bacillus subtilis AC 7 inhibit adhesion and biofilm formation of Candida albicans on silicone. Antonie van Leeuwenhoek, 2016, 109(10): 1375-1388.
doi: 10.1007/s10482-016-0736-z
[10] Deleu M, Razafindralambo H, Popineau Y, et al. Interfacial and emulsifying properties of lipopeptides from Bacillus subtilis. Colloids and Surfaces A Physicochemical and Engineering Aspects, 1999, 152(1-2): 3-10.
doi: 10.1016/S0927-7757(98)00627-X
[11] Rosés C, Camó C, Oliveras À, et al. Total solid-phase synthesis of dehydroxy fengycin derivatives. The Journal of Organic Chemistry, 2018, 83(24): 15297-15311.
doi: 10.1021/acs.joc.8b02553
[12] Gimenez D, Phelan A, Murphy C D, et al. Fengycin A analogues with enhanced chemical stability and antifungal properties. Organic Letters, 2021, 23(12): 4672-4676.
doi: 10.1021/acs.orglett.1c01387 pmid: 34077216
[13] Pagadoy M, Peypoux F, Wallach J. Solid-phase synthesis of surfactin, a powerful biosurfactant produced by Bacillus subtilis, and of four analogues. International Journal of Peptide Research and Therapeutics, 2005, 11(3): 195-202.
doi: 10.1007/s10989-005-6790-4
[14] Vazquez L, da Silva Ferreira A T, Cavalcante F S, et al. Properties of novel surfactin-derived biosurfactants obtained through solid-phase synthesis. Journal of Peptide Science, 2018, 24(11): e3129.
doi: 10.1002/psc.3129
[15] Vilà S, Badosa E, Montesinos E, et al. Solid-phase synthesis of peptide conjugates derived from the antimicrobial cyclic decapeptide BPC194. European Journal of Organic Chemistry, 2015, 2015(5): 1117-1129.
doi: 10.1002/ejoc.201403344
[16] Mootz H D, Schwarzer D, Marahiel M A. Ways of assembling complex natural products on modular nonribosomal peptide synthetases. ChemBioChem, 2002, 3(6): 490-504.
doi: 10.1002/1439-7633(20020603)3:6<490::AID-CBIC490>3.0.CO;2-N
[17] Kim M S, Bae M, Jung Y E, et al. Unprecedented noncanonical features of the nonlinear nonribosomal peptide synthetase assembly line for WS9326A biosynthesis. Angewandte Chemie (International Ed in English), 2021, 60(36): 19766-19773.
[18] Hansen D B, Bumpus S B, Aron Z D, et al. The loading module of mycosubtilin: an adenylation domain with fatty acid selectivity. Journal of the American Chemical Society, 2007, 129(20): 6366-6367.
doi: 10.1021/ja070890j
[19] Kraas F I, Helmetag V, Wittmann M, et al. Functional dissection of surfactin synthetase initiation module reveals insights into the mechanism of lipoinitiation. Chemistry & Biology, 2010, 17(8): 872-880.
doi: 10.1016/j.chembiol.2010.06.015
[20] Yang R R, Lei S Z, Xu X G, et al. Key elements and regulation strategies of NRPSs for biosynthesis of lipopeptides by Bacillus. Applied Microbiology and Biotechnology, 2020, 104(19): 8077-8087.
doi: 10.1007/s00253-020-10801-x
[21] Zhong L, Diao X, Zhang N, et al. Engineering and elucidation of the lipoinitiation process in nonribosomal peptide biosynthesis. Nature Communications, 2021, 12(1): 296.
doi: 10.1038/s41467-020-20548-8 pmid: 33436600
[22] Kohli R M, Takagi J, Walsh C T. The thioesterase domain from a nonribosomal peptide synthetase as a cyclization catalyst for integrin binding peptides. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99(3): 1247-1252.
[23] Wei M C, Wang S Z, Shang G D. Biosynthetic pathways and engineering for bioactive natural products. Current Organic Chemistry, 2010, 14(14): 1433-1446.
doi: 10.2174/138527210791616759
[24] Ramaniuk O, Černý M, Krásný L, et al. Kinetic modelling and meta-analysis of the B. subtilis SigA regulatory network during spore germination and outgrowth. Biochimica et Biophysica Acta (BBA) - Gene Regulatory Mechanisms, 2017, 1860(8): 894-904.
doi: 10.1016/j.bbagrm.2017.06.003
[25] Dogsa I, Oslizlo A, Stefanic P, et al. Social interactions and biofilm formation in Bacillus subtilis. Food Technology and Biotechnology, 2014, 52(2): 149-157.
