Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2022, Vol. 42 Issue (5): 46-57    DOI: 10.13523/j.cb.2112013
技术与方法     
毛白杨优良无性系‘LM50’花药培养植株再生体系建立*
苗得雨1,高凯2,黄赛1,安新民1,**()
1 林木育种国家工程实验室 林木花卉遗传育种教育部重点实验室 林木花卉育种生物工程国家林业 和草原局重点实验室 北京林业大学生物科学与技术学院 北京 100083
2 中国林业科学研究院亚热带林业研究所 杭州 311400
Establishment of Anther-cultured Plant Regeneration System of Populus tomentosa Elite Clone ‘LM50’
MIAO De-yu1,GAO Kai2,HUANG Sai1,AN Xin-min1,**()
1 The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
2 Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
 全文: PDF(3735 KB)   HTML
摘要:

毛白杨‘LM50’具有速生、抗逆、不飞絮等优良特性,是木本植物进行遗传转化的理想材料。长期无性繁殖会导致优良性状衰退,在进行组织培养时,往往出现外植体不定芽分化和生根困难等问题。通过花药培养可以在较短时间内使毛白杨复幼,从而消除因外植体老化带来的负面影响,为转化研究提供理想的材料。与此同时,期望通过花药诱导创制单倍体植株,为基因组学研究和倍性育种提供材料。以山东冠县毛白杨基因库的‘LM50’为试验材料,对其花药发育时期与花芽形态的关系进行鉴定,选择单核靠边期的花药进行试验,探究了生长素和细胞分裂素在花药愈伤组织形成、不定芽分化及不定芽生根中的作用,建立了毛白杨花药离体再生体系,采用流式细胞仪和染色体压片计数法对诱导获得的再生植株进行了倍性鉴定。进一步利用花药培养再生植株的叶片建立了分化率高、生根率高的植物再生体系。小孢子发育时期与花芽外部形态特征对比表明,花芽长度为(1.98 ± 0.06) cm,1/4花序露出芽鳞的花芽,此时小孢子大部分处于单核靠边期;选择处于此时期的花药诱导形成愈伤组织,愈伤组织诱导率最高的培养基为H + 1.00 mg/L NAA + 1.00 mg/L BA,诱导率约为28.89%;愈伤组织进一步分化为不定芽,最佳分化培养基为MS + 0.05 mg/L NAA + 0.50 mg/L BA,分化率约为22.23%;不定芽接种至生根培养基,最佳生根培养基为1/2 MS + 0.30 mg/L IBA,生根率约为93.30%;利用流式细胞仪和染色体压片法对花药培养的27株再生植株进行倍性鉴定,鉴定植物均为二倍体;再生植株叶片分化成芽的最佳培养基为MS + 0.10 mg/L TDZ + 0.10 mg/L NAA + 0.50 mg/L BA,分化率高达92.23%。该叶片分化产生的不定芽的生根培养基与愈伤组织诱导不定芽生根的培养基相同,生根率一致。研究获得了毛白杨‘LM50’花药诱导再生植株,并建立了再生植株的叶片培养体系,可用于该优良无性系的快速繁育和毛白杨的遗传转化研究,为毛白杨的分子设计育种奠定了基础。

关键词: 毛白杨花药诱导组织培养幼化    
Abstract:

Populus tomentosa Carr., LM50, as an elite with characteristics of fast growth, strong stress-tolerance and no flying fluff, is usually recommended as an optimal material for genetic transformation in woody plants. The long-term asexual propagation in practice would cause the decline of excellent traits. During tissue culture, problems such as adventitious bud differentiation and rooting difficulties of explants often occur. Through anther induction approach, the negative impacts caused by the aging of the explants will be eliminated or alleviated, and P. tomentosa can be rejuvenated in a short time, providing more optimal materials for genetic transformation. Meanwhile, haploid individuals are expected to be obtained, which will be used in genomics research and ploidy breeding. Using the ‘LM50’ of the P.tomentosa gene bank in Guanxian County, Shandong Province as the test material, by comparing morphological characteristics and microspore stage, the mononuclear side-stage anthers were selected for regeneration in vitro. The effects of auxins and cytokinins in induction of callus, adventitious bud differentiation and rooting were assessed, respectively. The ploidy levels of the plants generated from anther induction were identified by the flow cytometry and chromosome counting. Furthermore, the leaves of plantlets induced by anthers as explants were used to establish a tissue culture system with high leaf differentiation rate and high rooting