Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2022, Vol. 42 Issue (1/2): 14-25    DOI: 10.13523/j.cb.2110033
工业微生物的设计、改造与应用专题     
高效合成倍半萜酿酒酵母的构建策略*
李然1,闫晓光1,李伟国1,梁冬梅2,财音青格乐1,乔建军1,2,**()
1 天津大学化工学院 天津 300072
2 天津大学浙江绍兴研究院 绍兴 312300
Strategies of Engineering Saccharomyces cerevisiae for High-efficiency Synthesis of Sesquiterpenes
LI Ran1,YAN Xiao-guang1,LI Wei-guo1,LIANG Dong-mei2,CAI YIN Qing-ge-le1,QIAO Jian-jun1,2,**()
1 School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
2 Zhejiang Shaoxing Research Institute of Tianjin University, Shaoxing 312300, China
 全文: PDF(2587 KB)   HTML
摘要:

倍半萜是具有较强香气和优良生物活性的萜类化合物,能用于香料、燃料和药物的合成。目前,工业上获取倍半萜的常见方法主要是化学合成以及植物提取。由于常见方法存在产率低、成本高和污染大等不可避免的问题,科研人员开始关注微生物合成倍半萜的相关研究,并且以酿酒酵母为宿主采用代谢工程、酶工程和合成生物学等方法构建了生产各种倍半萜的微生物细胞工厂。介绍和解析了酿酒酵母倍半萜合成途径。围绕乙酰辅酶A的积累、甲羟戊酸途径的强化和改造以及底物竞争途径的抑制三个方面,综述了改造和强化倍半萜合成途径的具体策略和相关实例。概述了近年来关于倍半萜合成酶的挖掘和突变研究进展。最后,针对如何进一步提高酿酒酵母合成倍半萜的效率提出展望与建议。

关键词: 倍半萜微生物合成酿酒酵母    
Abstract:

Sesquiterpenes, which belong to terpenes and have strong fragrance and excellent biological activity, can be used in the synthesis of flavors, biofuels and pharmaceuticals. At present, the common methods of obtaining sesquiterpenes in industry are chemical synthesis and plant extraction. Due to the inevitable problems of low yield, high cost and large pollution in common methods, researchers begin to pay attention to the research of microbial synthesis of sesquiterpenes and used metabolic engineering, enzyme engineering and methods of synthetic biology to construct microbial cell factories of Saccharomyces cerevisiae, which can produce various sesquiterpenes. The sesquiterpene synthesis pathway has been introduced and analyzed in the paper. Focusing on the accumulation of the acetyl-CoA, the improvement and modification of the mevalonate pathway, and the inhibition of competitive pathways, specific strategies and relative examples about the improvement and modification of the sesquiterpene synthesis pathway are reviewed. The research progress about the characterization and mutation of sesquiterpene synthases in recent years is summarized. Finally, the prospect and suggestions are proposed to improve the efficiency of sesquiterpene synthesis in Saccharomyces cerevisiae.

Key words: Sesquiterpene    Microbial synthesis    Saccharomyces cerevisiae
收稿日期: 2021-10-22 出版日期: 2022-03-03
ZTFLH:  Q819  
基金资助: * 国家重点研发计划资助项目(2020YFA0907900)
通讯作者: 乔建军     E-mail: jianjunq@tju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
李然
闫晓光
李伟国
梁冬梅
财音青格乐
乔建军

引用本文:

李然,闫晓光,李伟国,梁冬梅,财音青格乐,乔建军. 高效合成倍半萜酿酒酵母的构建策略*[J]. 中国生物工程杂志, 2022, 42(1/2): 14-25.