[26] Hamoen L W, Eshuis H, Jongbloed J, et al. A small gene, designated comS, located within the coding region of the fourth amino acid-activation domain of srfA, is required for competence development in Bacillus subtilis. Molecular Microbiology, 1995, 15(1): 55-63.
pmid: 7752896
[27] Oslizlo A, Stefanic P, Vatovec S, et al. Exploring ComQXPA quorum-sensing diversity and biocontrol potential of Bacillus spp. isolates from tomato rhizoplane. Microbial Biotechnology, 2015, 8(3): 527-540.
doi: 10.1111/1751-7915.12258 pmid: 25757097
[28] Rahman F B, Sarkar B, Moni R P, et al. Molecular genetics of surfactin and its effects on different sub-populations of Bacillus subtilis. Biotechnology Reports, 2021, 32: e00686.
doi: 10.1016/j.btre.2021.e00686
[29] Qian Q, Lee C Y, Helmann J D, et al. AbrB is a regulator of the sigma(w) regulon in Bacillus subtilis. FEMS Microbiology Letters, 2002, 211(2): 219-223.
[30] Fagerlund A, Dubois T, Økstad O A, et al. SinR controls enterotoxin expression in Bacillus thuringiensis biofilms. PLoS One, 2014, 9(1): e87532.
doi: 10.1371/journal.pone.0087532
[31] López D, Fischbach M A, Chu F, et al. Structurally diverse natural products that cause potassium leakage trigger multicellularity in Bacillus subtilis. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(1): 280-285.
[32] López D, Kolter R. Extracellular signals that define distinct and coexisting cell fates in Bacillus subtilis. FEMS Microbiology Reviews, 2010, 34(2): 134-149.
doi: 10.1111/j.1574-6976.2009.00199.x
[33] Rahman M S, Ano T, Shoda M. Second stage production of iturin A by induced germination of Bacillus subtilis RB14. Journal of Biotechnology, 2006, 125(4): 513-515.
doi: 10.1016/j.jbiotec.2006.03.016
[34] 王晓宇, 罗楚平, 刘永锋, 等. 生防菌Bs-916突变菌株M49芽胞形成和感受态形成能力. 微生物学报, 2009, 49(10): 1295-1300.
Wang X Y, Luo C P, Liu Y F, et al. Sporulation, competence development and biopesticide activity of a Bacillus subtilis mutant. Acta Microbiologica Sinica, 2009, 49(10): 1295-1300.
[35] 林璐, 吕雪芹, 刘延峰, 等. 枯草芽孢杆菌底盘细胞的设计、构建与应用. 合成生物学, 2020, 1(2): 247-265.
Lin L, Lv X Q, Liu Y F, et al. Advances in design, construction and applications of Bacillus subtilis chassis cells. Synthetic Biology Journal, 2020, 1(2): 247-265.
[36] Lu J Y, Zhou K X, Huang W T, et al. A comprehensive genomic and growth proteomic analysis of antitumor lipopeptide bacillomycin Lb biosynthesis in Bacillus amyloliquefaciens X030. Applied Microbiology and Biotechnology, 2019, 103(18): 7647-7662.
doi: 10.1007/s00253-019-10019-6
[37] Tang G L, Cheng Y Q, Shen B. Chain initiation in the leinamycin-producing hybrid nonribosomal peptide/polyketide synthetase from Streptomyces atroolivaceus S-140-discrete, monofunctional adenylation enzyme and peptidyl carrier protein that directly load d-alanine. Journal of Biological Chemistry, 2007, 282(28): 20273-20282.
doi: 10.1074/jbc.M702814200
[38] Lazazzera B A, Solomon J M, Grossman A D. An exported peptide functions intracellularly to contribute to cell density signaling in B. subtilis. Cell, 1997, 89(6): 917-925.
pmid: 9200610
[39] Roggiani M, Dubnau D. ComA, a phosphorylated response regulator protein of Bacillus subtilis, binds to the promoter region of srfA. Journal of Bacteriology, 1993, 175(10): 3182-3187.
pmid: 8387999
[40] Neiditch M B, Capodagli G C, Prehna G, et al. Genetic and structural analyses of RRNPP intercellular peptide signaling of gram-positive bacteria. Annual Review of Genetics, 2017, 51: 311-333.
doi: 10.1146/annurev-genet-120116-023507 pmid: 28876981
[41] Msadek T, Kunst F, Klier A, et al. DegS-DegU and ComP-ComA modulator-effector pairs control expression of the Bacillus subtilis pleiotropic regulatory gene degQ. Journal of Bacteriology, 1991, 173(7): 2366-2377.
pmid: 1901055
[42] Zhang Z, Ding Z T, Zhong J, et al. Improvement of iturin A production in Bacillus subtilis ZK 0 by overexpression of the ComA and SigA genes. Letters in Applied Microbiology, 2017, 64(6): 452-458.
doi: 10.1111/lam.12739 pmid: 28374547
[43] Smits W K, Bongiorni C, Veening J W, et al. Temporal separation of distinct differentiation pathways by a dual specificity Rap-Phr system in Bacillus subtilis. Molecular Microbiology, 2007, 65(1): 103-120.