rate. The comparison of the microspore development period and the external morphological characteristics of the flower bud shows that most of the microspores were in the mononuclear side stage when the 1/4 inflorescence emerged from floral bud whose size was (1.98 ± 0.06) cm; the anthers in this period were selected to induce callus formation. The medium with the highest callus induction rate was H + 1.00 mg/L NAA + 1.00 mg/L BA, and the induction rate was about 28.89%. The callus was further differentiated into adventitious buds.The optimal shoot induction medium was MS + 0.05 mg/L NAA + 0.50 mg/L BA, and the induction rate was approximately 22.23%; adventitious shoots were inoculated to rooting medium. The optimal rooting medium was 1/2 MS + 0.30 mg/L IBA with 93.30% rooting rate; ploidy identification of 27 regenerated plants cultured in anthers was conducted by flow cytometry and the chromosome compression method, and the plants were all diploid. The optimal medium of in vitro regenerating for leaves and stems of plants originated from anthers was MS+TDZ 0.10mg/L + NAA 0.10 mg/L + BA 0.50 mg/L, and the regeneration rate was as high as 92.23%. The rooting medium for adventitious buds produced by leaf differentiation was the same as that for adventitious buds induced by callus, and the rooting rate was the same. The study obtained ‘LM50’ anther-induced regeneration plants, and established a leaf culture system for the anther regeneration plants, with high differentiation rate and rooting rate, which can be used for the rapid propagation of this excellent clone and genetic transformation of P.tomentosa, and laid the foundation for the molecular design and breeding of P. tomentosa.

Key words: Populus tomentosa    Anther culture    Plant regeneration    Rejuvenation
收稿日期: 2021-12-06 出版日期: 2022-06-17
ZTFLH:  Q813  
基金资助: *“十四五”国家重点研发计划(2021YFD2200101);国家自然科学基金(31570661);国家科技重大专项(2018ZX08021002-002-004)
通讯作者: 安新民     E-mail: xinminan@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
苗得雨
高凯
黄赛
安新民

引用本文:

苗得雨,高凯,黄赛,安新民. 毛白杨优良无性系‘LM50’花药培养植株再生体系建立*[J]. 中国生物工程杂志, 2022, 42(5): 46-57.

MIAO De-yu,GAO Kai,HUANG Sai,AN Xin-min. Establishment of Anther-cultured Plant Regeneration System of Populus tomentosa Elite Clone ‘LM50’. China Biotechnology, 2022, 42(5): 46-57.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.2112013        https://manu60.magtech.com.cn/biotech/CN/Y2022/V42/I5/46

图1  毛白杨花芽不同时期形态及花芽长度
图2  毛白杨花芽切片观察
图3  毛白杨花药诱导植株再生体系
试验号 NAA/ (mg/L) BA/ (mg/L) 接种数 形成愈伤组织数 愈伤组织形成率/%
M1 0.00 0.00 30.00 0 0f
M2 0.00 0.50 30.00 0 0f
M3 0.00 1.00 30.00 0 0f
M4 0.00 1.50 30.00 0 0f
M5 0.50 0.00 30.00 0 0f
M6 0.50 0.50 30.00 1.67 5.56±0.02a
M7 0.50 1.00 30.00 0.67 2.22±0.02a
M8 0.50 1.50 30.00 0 0f
M9 1.00 0.00 30.00 0 0f
M10 1.00 0.50 30.00 4.00 13.33±0.03b
M11 1.00 1.00 30.00 8.67 28.89±0.02c
M12 1.00 1.50 30.00 2.67 8.89±0.02d
M13 1.50 0.00 30.00 0 0f
M14 1.50 0.50 30.00 0 0f
M15 1.50 1.00 30.00 3.33 11.11±0.02d