LI Ran,YAN Xiao-guang,LI Wei-guo,LIANG Dong-mei,CAI YIN Qing-ge-le,QIAO Jian-jun. Strategies of Engineering Saccharomyces cerevisiae for High-efficiency Synthesis of Sesquiterpenes. China Biotechnology, 2022, 42(1/2): 14-25.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.2110033        https://manu60.magtech.com.cn/biotech/CN/Y2022/V42/I1/2/14

倍半萜 主要改造策略 产量 参考文献
α-法尼烯 筛选和表达来自大豆的α-法尼烯合成酶Fsso;采用GAL系列启动子增强Fsso和HMGR的表达;敲除DPP1 5 L发酵罐产量达
10.4 g/L
[13]
α-法尼烯 表达来自L. mesenteroides的xPK和来自C. kluyveri的PTA;表达来自D. zeae的乙酰乙醛脱氢酶和来自S.pomeroyi的NADH-HMGR;敲除RHR2 200 t工业发酵罐产量达到130 g/L [14]
反式橙花叔醇 鉴定和表达来自C. angulatus的反式橙化叔醇合成酶CaNES;采用GAL2启动子过表达UPC2-1;敲除GAL80;启动子PERG9替换成PHXT1 5 L发酵罐产量达
7.01 g/L
[15]
α-蛇麻烯 利用ePTS1将来自Z. zerumbet的α-蛇麻烯合成酶ZSS1定位到过氧化物酶体;向过氧化物酶体引入MVA途径中的8个酶并使用GAL系列启动子增强酶的表达;敲除GAL80或将启动子PGAL80替换成PHXT1 5 L发酵罐产量达
1 726.78 mg/L
[16]
吉玛烯A 筛选和表达了来自不同物种的9个吉玛烯A合成酶;过表达tHMGR、ERG20和UPC2-1;过表达来自A. variabilis的吉玛烯A合成酶的突变体AvGASF23W;敲除DPP1和LPP1;启动子PERG9替换成PHXT1 摇瓶发酵产量达
309.8 mg/L
[17]
没药烯 过表达tHMGR、ERG20和UPC2-1;下调角鲨烯合成酶ERG9的表达;表达来自A. grandis的没药烯合成酶AgBIS 摇瓶发酵产量达
(994±241) mg/L
[5]
紫穗槐二烯 过表达两个磷酸果糖激酶的突变体PFK1S724D、PFK2S718D以及6-磷酸葡萄糖脱氢酶ZWF1;过表达ERG10、tHMGR和紫穗槐二烯合成酶;启动子PERG9替换成PSYH1 摇瓶发酵产量达497 mg/L [18]
广藿香醇 过表达POS5、ACS1、ERG11、ERG24和MVA途径中涉及的所有酶;过表达由广藿香醇合成酶与法尼基焦磷酸合成酶组成的融合蛋白;敲除YJ064W、YPL062W以及ROX1;启动子PERG9替换成PHXT1 5 L发酵罐产量达
1 632 mg/L
[19]
表1  酿酒酵母合成不同倍半萜的改造策略
图1  酿酒酵母中倍半萜的合成途径
图2  倍半萜合成酶催化过程
[1] Mai J, Li W J, Ledesma-Amaro R, et al. Engineering plant sesquiterpene synthesis into yeasts: a review. Journal of Agricultural and Food Chemistry, 2021, 69(33):9498-9510.
doi: 10.1021/acs.jafc.1c03864
[2] Ferreira F M, Palmeira C M, Oliveira M M, et al. Nerolidol effects on mitochondrial and cellular energetics. Toxicology in Vitro, 2012, 26(2):189-196.
doi: 10.1016/j.tiv.2011.11.009
[3] McGinty D, Letizia C S, Api A M. Addendum to fragrance material review on nerolidol (isomer unspecified). Food and Chemical Toxicology, 2010, 48:S43-S45.
doi: 10.1016/j.fct.2009.11.008
[4] 赵雅坤. 代谢工程改造解脂耶式酵母生物合成红没药烯的研究. 天津: 天津科技大学, 2020.
Zhao Y K. Metabolic engineering of the oleaginous yeast Yarrowia lipolytica for microbial synthesis of bisabolene. Tianjin: Tianjin University of Science and Technology, 2020.
[5] Peralta-Yahya P P, Ouellet M, Chan R, et al. Identification and microbial production of a terpene-based advanced biofuel. Nature Communications, 2011, 2:483.
doi: 10.1038/ncomms1494 pmid: 21952217
[6] 陈伟. α-红没药醇对人肝癌HepG2细胞凋亡作用的研究. 武汉: 武汉大学, 2010.