doi: 10.1111/j.1365-2958.2007.05776.x
[44] Bongiorni C, Ishikawa S, Stephenson S, et al. Synergistic regulation of competence development in Bacillus subtilis by two Rap-Phr systems. Journal of Bacteriology, 2005, 187(13): 4353-4361.
pmid: 15968044
[45] Liang Z, Qiao J Q, Li P P, et al. A novel Rap-Phr system in Bacillus velezensis NAU-B 3 regulates surfactin production and sporulation via interaction with ComA. Applied Microbiology and Biotechnology, 2020, 104(23): 10059-10074.
doi: 10.1007/s00253-020-10942-z pmid: 33043389
[46] Lilge L, Vahidinasab M, Adiek I, et al. Expression of degQ gene and its effect on lipopeptide production as well as formation of secretory proteases in Bacillus subtilis strains. MicrobiologyOpen, 2021, 10(5): e1241.
doi: 10.1002/mbo3.1241 pmid: 34713601
[47] Chu F, Kearns D B, McLoon A, et al. A novel regulatory protein governing biofilm formation in Bacillus subtilis. Molecular Microbiology, 2008, 68(5): 1117-1127.
doi: 10.1111/j.1365-2958.2008.06201.x
[48] Xu Y X, Cai D B, Zhang H, et al. Enhanced production of iturin A in Bacillus amyloliquefaciens by genetic engineering and medium optimization. Process Biochemistry, 2020, 90: 50-57.
doi: 10.1016/j.procbio.2019.11.017
[49] Zhang Y, Nakano S, Choi S Y, et al. Mutational analysis of the Bacillus subtilis RNA polymerase alpha C-terminal domain supports the interference model of Spx-dependent repression. Journal of Bacteriology, 2006, 188(12): 4300-4311.
pmid: 16740936
[50] Shi J, Li F F, Wen A J, et al. Structural basis of transcription activation by the global regulator Spx. Nucleic Acids Research, 2021, 49(18): 10756-10769.
doi: 10.1093/nar/gkab790
[51] Jung J, Yu K O, Ramzi A B, et al. Improvement of surfactin production in Bacillus subtilis using synthetic wastewater by overexpression of specific extracellular signaling peptides, comX and phrC. Biotechnology and Bioengineering, 2012, 109(9): 2349-2356.
doi: 10.1002/bit.24524 pmid: 22511326
[52] Li Y L, Zhang H W, Li Y B, et al. Fusaricidin biosynthesis is controlled via a KinB-Spo0A-AbrB signal pathway in Paenibacillus polymyxa WLY78. Molecular Plant-Microbe Interactions: MPMI, 2021, 34(12): 1378-1389.
doi: 10.1094/MPMI-05-21-0117-R
[53] Zhang Y, Qi J S, Wang Y Q, et al. Comparative study of the role of surfactin-triggered signalling in biofilm formation among different Bacillus species. Microbiological Research, 2022, 254: 126920.
doi: 10.1016/j.micres.2021.126920
[54] Qu S, Kang Q J, Wu H, et al. Positive and negative regulation of GlnR in validamycin A biosynthesis by binding to different loci in promoter region. Applied Microbiology and Biotechnology, 2015, 99(11): 4771-4783.
doi: 10.1007/s00253-015-6437-0
[55] Xu Y, You D, Ye B C. Nitrogen regulator GlnR directly controls transcription of genes encoding lysine deacetylases in actinobacteria. Microbiology (Reading, England), 2017, 163(11): 1702-1710.
doi: 10.1099/mic.0.000553
[56] Sonenshein A L. CodY, a global regulator of stationary phase and virulence in Gram-positive bacteria. Current Opinion in Microbiology, 2005, 8(2): 203-207.
pmid: 15802253
[57] Molle V, Nakaura Y, Shivers R P, et al. Additional targets of the Bacillus subtilis global regulator CodY identified by chromatin immunoprecipitation and genome-wide transcript analysis. Journal of Bacteriology, 2003, 185(6): 1911-1922.
doi: 10.1128/JB.185.6.1911-1922.2003
[58] Coutte F, Niehren J, Dhali D, et al. Modeling leucine’s metabolic pathway and knockout prediction improving the production of surfactin, a biosurfactant from Bacillus subtilis. Biotechnology Journal, 2015, 10(8): 1216-1234.
doi: 10.1002/biot.201400541
[59] Wu Q, Zhi Y, Xu Y. Systematically engineering the biosynthesis of a green biosurfactant surfactin by Bacillus subtilis 168. Metabolic Engineering, 2019, 52: 87-97.
doi: 10.1016/j.ymben.2018.11.004
[60] Sun J, Liu Y, Lin F, et al. CodY, ComA, DegU and Spo0A controlling lipopeptides biosynthesis in Bacillus amyloliquefaciens fmbJ. Journal of Applied Microbiology, 2021, 131(3): 1289-1304.
doi: 10.1111/jam.15007 pmid: 33460520
[61] Sonenshein A L. Control of key metabolic intersections in Bacillus subtilis. Nature Reviews Microbiology, 2007, 5(12): 917-927.