M16 1.50 1.50 30.00 6.00 20.00±0.03e
表1  植物生长调节剂对毛白杨花药外植体愈伤组织形成的影响
试验号 BA /(mg/L) NAA/(mg/L) 愈伤数量 分化数 分化率/%
B0 0 0 30.00 0 0c
B1 0.10 0.01 30.00 0 0c
B2 0.10 0.05 30.00 0 0c
B3 0.10 0.10 30.00 0 0c
B4 0.20 0.01 30.00 0 0c
B5 0.20 0.05 30.00 0 0c
B6 0.20 0.10 30.00 0 0c
B7 0.50 0.01 30.00 2.33 7.77±0.02a
B8 0.50 0.05 30.00 6.67 22.23±0.02b
B9 0.50 0.10 30.00 0 0c
表2  植物生长调节剂对毛白杨花药愈伤组织分化的影响
试验号 IBA/(mg/L) 接种数 生根数 生根率/% 生长状况
R1 0 10.00 0 0e
R2 0.10 10.00 2.67 26.70±0.05a 主根不发达,侧根少
R3 0.20 10.00 6.33 63.30±0.05b 主根不发达,侧根少
R4 0.30 10.00 9.33 93.30±0.05c 主根发达,侧根较多
R5 0.40 10.00 8.67 86.70±0.05cd 主根不发达,侧根少
R6 0.50 10.00 8.00 80.00±0.10d 主根不发达,侧根少
表3  植物生长调节剂对毛白杨生根的作用
图4  流式细胞仪及染色体压片方法鉴定毛白杨倍性
图5  ‘GM12’离体再生体系
试验编号 NAA/(mg/L) TDZ/(mg/L) BA/(mg/L) 接种数 分化数 分化率/%
1 0 0 0 30.00 0 0
2 0.05 0.05 0.50 30.00 4.67 15.56
3 0.05 0.10 1.00 30.00 7.67 25.56
4 0.05 0.20 1.50 30.00 0 0
5 0.10 0.05 1.50 30.00 6.67 22.22
6 0.10 0.10 0.50 30.00 27.67 92.23
7 0.10 0.20 1.00 30.00 0 0
8 0.20 0.05 1.00 30.00 11.67 38.89
9 0.20 0.10 1.50 30.00 20.67 68.89
10 0.20 0.20 0.50 30.00 0 0
表4  植物生长调节剂对‘GM12’叶片分化的影响
[1] Gao K, Li J, Khan W U, et al. Comparative genomic and phylogenetic analyses of Populus section Leuce using complete chloroplast genome sequences. Tree Genetics & Genomes, 2019, 15(3): 1-12.
[2] Wang Z S, Du S H, Dayanandan S, et al. Phylogeny reconstruction and hybrid analysis of Populus (Salicaceae) based on nucleotide sequences of multiple single-copy nuclear genes and plastid fragments. PLoS One, 2014, 9(8): e103645.
doi: 10.1371/journal.pone.0103645
[3] Chen Z, Rao P, Yang X, et al. A global view of transcriptome dynamics during male floral bud development in Populus tomentosa. Scientific Reports, 2018, 8: 722.
doi: 10.1038/s41598-017-18084-5
[4] 裴东, 谷瑞升. 树木复幼的研究概述. 植物学通报, 2005, 40(6): 753-760.
Pei D, Gu R S. A review on the rejuvenation of mature trees. Chinese Bulletin of Botany, 2005, 40(6): 753-760.
[5] 董胜君, 刘明国, 郑可, 等. 基于幼化效果的山杏组培繁殖技术研究. 西北植物学报, 2017, 37(3): 595-601.
Dong S J, Liu M G, Zheng K, et al. Tissue culture propagation technique of Armeniaca sibirica based on rejuvenation effect. Acta Botanica Boreali-Occidentalia Sinica, 2017, 37(3): 595-601.
[6] 邓建军, 李芳东, 乔杰, 等. 白花泡桐优树试管嫁接幼化及组培快繁技术研究. 林业科学研究, 2011, 24(5): 646-650.
Deng J J, Li F D, Qiao J, et al. Study on grafted tissue rejuvenation technology and rapid propagation of Paulownia fortunei superior trees. Forest Research, 2011, 24(5): 646-650.
[7] 张世红, 李坤霞, 朱淑新, 等. 毛白杨成熟效应与组培幼化. 西北林学院学报, 2010, 25(4): 83-86.
Zhang S H, Li K X, Zhu S X, et al. Cyclophysis and rejuvenation of Populus tomentosa by tissue culture. Journal of Northwest Forestry University, 2010, 25(4): 83-86.
[8] 吴丹, 姚栋萍, 李莺歌, 等. 水稻花药培养技术及其育种应用的研究进展. 湖南农业科学, 2015(2): 139-142.
Wu D, Yao D P, Li Y G, et al. Research progress of rice anther culture technology and its application in breeding. Hunan Agricultural Sciences, 2015(2): 139-142.
[9] 李雪, 赵方媛, 马文馨, 等. 小黑麦花药培养效果研讨. 分子植物育种, 2019, 17(1): 201-209.