Chen W. Study on the apoptotic effect of α-bisabolol on human hepatoma HepG2 cell line. Wuhan: Wuhan University, 2010.
[7] Buijs N A, Siewers V, Nielsen J. Advanced biofuel production by the yeast Saccharomyces cerevisiae. Current Opinion in Chemical Biology, 2013, 17(3):480-488.
doi: 10.1016/j.cbpa.2013.03.036
[8] Lee K S, Kim G H, Kim H H, et al. Volatile compounds of Panax ginseng C.A. Meyer cultured with different cultivation methods. Journal of Food Science, 2012, 77(7):C805-C810.
doi: 10.1111/jfds.2012.77.issue-7
[9] Jung J I, Kim E J, Kwon G T, et al. Β-Caryophyllene potently inhibits solid tumor growth and lymph node metastasis of B16F10 melanoma cells in high-fat diet-induced obese C57BL/6N mice. Carcinogenesis, 2015, 36(9):1028-1039.
doi: 10.1093/carcin/bgv076 pmid: 26025912
[10] di Sotto A, Mancinelli R, Gullì M, et al. Chemopreventive potential of caryophyllane sesquiterpenes: an overview of preliminary evidence. Cancers, 2020, 12(10):3034.
doi: 10.3390/cancers12103034
[11] Harvey B G, Merriman W W, Koontz T A. High-density renewable diesel and jet fuels prepared from multicyclic sesquiterpanes and a 1-hexene-derived synthetic paraffinic kerosene. Energy & Fuels, 2015, 29(4):2431-2436.
doi: 10.1021/ef5027746
[12] George K W, Alonso-Gutierrez J, Keasling J D, et al. Isoprenoid drugs, biofuels, and chemicals:artemisinin, farnesene, and beyond. Advances in Biochemical Engineering/ Biotechnology, 2015, 148:355-389.
[13] Wang J H, Jiang W, Liang C J, et al. Overproduction of α-farnesene in Saccharomyces cerevisiae by farnesene synthase screening and metabolic engineering. Journal of Agricultural and Food Chemistry, 2021, 69(10):3103-3113.
doi: 10.1021/acs.jafc.1c00008
[14] Meadows A L, Hawkins K M, Tsegaye Y, et al. Rewriting yeast central carbon metabolism for industrial isoprenoid production. Nature, 2016, 537(7622):694-697.
doi: 10.1038/nature19769
[15] Li W G, Yan X G, Zhang Y T, et al. Characterization of trans-nerolidol synthase from Celastrus angulatus maxim and production of trans-nerolidol in engineered Saccharomyces cerevisiae. Journal of Agricultural and Food Chemistry, 2021, 69(7):2236-2244.
doi: 10.1021/acs.jafc.0c06084
[16] Zhang C B, Li M, Zhao G R, et al. Harnessing yeast peroxisomes and cytosol acetyl-CoA for sesquiterpene α-humulene production. Journal of Agricultural and Food Chemistry, 2020, 68(5):1382-1389.
doi: 10.1021/acs.jafc.9b07290
[17] Zhang W X, Guo J Q, Wang Z, et al. Improved production of germacrene A, a direct precursor of ?-elemene, in engineered Saccharomyces cerevisiae by expressing a cyanobacterial germacrene A synthase. Microbial Cell Factories, 2021, 20(1):7.
doi: 10.1186/s12934-020-01500-3
[18] Kwak S, Yun E J, Lane S, et al. Redirection of the glycolytic flux enhances isoprenoid production in Saccharomyces cerevisiae. Biotechnology Journal, 2020, 15(2):e1900173.