pmid: 17982469
[62] Luttinger A, Hahn J, Dubnau D. Polynucleotide phosphorylase is necessary for competence development in Bacillus subtilis. Molecular Microbiology, 1996, 19(2): 343-356.
pmid: 8825779
[63] Cameron T A, Matz L M, de Lay N R. Polynucleotide phosphorylase: not merely an RNase but a pivotal post-transcriptional regulator. PLoS Genetics, 2018, 14(10): e1007654.
doi: 10.1371/journal.pgen.1007654
[64] Gamba P, Jonker M J, Hamoen L W. A novel feedback loop that controls bimodal expression of genetic competence. PLoS Genetics, 2015, 11(6): e1005047.
doi: 10.1371/journal.pgen.1005047
[65] Yaseen Y, Diop A, Gancel F, et al. Polynucleotide phosphorylase is involved in the control of lipopeptide fengycin production in Bacillus subtilis. Archives of Microbiology, 2018, 200(5): 783-791.
doi: 10.1007/s00203-018-1483-5 pmid: 29423562
[66] Allenby N E E, O’Connor N, Prágai Z, et al. Genome-wide transcriptional analysis of the phosphate starvation stimulon of Bacillus subtilis. Journal of Bacteriology, 2005, 187(23): 8063-8080.
doi: 10.1128/JB.187.23.8063-8080.2005
[67] Liu B, Kearns D B, Bechhofer D H. Expression of multiple Bacillus subtilis genes is controlled by decay of slrA mRNA from Rho-dependent 3' ends. Nucleic Acids Research, 2016, 44(7): 3364-3372.
doi: 10.1093/nar/gkw069 pmid: 26857544
[68] Bartolini M, Cogliati S, Vileta D, et al. Stress-responsive alternative Sigma factor SigB plays a positive role in the antifungal proficiency of Bacillus subtilis. Applied and Environmental Microbiology, 2019, 85(9): e00178-e00119.
[69] Ogura M, Yamaguchi H, Kobayashi K, et al. Whole-genome analysis of genes regulated by the Bacillus subtilis competence transcription factor ComK. Journal of Bacteriology, 2002, 184(9): 2344-2351.
doi: 10.1128/JB.184.9.2344-2351.2002
[70] Pupin M, Flissi A, Jacques P, et al. Bioinformatics tools for the discovery of new lipopeptides with biocontrol applications. European Journal of Plant Pathology, 2018, 152(4): 993-1001.
doi: 10.1007/s10658-018-1544-2
[71] Mülner P, Schwarz E, Dietel K, et al. Fusaricidins, polymyxins and volatiles produced by Paenibacillus polymyxa strains DSM 32871 and M1. Pathogens (Basel, Switzerland), 2021, 10(11): 1485.
[72] Singh S S, Akhtar M N, Sharma D, et al. Characterization of iturin V, a novel antimicrobial lipopeptide from a potential probiotic strain Lactobacillus sp. M31. Probiotics and Antimicrobial Proteins, 2021, 13(6): 1766-1779.
doi: 10.1007/s12602-021-09796-2
[73] Girard L, Geudens N, Pauwels B, et al. Transporter gene-mediated typing for detection and genome mining of lipopeptide-producing Pseudomonas. Applied and Environmental Microbiology, 2022, 88(2): e0186921.
doi: 10.1128/AEM.01869-21
[74] Ji C H, Kim H, Je H W, et al. Top-down synthetic biology approach for titer improvement of clinically important antibiotic daptomycin in Streptomyces roseosporus. Metabolic Engineering, 2022, 69: 40-49.
doi: 10.1016/j.ymben.2021.10.013
[75] Guan Z B, Wang K Q, Shui Y, et al. Establishment of a markerless multiple-gene deletion method based on Cre/loxP mutant system for Bacillus pumilus. Journal of Basic Microbiology, 2017, 57(12): 1065-1068.
doi: 10.1002/jobm.201700370
[76] Niu Q H, Zheng H Y, Zhang L, et al. Knockout of the adp gene related with colonization in Bacillus nematocida B 16 using customized transcription activator-like effectors nucleases. Microbial Biotechnology, 2015, 8(4): 681-692.
doi: 10.1111/1751-7915.12282
[77] Wang C Y, Cao Y X, Wang Y P, et al. Enhancing surfactin production by using systematic CRISPRi repression to screen amino acid biosynthesis genes in Bacillus subtilis. Microbial Cell Factories, 2019, 18(1): 90.
doi: 10.1186/s12934-019-1139-4
[78] Liu Q, Shen Q, Bian X, et al. Simple and rapid direct cloning and heterologous expression of natural product biosynthetic gene cluster in Bacillus subtilis via Red/ET recombineering. Scientific Reports, 2016, 6: 34623.
doi: 10.1038/srep34623
[79] Chen L, Xin Q H, Ma L M, et al. Applications and research advance of genome shuffling for industrial microbial strains improvement. World Journal of Microbiology & Biotechnology, 2020, 36(10): 158.