Li X, Zhao F Y, Ma W X, et al. Studies on the anther culture effect of Triticale (Triticosecale wittmack). Molecular Plant Breeding, 2019, 17(1): 201-209.
[10] 单淑玲, 庞胜群, 郭晓珊, 等. 加工番茄 (Lycopersicon esculentum Mill.)花药愈伤组织诱导与增殖的初步探究. 分子植物育种, 2019, 17(19): 6418-6423.
Shan S L, Pang S Q, Guo X S, et al. Preliminary study on callus induction and proliferation of processing tomato (Lycopersicon esculentum Mill.). Molecular Plant Breeding, 2019, 17(19): 6418-6423.
[11] 朱湘渝, 王瑞玲, 梁彦. 杨树花粉植株的诱导. 林业科学, 1980, 16(3): 190-197, 242.
Zhu X Y, Wang R L, Liang Y. Induction of poplar pollen plantlets. Scientia Silvae Sinicae, 1980, 16(3): 190-197, 242.
[12] 李俊秀. B6杨花药培养研究. 哈尔滨: 东北林业大学, 2010.
Li J X. Research on anther cultures of B6 Populus. Harbin: Northeast Forestry University, 2010.
[13] Bourgin J P, Nitsch J P. Production of haploid Nicotiana from excised stamens. Ann Physiol Veg, 1967, 9:377-382.
[14] Murashige T, Skoog F. A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiologia Plantarum, 1962, 15(3): 473-497.
doi: 10.1111/j.1399-3054.1962.tb08052.x
[15] 李英. 北京杨花药培养诱导单倍体再生体系的研究. 北京: 北京林业大学, 2013.
Li Y. Research of regeneration system of haploid plants from anther cultures of poplar (Populus × beijingensis). Beijing: Beijing Forestry University, 2013.
[16] Gamborg O L, Miller R A, Ojima K. Nutrient requirements of suspension cultures of soybean root cells. Experimental Cell Research, 1968, 50(1): 151-158.
doi: 10.1016/0014-4827(68)90403-5 pmid: 5650857
[17] Nitsch J P. Experimental and rogenesis in Nicotiona. Phytomorphology, 1969, 10: 389-404.
[18] 王敬驹, 孙敬三, 朱至清. 水稻花粉植株的诱导条件及影响诱导频率的某些因素. 植物学报, 1974, 16(1): 43-54.
Wang J J, Sun J S, Zhu Z Q. On the conditons for the induction of rice pollen plantlets and certain factors affecting the frequency of induction. Journal of Integrative Plant Biology, 1974, 16(1): 43-54.
[19] 贾际平, 吴丽萍, 曹明, 等. 高效冬枣花药愈伤组织培养体系的建立. 分子植物育种, 2018, 16(3): 948-953.
Jia J P, Wu L P, Cao M, et al. Establishment of a high-efficiency anther callus culture system of Dongzao (Ziziphus jujuba Mill.). Molecular Plant Breeding, 2018, 16(3): 948-953.
[20] 杜梦卿, 连朋, 王丽娟. 不同浓度TDZ和2, 4-D组合对草莓花药组织培养的影响. 东北农业科学, 2021, 46(2): 73-75, 131.
Du M Q, Lian P, Wang L J. Effects of different concentrations TDZ and 2, 4-D combination on anther tissue culture of strawberry. Journal of Northeast Agricultural Sciences, 2021, 46(2): 73-75, 131.
[21] 吴丽芳, 魏晓梅, 王总伟. 天蓝苜蓿花药愈伤组织诱导及再生体系的建立. 分子植物育种, 2021, 19(3): 962-971.
Wu L F, Wei X M, Wang Z W. Construction of a highly efficient anther culture technology system of Medicago lupulina. Molecular Plant Breeding, 2021, 19(3): 962-971.
[22] 高凯, 李娟, 安新民. 胡杨花药再生体系的建立. 西南林业大学学报(自然科学), 2020, 40(5): 159-165.
Gao K, Li J, An X M. Establishment of anther regeneration system of Populus euphratica. Journal of Southwest Forestry University (Natural Sciences), 2020, 40(5): 159-165.
[23] 田丹青, 葛亚英, 潘晓韵, 等. 红掌花药培养及单倍体植株的鉴定. 分子植物育种, 2020, 18(21): 7149-7154.
Tian D Q, Ge Y Y, Pan X Y, et al. Anther culture and haploid identification of Anthurium andraeanum. Molecular Plant Breeding, 2020, 18(21): 7149-7154.