[19] Liu M, Lin Y C, Guo J J, et al. High-level production of sesquiterpene patchoulol in Saccharomyces cerevisiae. ACS Synthetic Biology, 2021, 10(1):158-172.
doi: 10.1021/acssynbio.0c00521
[20] Heyland J, Fu J N, Blank L M. Correlation between TCA cycle flux and glucose uptake rate during respiro-fermentative growth of Saccharomyces cerevisiae. Microbiology (Reading, England), 2009, 155(Pt 12):3827-3837.
doi: 10.1099/mic.0.030213-0
[21] Starai V J, Escalante-Semerena J C. Acetyl-coenzyme A synthetase (AMP forming). Cellular and Molecular Life Sciences CMLS, 2004, 61(16):2020-2030.
[22] Shiba Y, Paradise E M, Kirby J, et al. Engineering of the pyruvate dehydrogenase bypass in Saccharomyces cerevisiae for high-level production of isoprenoids. Metabolic Engineering, 2007, 9(2):160-168.
doi: 10.1016/j.ymben.2006.10.005
[23] Wegner S A, Chen J M, Ip S S, et al. Engineering acetyl-CoA supply and ERG9 repression to enhance mevalonate production in Saccharomyces cerevisiae. Journal of Industrial Microbiology and Biotechnology, 2021, 48(9-10):kuab050.
doi: 10.1093/jimb/kuab050
[24] Shi W Q, Li J, Chen Y F, et al. Metabolic engineering of Saccharomyces cerevisiae for ethyl acetate biosynthesis. ACS Synthetic Biology, 2021, 10(3):495-504.
doi: 10.1021/acssynbio.0c00446
[25] Chen Y, Daviet L, Schalk M, et al. Establishing a platform cell factory through engineering of yeast acetyl-CoA metabolism. Metabolic Engineering, 2013, 15:48-54.
doi: 10.1016/j.ymben.2012.11.002 pmid: 23164578
[26] Ratledge C, Wynn J P. The biochemistry and molecular biology of lipid accumulation in oleaginous microorganisms. Advances in Applied Microbiology, 2002, 51:1-51.
pmid: 12236054
[27] Rodriguez S, Denby C M, van Vu T, et al. ATP citrate lyase mediated cytosolic acetyl-CoA biosynthesis increases mevalonate production in Saccharomyces cerevisiae. Microbial Cell Factories, 2016, 15:48.
doi: 10.1186/s12934-016-0447-1 pmid: 26939608
[28] Cardenas J, da Silva N A. Engineering cofactor and transport mechanisms in Saccharomyces cerevisiae for enhanced acetyl-CoA and polyketide biosynthesis. Metabolic Engineering, 2016, 36:80-89.
doi: S1096-7176(16)00030-6 pmid: 26969250
[29] Zhang Y M, Su M, Qin N, et al. Expressing a cytosolic pyruvate dehydrogenase complex to increase free fatty acid production in Saccharomyces cerevisiae. Microbial Cell Factories, 2020, 19(1):226.
doi: 10.1186/s12934-020-01493-z
[30] Schadeweg V, Boles E. N-Butanol production in Saccharomyces cerevisiae is limited by the availability of coenzyme A and cytosolic acetyl-CoA. Biotechnology for Biofuels, 2016, 9:44.
doi: 10.1186/s13068-016-0456-7 pmid: 26913077
[31] Sandoval C M, Ayson M, Moss N, et al. Use of pantothenate as a metabolic switch increases the genetic stability of farnesene producing Saccharomyces cerevisiae. Metabolic Engineering, 2014, 25:215-226.
doi: 10.1016/j.ymben.2014.07.006 pmid: 25076380
[32] Polakowski T, Stahl U, Lang C. Overexpression of a cytosolic hydroxymethylglutaryl-CoA reductase leads to squalene accumulation in yeast. Applied Microbiology and Biotechnology, 1998, 49(1):66-71.
pmid: 9487712
[33] Hampton R Y, Rine J. Regulated degradation of HMG-CoA reductase, an integral membrane protein of the endoplasmic Reticulum, in yeast. The Journal of Cell Biology, 1994, 125(2):299-312.
doi: 10.1083/jcb.125.2.299
[34] Donald K A, Hampton R Y, Fritz I B. Effects of overproduction of the catalytic domain of 3-hydroxy-3-methylglutaryl coenzyme A reductase on squalene synthesis in Saccharomyces cerevisiae. Applied and Environmental Microbiology, 1997, 63(9):3341-3344.