doi: 10.1007/s11274-020-02936-w
[80] Roongsawang N, Thaniyavarn J, Thaniyavarn S, et al. Isolation and characterization of a halotolerant Bacillus subtilis BBK-1 which produces three kinds of lipopeptides: bacillomycin L, plipastatin, and surfactin. Extremophiles: Life Under Extreme Conditions, 2002, 6(6): 499-506.
doi: 10.1007/s00792-002-0287-2
[81] Nihorimbere V, Cawoy H, Seyer A, et al. Impact of rhizosphere factors on cyclic lipopeptide signature from the plant beneficial strain Bacillus amyloliquefaciens S499. FEMS Microbiology Ecology, 2012, 79(1): 176-191.
doi: 10.1111/j.1574-6941.2011.01208.x pmid: 22029651
[82] Gao L, Han J Z, Liu H X, et al. Plipastatin and surfactin coproduction by Bacillus subtilis PB2-L and their effects on microorganisms. Antonie van Leeuwenhoek, 2017, 110(8): 1007-1018.
doi: 10.1007/s10482-017-0874-y
[83] Coutte F, Lecouturier D, Ait Yahia S, et al. Production of surfactin and fengycin by Bacillus subtilis in a bubbleless membrane bioreactor. Applied Microbiology and Biotechnology, 2010, 87(2): 499-507.
doi: 10.1007/s00253-010-2504-8
[84] Yao S Y, Gao X W, Fuchsbauer N, et al. Cloning, sequencing, and characterization of the genetic region relevant to biosynthesis of the lipopeptides iturin A and surfactin in Bacillus subtilis. Current Microbiology, 2003, 47(4): 272-277.
doi: 10.1007/s00284-002-4008-y
[85] Li X, Yang H, Zhang D L, et al. Overexpression of specific proton motive force-dependent transporters facilitate the export of surfactin in Bacillus subtilis. Journal of Industrial Microbiology and Biotechnology, 2015, 42(1): 93-103.
doi: 10.1007/s10295-014-1527-z
[86] Rückert C, Blom J, Chen X H, et al. Genome sequence of B. amyloliquefaciens type strain DSM7(T) reveals differences to plant-associated B. amyloliquefaciens FZB42. Journal of Biotechnology, 2011, 155(1): 78-85.
doi: 10.1016/j.jbiotec.2011.01.006
[87] Zhi Y, Wu Q, Xu Y. Genome and transcriptome analysis of surfactin biosynthesis in Bacillus amyloliquefaciens MT45. Scientific Reports, 2017, 7: 40976.
doi: 10.1038/srep40976
[88] Bie X M, Lu Z X, Lu F X. Identification of fengycin homologues from Bacillus subtilis with ESI-MS/CID. Journal of Microbiological Methods, 2009, 79(3): 272-278.
doi: 10.1016/j.mimet.2009.09.013
[89] 董伟欣, 李宝庆, 李社增, 等. 脂肽类抗生素fengycin在枯草芽胞杆菌NCD-2菌株抑制番茄灰霉病菌中的功能分析. 植物病理学报, 2013, 43(4): 401-410.
Dong W X, Li B Q, Li S Z, et al. The fengycin lipopeptides are major components in the Bacillus subtilis strain NCD-2 against the growth of Botrytis cinerea. Acta Phytopathologica Sinica, 2013, 43(4): 401-410.
[90] da Rosa C E, Pinilla C M B, Stincone P, et al. Genomic characterization and production of antimicrobial lipopeptides by Bacillus velezensis P 45 growing on feather by-products. Journal of Applied Microbiology, 2022, 132(3): 2067-2079.
doi: 10.1111/jam.15363
[91] Wang B Q, Liu C, Yang X M, et al. Genomics-guided isolation and identification of active secondary metabolites of Bacillus velezensis BA-26. Biotechnology & Biotechnological Equipment, 2021, 35(1): 895-904.
[92] Han X S, Shen D X, Xiong Q, et al. The plant-beneficial rhizobacterium Bacillus velezensis FZB 42 controls the soybean pathogen Phytophthora sojae due to bacilysin production. Applied and Environmental Microbiology, 2021, 87(23): e0160121.
doi: 10.1128/AEM.01601-21
[93] Nam J, Jung M Y, Kim P I, et al. Structural characterization and temperature-dependent production of C17-fengycin B derived from Bacillus amyloliquefaciens subsp. plantarum BC32-1. Biotechnology and Bioprocess Engineering, 2015, 20(4): 708-713.
doi: 10.1007/s12257-015-0350-3
[94] Liu J, Zhou T, He D, et al. Functions of lipopeptides bacillomycin D and fengycin in antagonism of Bacillus amyloliquefaciens C 06 towards Monilinia fructicola. Journal of Molecular Microbiology and Biotechnology, 2011, 20(1): 43-52.