[24] 殷丽琴, 付绍红, 杨进, 等. 植物单倍体的产生、鉴定、形成机理及应用. 遗传, 2016, 38(11): 979-991.
Yin L Q, Fu S H, Yang J, et al. Generation, identification, formation mechanism and application of plant haploids. Hereditas, 2016, 38(11): 979-991.
[25] Blasco M, Badenes M L, Naval M D M. Colchicine-induced polyploidy in loquat [Eriobotrya japonica (Thunb.) Lindl.]. Plant Cell, Tissue and Organ Culture (PCTOC), 2015, 120(2): 453-461.
doi: 10.1007/s11240-014-0612-3
[26] 王广富. 软枣猕猴桃花药培养及再生体系建立. 北京: 中国农业科学院, 2017.
Wang G F. Anther culture and regeneration system establishment of Actinidia arguta (Sieb.& Zucc) Planch. ex Miq. Beijing: Chinese Academy of Agricultural Sciences, 2017.
[27] 王胤, 姚瑞玲, 李慧娟, 等. 基于外植体生理复幼的马尾松茎段芽无菌离体培养. 植物生理学报, 2019, 55(9): 1375-1384.
Wang Y, Yao R L, Li H J, et al. In vitro sterilized culture of nodal segments based on explants physiological rejuvenation in Pinus massoniana. Plant Physiology Journal, 2019, 55(9): 1375-1384.
[1] 王聪,李秀,牛苗,戴阳光,董哲岳,董小岩,余双庆,杨怡姝. 基于TCID50检测AAV9载体制品感染性滴度的方法[J]. 中国生物工程杂志, 2021, 41(10): 28-32.
[2] 贾明良, 张本厚, 高伟平, 陈集双, 欧阳平凯. 三叶半夏(Pinelliaternata (Thunb.) Breit)的间歇浸没培养[J]. 中国生物工程杂志, 2012, 32(11): 49-54.
[3] 贾明良, 张本厚, 高伟平, 陈集双, 欧阳平凯. 三叶半夏(Pinelliaternata (Thunb.) Breit)的间歇浸没培养[J]. 中国生物工程杂志, 2012, 32(11): 49-54.
[4] 李昊, 陈仲, 李英, 王佳, 安新民. 毛白杨PtLFY基因启动子的克隆及其瞬时表达分析[J]. 中国生物工程杂志, 2012, 32(04): 41-46.
[5] 崔东清, 叶梅霞, 刘军梅, 李昊, 张志毅, 安新民. 毛白杨PtSEP2基因启动子克隆和瞬时表达特性分析[J]. 中国生物工程杂志, 2011, 31(5): 42-47.
[6] 陈仲, 李昊, 李英, 王佳, 叶梅霞, 郭斌, 季乐翔, 安新民. 毛白杨PtFT1PtFT2基因编码区克隆与表达模式分析[J]. 中国生物工程杂志, 2011, 31(12): 63-71.
[7] 崔东清 叶梅霞 刘军梅 李昊 张志毅 安新民. 毛白杨PtSEP2基因启动子克隆和瞬时表达特性分析[J]. 中国生物工程杂志, 2011, 31(05): 0-0.
[8] 胡永华, 黄惠琴. 香蕉转基因研究进展[J]. 中国生物工程杂志, 2004, 24(5): 34-37.
[9] 徐小勇, 刘继红, 邓秀新. 柑橘生物技术研究进展[J]. 中国生物工程杂志, 2003, 23(8): 35-38.
[10] 吕永杰, 李仕贵, 周晓禾. 观赏兰科植物组培快繁及遗传转化的研究进展[J]. 中国生物工程杂志, 2003, 23(10): 42-46.
[11] 童裳亮, 李宏, 苗宏志. 牙鲆、鲈鱼和真鲷的四个永生性细胞系建立[J]. 中国生物工程杂志, 1997, 17(3): 2-3.
[12] 梁小友, 米景九. 植物基因工程技术研究进展[J]. 中国生物工程杂志, 1993, 13(6): 20-25.
[13] 赵成章. 再论植物体细胞无性系变异及作物改良[J]. 中国生物工程杂志, 1993, 13(4): 32-36.
[14] 姜国勇, 李思经. 石刁柏生物工程研究进展[J]. 中国生物工程杂志, 1993, 13(3): 42-45.
[15] 陈少裕, 刘杰. 生物技术与林木遗传改良——现状与前景[J]. 中国生物工程杂志, 1993, 13(2): 35-38.