doi: 10.1128/aem.63.9.3341-3344.1997 pmid: 9292983
[35] Huh W K, Falvo J V, Gerke L C, et al. Global analysis of protein localization in budding yeast. Nature, 2003, 425(6959):686-691.
doi: 10.1038/nature02026
[36] Ignea C, Cvetkovic I, Loupassaki S, et al. Improving yeast strains using recyclable integration cassettes, for the production of plant terpenoids. Microbial Cell Factories, 2011, 10:4.
doi: 10.1186/1475-2859-10-4
[37] Asadollahi M A, Maury J, Schalk M, et al. Enhancement of farnesyl diphosphate pool as direct precursor of sesquiterpenes through metabolic engineering of the mevalonate pathway in Saccharomyces cerevisiae. Biotechnology and Bioengineering, 2010, 106(1):86-96.
doi: 10.1002/bit.22668 pmid: 20091767
[38] Steussy C N, Robison A D, Tetrick A M, et al. A structural limitation on enzyme activity: the case of HMG-CoA synthase. Biochemistry, 2006, 45(48):14407-14414.
pmid: 17128980
[39] Pitera D J, Paddon C J, Newman J D, et al. Balancing a heterologous mevalonate pathway for improved isoprenoid production in Escherichia coli. Metabolic Engineering, 2007, 9(2):193-207.
doi: 10.1016/j.ymben.2006.11.002
[40] Paramasivan K, Mutturi S. Regeneration of NADPH coupled with HMG-CoA reductase activity increases squalene synthesis in Saccharomyces cerevisiae. Journal of Agricultural and Food Chemistry, 2017, 65(37):8162-8170.
doi: 10.1021/acs.jafc.7b02945 pmid: 28845666
[41] Chen H L, Li M J, Liu C Q, et al. Enhancement of the catalytic activity of Isopentenyl diphosphate isomerase (IDI) from Saccharomyces cerevisiae through random and site-directed mutagenesis. Microbial Cell Factories, 2018, 17(1):65.
doi: 10.1186/s12934-018-0913-z
[42] Hu Z H, Li H X, Weng Y R, et al. Improve the production of d-limonene by regulating the mevalonate pathway of Saccharomyces cerevisiae during alcoholic beverage fermentation. Journal of Industrial Microbiology and Biotechnology, 2020, 47(12):1083-1097.
doi: 10.1007/s10295-020-02329-w
[43] Ma B, Liu M, Li Z H, et al. Significantly enhanced production of patchoulol in metabolically engineered Saccharomyces cerevisiae. Journal of Agricultural and Food Chemistry, 2019, 67(31):8590-8598.
doi: 10.1021/acs.jafc.9b03456
[44] Tippmann S, Anfelt J, David F, et al. Affibody scaffolds improve sesquiterpene production in Saccharomyces cerevisiae. ACS Synthetic Biology, 2017, 6(1):19-28.
doi: 10.1021/acssynbio.6b00109 pmid: 27560952
[45] Chatzivasileiou A O, Ward V, Edgar S M, et al. Two-step pathway for isoprenoid synthesis. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(2):506-511.
[46] Liu H, Chen S L, Xu J Z, et al. Dual regulation of cytoplasm and peroxisomes for improved Α-farnesene production in recombinant Pichia pastoris. ACS Synthetic Biology, 2021, 10(6):1563-1573.
doi: 10.1021/acssynbio.1c00186
[47] Clomburg J M, Qian S, Tan Z G, et al. The isoprenoid alcohol pathway, a synthetic route for isoprenoid biosynthesis. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(26):12810-12815.