[95] Lu H, Qian S, Muhammad U, et al. Effect of fructose on promoting fengycin biosynthesis in Bacillus amyloliquefaciens fmb-60. Journal of Applied Microbiology, 2016, 121(6): 1653-1664.
doi: 10.1111/jam.13291 pmid: 27611603
[96] Fu R M, Zhang H, Chang H P, et al. Evaluation of antifungal mechanism of Bacillus amyloliquefaciens BA-16-8. International Journal of Agriculture and Biology, 2020, 23(2): 405-408.
[97] Hong S Y, Lee D H, Lee J H, et al. Five surfactin isomers produced during cheonggukjang fermentation by Bacillus pumilus HY1 and their properties. Molecules (Basel, Switzerland), 2021, 26(15): 4478.
doi: 10.3390/molecules26154478
[98] Zhang F, Huo K Y, Song X Y, et al. Engineering of a genome-reduced strain Bacillus amyloliquefaciens for enhancing surfactin production. Microbial Cell Factories, 2020, 19(1): 223.
doi: 10.1186/s12934-020-01485-z pmid: 33287813
[99] Zhao J F, Zhang C, Lu J, et al. Enhancement of fengycin production in Bacillus amyloliquefaciens by genome shuffling and relative gene expression analysis using RT-PCR. Canadian Journal of Microbiology, 2016, 62(5): 431-436.
doi: 10.1139/cjm-2015-0734
[100] Chen L, Chong X Y, Zhang Y Y, et al. Genome shuffling of Bacillus velezensis for enhanced surfactin production and variation analysis. Current Microbiology, 2020, 77(1): 71-78.
doi: 10.1007/s00284-019-01807-4
[101] Wang M M, Yu H M, Shen Z Y. Antisense RNA-based strategy for enhancing surfactin production in Bacillus subtilis TS1726 via overexpression of the unconventional biotin carboxylase II to enhance ACCase activity. ACS Synthetic Biology, 2019, 8(2): 251-256.
doi: 10.1021/acssynbio.8b00459
[102] Hu F X, Liu Y Y, Lin J Z, et al. Efficient production of surfactin from xylose-rich corncob hydrolysate using genetically modified Bacillus subtilis 168. Applied Microbiology and Biotechnology, 2020, 104(9): 4017-4026.
doi: 10.1007/s00253-020-10528-9
[103] Hu F X, Cai W J, Lin J Z, et al. Genetic engineering of the precursor supply pathway for the overproduction of the nC14-surfactin isoform with promising MEOR applications. Microbial Cell Factories, 2021, 20(1): 96.
doi: 10.1186/s12934-021-01585-4
[104] Yang N, Wu Q, Xu Y. Fe nanoparticles enhanced surfactin production in Bacillus amyloliquefaciens. ACS Omega, 2020, 5(12): 6321-6329.
doi: 10.1021/acsomega.9b03648 pmid: 32258866
[105] Tan W, Yin Y, Wen J P. Increasing fengycin production by strengthening the fatty acid synthesis pathway and optimizing fermentation conditions. Biochemical Engineering Journal, 2022, 177: 108235.
doi: 10.1016/j.bej.2021.108235
[106] Willenbacher J, Mohr T, Henkel M, et al. Substitution of the native srfA promoter by constitutive Pveg in two B. subtilis strains and evaluation of the effect on surfactin production. Journal of Biotechnology, 2016, 224: 14-17.
doi: 10.1016/j.jbiotec.2016.03.002 pmid: 26953743
[107] Dang Y L, Zhao F J, Liu X S, et al. Enhanced production of antifungal lipopeptide iturin A by Bacillus amyloliquefaciens LL 3 through metabolic engineering and culture conditions optimization. Microbial Cell Factories, 2019, 18(1): 68.
doi: 10.1186/s12934-019-1121-1
[108] Yaseen Y, Gancel F, Drider D, et al. Influence of promoters on the production of fengycin in Bacillus spp. Research in Microbiology, 2016, 167(4): 272-281.
doi: S0923-2508(16)00025-5 pmid: 26912322
[109] Jiao S, Li X, Yu H M, et al. In situ enhancement of surfactin biosynthesis in Bacillus subtilis using novel artificial inducible promoters. Biotechnology and Bioengineering, 2017, 114(4): 832-842.
doi: 10.1002/bit.26197
[110] Ke W J, Chang B Y, Lin T P, et al. Activation of the promoter of the fengycin synthetase operon by the UP element. Journal of Bacteriology, 2009, 191(14): 4615-4623.
doi: 10.1128/JB.00255-09
[111] Wenzel M, Müller A, Siemann-Herzberg M, et al. Self-inducible Bacillus subtilis expression system for reliable and inexpensive protein production by high-cell-density fermentation. Applied and Environmental Microbiology, 2011, 77(18): 6419-6425.
doi: 10.1128/AEM.05219-11
[112] Kessenikh A G, Novoyatlova U S, Bazhenov S V, et al. Constructing of Bacillus subtilis-based lux-biosensors with the use of stress-inducible promoters. International Journal of Molecular Sciences, 2021, 22(17): 9571.