[48] Scalcinati G, Partow S, Siewers V, et al. Combined metabolic engineering of precursor and co-factor supply to increase α-santalene production by Saccharomyces cerevisiae. Microbial Cell Factories, 2012, 11:117.
doi: 10.1186/1475-2859-11-117 pmid: 22938570
[49] Asadollahi M A, Maury J, M?ller K, et al. Production of plant sesquiterpenes in Saccharomyces cerevisiae: effect of ERG9 repression on sesquiterpene biosynthesis. Biotechnology and Bioengineering, 2008, 99(3):666-677.
pmid: 17705244
[50] Yuan J F, Ching C B. Dynamic control of ERG9 expression for improved amorpha-4, 11-diene production in Saccharomyces cerevisiae. Microbial Cell Factories, 2015, 14:38.
doi: 10.1186/s12934-015-0220-x
[51] Callari R, Meier Y, Ravasio D, et al. Dynamic control of ERG20 and ERG9 expression for improved casbene production in Saccharomyces cerevisiae. Frontiers in Bioengineering and Biotechnology, 2018, 6:160.
doi: 10.3389/fbioe.2018.00160
[52] Shishova E Y, di Costanzo L, Cane D E, et al. X-ray crystal structure of aristolochene synthase from Aspergillus terreus and evolution of templates for the cyclization of farnesyl diphosphate. Biochemistry, 2007, 46(7):1941-1951.
doi: 10.1021/bi0622524
[53] Shishova E Y, Yu F L, Miller D J, et al. X-ray crystallographic studies of substrate binding to aristolochene synthase suggest a metal ion binding sequence for catalysis. Journal of Biological Chemistry, 2008, 283(22):15431-15439.
doi: 10.1074/jbc.M800659200
[54] Ban Z N, Qin H, Mitchell A J, et al. Noncatalytic chalcone isomerase-fold proteins in Humulus lupulus are auxiliary components in prenylated flavonoid biosynthesis. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(22):E5223-E5232.
[55] Li W G, Yan X G, Zhang Y T, et al. Characterization of trans-nerolidol synthase from Celastrus angulatus maxim and production of trans-nerolidol in engineered Saccharomyces cerevisiae. Journal of Agricultural and Food Chemistry, 2021, 69(7):2236-2244.
doi: 10.1021/acs.jafc.0c06084
[56] Li J X, Fang X, Zhao Q, et al. Rational engineering of plasticity residues of sesquiterpene synthases from Artemisia annua: product specificity and catalytic efficiency. The Biochemical Journal, 2013, 451(3):417-426.
doi: 10.1042/BJ20130041
[57] Fang X, Li J X, Huang J Q, et al. Systematic identification of functional residues of Artemisia annua amorpha-4, 11-diene synthase. The Biochemical Journal, 2017, 474(13):2191-2202.
doi: 10.1042/BCJ20170060
[58] Shukal S, Chen X X, Zhang C Q. Systematic engineering for high-yield production of viridiflorol and amorphadiene in auxotrophic Escherichia coli. Metabolic Engineering, 2019, 55:170-178.
doi: S1096-7176(19)30215-0 pmid: 31326469
[59] Yoshikuni Y, Ferrin T E, Keasling J D. Designed divergent evolution of enzyme function. Nature, 2006, 440(7087):1078-1082.
doi: 10.1038/nature04607
[60] Bogorad I W, Lin T S, Liao J C. Synthetic non-oxidative glycolysis enables complete carbon conservation. Nature, 2013, 502(7473):693-697.
doi: 10.1038/nature12575
[61] Kocharin K, Siewers V, Nielsen J. Improved polyhydroxybutyrate production by Saccharomyces cerevisiae through the use of the phosphoketolase pathway. Biotechnology and Bioengineering, 2013, 110(8):2216-2224.
doi: 10.1002/bit.v110.8
[62] de Jong B W, Shi S B, Siewers V, et al. Improved production of fatty acid ethyl esters in Saccharomyces cerevisiae through up-regulation of the ethanol degradation pathway and expression of the heterologous phosphoketolase pathway. Microbial Cell Factories, 2014, 13(1):39.
doi: 10.1186/1475-2859-13-39
[63] Andersen J L, Flamm C, Merkle D, et al. Chemical transformation motifs: modelling pathways as integer hyperflows. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2019, 16(2):510-523.
doi: 10.1109/TCBB.2017.2781724 pmid: 29990045
[64] Vögeli B, Engilberge S, Girard E, et al. Archaeal acetoacetyl-CoA thiolase/HMG-CoA synthase complex channels the intermediate via a fused CoA-binding site. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(13):3380-3385.