doi: 10.3390/ijms22179571
[113] Yu X X, Xu J T, Liu X Q, et al. Identification of a highly efficient stationary phase promoter in Bacillus subtilis. Scientific Reports, 2015, 5: 18405.
doi: 10.1038/srep18405
[114] Hoffmann M, Braig A, Fernandez Cano Luna D S, et al. Evaluation of an oxygen-dependent self-inducible surfactin synthesis in B. subtilis by substitution of native promoter PsrfA by anaerobically active PnarG and PnasD. AMB Express, 2021, 11(1): 57.
doi: 10.1186/s13568-021-01218-4 pmid: 33876328
[115] Tsuge K, Ohata Y, Shoda M. Gene yerP, involved in surfactin self-resistance in Bacillus subtilis. Antimicrobial Agents and Chemotherapy, 2001, 45(12): 3566-3573.
pmid: 11709341
[116] Sun H G, Bie X M, Lu F X, et al. Enhancement of surfactin production of Bacillus subtilis fmbR by replacement of the native promoter with the Pspac promoter. Canadian Journal of Microbiology, 2009, 55(8): 1003-1006.
doi: 10.1139/W09-044
[117] Ongena M, Jourdan E, Adam A, et al. Surfactin and fengycin lipopeptides of Bacillus subtilis as elicitors of induced systemic resistance in plants. Environmental Microbiology, 2007, 9(4): 1084-1090.
pmid: 17359279
[118] Hussein W, Fahim S. Plipastatin over-production in Bacillus subtilis using site direct mutation. Research Journal of Pharmaceutical, Biological and Chemical Sciences, 2017, 8(3): 1013-1020.
[119] Vahidinasab M, Lilge L, Reinfurt A, et al. Construction and description of a constitutive plipastatin mono-producing Bacillus subtilis. Microbial Cell Factories, 2020, 19(1): 205.
doi: 10.1186/s12934-020-01468-0 pmid: 33167976
[120] Tsuge K, Akiyama T, Shoda M. Cloning, sequencing, and characterization of the iturin A operon. Journal of Bacteriology, 2001, 183(21): 6265-6273.
pmid: 11591669
[121] 王苗苗, 于慧敏, 何欣, 等. 高产表面活性素的重组枯草芽孢杆菌构建及培养优化. 生物工程学报, 2020, 36(11): 2377-2386.
Wang M M, Yu H M, He X, et al. Construction and optimization of engineered Bacillus subtilis for surfactin production. Chinese Journal of Biotechnology, 2020, 36(11): 2377-2386.
[122] Soussi S, Essid R, Hardouin J, et al. Utilization of grape seed flour for antimicrobial lipopeptide production by Bacillus amyloliquefaciens C5 strain. Applied Biochemistry and Biotechnology, 2019, 187(4): 1460-1474.
doi: 10.1007/s12010-018-2885-1 pmid: 30251231
[123] Li J, Deng M C, Wang Y, et al. Production and characteristics of biosurfactant produced by Bacillus pseudomycoides BS6 utilizing soybean oil waste. International Biodeterioration & Biodegradation, 2016, 112: 72-79.
[124] Janek T, Gudiña E J, Połomska X, et al. Sustainable surfactin production by Bacillus subtilis using crude glycerol from different wastes. Molecules (Basel, Switzerland), 2021, 26(12): 3488.
doi: 10.3390/molecules26123488
[125] Domínguez Rivera Á, Martínez Urbina M, López Y López V E. Advances on research in the use of agro-industrial waste in biosurfactant production. World Journal of Microbiology & Biotechnology, 2019, 35(10): 155.
doi: 10.1007/s11274-019-2729-3
[126] Gancel F, Montastruc L, Liu T, et al. Lipopeptide overproduction by cell immobilization on iron-enriched light polymer particles. Process Biochemistry, 2009, 44(9): 975-978.
doi: 10.1016/j.procbio.2009.04.023
[127] Chen M C, Zheng M X, Chen Y P, et al. Effect of metal ions on lipopeptide secretion from Bacillus subtilis strain FJAT-4: negative regulation by Ca2+. Journal of Applied Microbiology, 2022, 132(3): 2167-2176.
doi: 10.1111/jam.15347
[128] Zhang B, Xie M Z, Bruschweiler-Li L, et al. Nanoparticle-assisted metabolomics. Metabolites, 2018, 8(1): 21.
doi: 10.3390/metabo8010021
[129] Kim Y K, Park S E, Lee H, et al. Enhancement of bioethanol production in syngas fermentation with Clostridium ljungdahlii using nanoparticles. Bioresource Technology, 2014, 159: 446-450.
doi: 10.1016/j.biortech.2014.03.046
[130] Labbeiki G, Attar H, Heydarinasab A, et al. Enhanced oxygen transfer rate and bioprocess yield by using magnetite nanoparticles in fermentation media of erythromycin. Daru: Journal of Faculty of Pharmacy, Tehran University of Medical Sciences, 2014, 22(1): 66.
[131] Shahidzadeh H, Labbeiki G, Attar H. Enhanced fermentative production of cephalosporin C by magnetite nanoparticles in culture of Acremonium chrysogenum. IET Nanobiotechnology, 2017, 11(6): 644-649.
doi: 10.1049/iet-nbt.2016.0155
[132] Zhang Q, Xu S Y, Li Y B, et al. Green-synthesized nickel oxide nanoparticles enhances biohydrogen production of Klebsiella sp. WL 1316 using lignocellulosic hydrolysate and its regulatory mechanism. Fuel, 2021, 305: 121585.
doi: 10.1016/j.fuel.2021.121585
[133] 姚树林, 陆兆新, 郝天怡, 等. 氨基酸和碳架物质前体对surfactin生物合成的影响. 南京农业大学学报, 2014, 37(2): 139-145.
Yao S L, Lu Z X, Hao T Y, et al. Effect of amino acids and carbon backbone precursors on surfactin biosynthesis. Journal of Nanjing Agricultural University, 2014, 37(2): 139-145.
[134] Fritzler J M, Zhu G. Functional characterization of the acyl-[acyl carrier protein] ligase in the Cryptosporidium parvum giant polyketide synthase. International Journal for Parasitology, 2007, 37(3-4): 307-316.
pmid: 17161840
[135] Ding L S, Guo W B, Chen X H. Exogenous addition of alkanoic acids enhanced production of antifungal lipopeptides in Bacillus amyloliquefaciens Pc3. Applied Microbiology and Biotechnology, 2019, 103(13): 5367-5377.
doi: 10.1007/s00253-019-09792-1
[136] Peng W J, Zhong J, Yang J, et al. The artificial neural network approach based on uniform design to optimize the fed-batch fermentation condition: application to the production of iturin A. Microbial Cell Factories, 2014, 13(1): 54.
doi: 10.1186/1475-2859-13-54
[137] 孙力军, 陆兆新, 别小妹, 等. 培养基对解淀粉芽孢杆菌ES-2菌株产抗菌脂肽的影响. 中国农业科学, 2008, 41(10): 3389-3398.
Sun L J, Lu Z X, Bie X M, et al. Influence of medium on antimicrobial lipopeptide production by Bacillus amyloliquefaciens ES-2. Scientia Agricultura Sinica, 2008, 41(10): 3389-3398.
[138] Zune Q, Telek S, Calvo S, et al. Influence of liquid phase hydrodynamics on biofilm formation on structured packing: optimization of surfactin production from Bacillus amyloliquefaciens. Chemical Engineering Science, 2017, 170: 628-638.
doi: 10.1016/j.ces.2016.08.023
[139] Yeh M S, Wei Y H, Chang J S. Enhanced production of surfactin from Bacillu ssubtilis by addition of solid carriers. Biotechnology Progress, 2005, 21(4): 1329-1334.
doi: 10.1021/bp050040c
[140] Chtioui O, Dimitrov K, Gancel F, et al. Biosurfactants production by immobilized cells of Bacillus subtilis ATCC 21332 and their recovery by pertraction. Process Biochemistry, 2010, 45(11): 1795-1799.
doi: 10.1016/j.procbio.2010.05.012
[141] Chtioui O, Dimitrov K, Gancel F, et al. Selective fengycin production in a modified rotating discs bioreactor. Bioprocess and Biosystems Engineering, 2014, 37(2): 107-114.
doi: 10.1007/s00449-013-0964-9 pmid: 23694986
[142] Fahim S, Dimitrov K, Gancel F, et al. Impact of energy supply and oxygen transfer on selective lipopeptide production by Bacillus subtilis BBG21. Bioresource Technology, 2012, 126: 1-6.
doi: 10.1016/j.biortech.2012.09.019
[143] Rangarajan V, Dhanarajan G, Sen R. Bioprocess design for selective enhancement of fengycin production by a marine isolate Bacillus megaterium. Biochemical Engineering Journal, 2015, 99: 147-155.
doi: 10.1016/j.bej.2015.03.016
[1] 张健, 吴昊, 李艳妮, 乔建军. 革兰氏阳性菌非编码小RNA的研究进展[J]. 中国生物工程杂志, 2016, 36(10): 106-114.
[2] 陶思美, 郑维, 赵朋超, 周伟, 权春善, 范圣第. bmy基因敲除对解淀粉芽孢杆菌Q-426溶血性及抗菌活性的影响[J]. 中国生物工程杂志, 2014, 34(3): 56-60.
[3] 敖世洲. 真核基因转录调控因子的研究[J]. 中国生物工程杂志, 1991, 11(4): 17-22.
[4] 陈章良, 翟礼嘉. 植物基因的调控机制探讨[J]. 中国生物工程杂志, 1991, 11(4): 8-13.
[5] 孙振东. 一个“负的强化因子”调控β-干扰素[J]. 中国生物工程杂志, 1987, 7(2): 63-63.