[65] Casey W M, Keesler G A, Parks L W. Regulation of partitioned sterol biosynthesis in Saccharomyces cerevisiae. Journal of Bacteriology, 1992, 174(22):7283-7288.
pmid: 1429452
[66] Faulkner A, Chen X M, Rush J, et al. The LPP1 and DPP1 gene products account for most of the isoprenoid phosphate phosphatase activities in Saccharomyces cerevisiae. Journal of Biological Chemistry, 1999, 274(21):14831-14837.
doi: 10.1074/jbc.274.21.14831 pmid: 10329682
[1] 陈涛,刘志华,李霞,谢泽雄. 抑制剂耐受性酵母底盘细胞的设计与构建*[J]. 中国生物工程杂志, 2022, 42(1/2): 1-13.
[2] 张耀,邱晓曼,孙浩,郭蕾,洪厚胜. 酿酒酵母的工业化应用[J]. 中国生物工程杂志, 2022, 42(1/2): 26-36.
[3] 董曙馨,秦磊,李春,李珺. 利用转录因子工程重塑代谢网络实现细胞工厂高效生产[J]. 中国生物工程杂志, 2021, 41(4): 55-63.
[4] 薛志勇,代红生,张显元,孙艳颖,黄志伟. 表达透明颤菌血红蛋白基因对酿酒酵母生长及细胞内氧化状态的影响*[J]. 中国生物工程杂志, 2021, 41(11): 32-39.
[5] 石鹏程, 纪晓俊. 酵母系统表达人表皮生长因子研究进展 *[J]. 中国生物工程杂志, 2021, 41(1): 72-79.
[6] 岑黔鸿,高彤,任怡,雷涵. 重组酿酒酵母表达幽门螺杆菌VacA蛋白及其免疫原性分析*[J]. 中国生物工程杂志, 2020, 40(5): 15-21.
[7] 章小毛,郭敬涵,洪解放,陆海燕,丁娟娟,邹少兰,范寰. UPRE-lac Z为报告基因评价酵母UPR响应初步研究 *[J]. 中国生物工程杂志, 2020, 40(10): 1-9.
[8] 胡妍,李辉,何承文,朱婧,谢志平. 酵母亚细胞结构分离效率评估菌株的构建 *[J]. 中国生物工程杂志, 2020, 40(10): 10-23.
[9] 刘金丛,刘雪,於洪建,赵广荣. 微生物合成根皮素及其糖苷研究进展 *[J]. 中国生物工程杂志, 2020, 40(10): 76-84.
[10] 马雅婷,刘珍宁,刘雪,於洪建,赵广荣. 微生物异源合成植物异喹啉生物碱的新进展 *[J]. 中国生物工程杂志, 2019, 39(11): 123-131.
[11] 张正坦,朱婧,谢志平. 酿酒酵母全基因组SNARE蛋白的亚细胞定位研究 *[J]. 中国生物工程杂志, 2019, 39(10): 44-57.
[12] 陆海燕,李佳蔓,孙思凡,章小毛,丁娟娟,邹少兰. CRISPR - Cas9系统介导的工业酵母营养缺陷型菌株构建 *[J]. 中国生物工程杂志, 2019, 39(10): 67-74.
[13] 黄俊,吴仁智,陆琦,芦志龙. 酿酒酵母木糖转运基因研究进展 *[J]. 中国生物工程杂志, 2018, 38(2): 109-115.
[14] 张伟, 刘夺, 李炳志, 元英进. 产对香豆酸酿酒酵母菌株的构建及优化[J]. 中国生物工程杂志, 2017, 37(9): 89-97.
[15] 李博, 梁楠, 刘夺, 刘宏, 王颖, 肖文海, 姚明东, 元英进. 合成8二甲基异戊烯基柚皮素的人工酿酒酵母菌株构建[J]. 中国生物工程杂志, 2017, 37(9): 71-81.