Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2022, Vol. 42 Issue (3): 110-123    DOI: 10.13523/j.cb.2109051
综述     
微藻异养高密度培养研究进展与发展趋势*
张虎1,**,赵亮2,**,陈义3,高保燕1,胡强4,***(),张成武1,***()
1 暨南大学水生生物研究中心 广州 510632
2 德默特生物科技(珠海)有限公司 珠海 519031
3 中国科学院水生生物研究所 武汉 430072 4 深圳大学高等研究院 深圳 518061
Research Progress and Future Direction on High-cell-density Heterotrophic Cultivation of Microalgae
ZHANG Hu1,**,ZHAO Liang2,**,CHEN Yi3,GAO Bao-yan1,HU Qiang4,***(),ZHANG Cheng-wu1,***()
1 Institute of Hydrobiology, Jinan University, Guangzhou 510632, China
2 Demeter Biotechnology (Zhuhai) Co., Ltd., Zhuhai 519031, China
3 Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
 全文: PDF(3951 KB)   HTML
摘要:

微藻细胞可以积累大量油脂、蛋白质、多糖、色素、不饱和脂肪酸等物质,在能源、食品、饵料、保健品及药品等行业有巨大的应用价值。然而,微藻在传统光自养模式下很难实现高密度培养来大量生产这些重要的物质,进而限制了微藻的实际应用。相反,微藻在异养模式下生长速度快、生物质浓度高,可以短时间内获得大量微藻生物质。因此,异养高密度培养微藻具备大规模、高效率培养微藻生产目标产物的巨大潜力。阐述微藻异养培养的优缺点及相应技术难点的解决思路、影响微藻异养生长及目标产物积累的主要营养因子和环境因子、微藻异养高密度培养的方式及微藻异养高密度培养的当前发展水平。结合文献报道分析微藻异养高密度培养的四个具有极大发展潜力的发展方向,以期更好地利用异养模式来高效率、低成本培养微藻生产大量目标产物,满足上述多个行业对微藻原材料的巨大需求,从而加速微藻产业的发展。

关键词: 微藻异养高密度培养营养方式环境因子培养策略    
Abstract:

Microalgae are sources of many important chemicals, such as lipids, proteins, polysaccharides, pigments and polyunsaturated fatty acids, which have a broad range of applications in biofuels, food, feed, nutraceutical, and pharmaceutical industries. However, the low production of microalgal biomass under photoautotrophic cultivation has limited its applications. In contrast, microalgae can grow fast and achieve ultrahigh cell densities under heterotrophic cultivation. These characteristics make heterotrophic cultivation have a promising potential for industrial production of microalgae-based products. This review aims to provide an overview of the advantages and disadvantages in microalgal heterotrophic cultivation, and the factors and strategies affecting microalgal cell growth as well as the current production of several microalgae under high-cell-density heterotrophic cultivation. The path forward for further economical and efficient production of microalgal target compounds under high-cell density heterotrophic culture with respect to four different opportunities is also discussed, which will in turn meet the huge demand of microalgal feedstocks in the above industries and accelerate the development of microalgae industry.

Key words: Microalgae    High-cell-density heterotrophic cultivation    Nutrition manner    Environmental factors    Culture strategy
收稿日期: 2021-09-30 出版日期: 2022-04-07
ZTFLH:  Q819  
基金资助: * 国家自然科学基金(32002412);广东省基础与应用基础研究基金资助项目(2020A1515110802)
通讯作者: 胡强,张成武     E-mail: huqiang@szu.edu.cn;tzhangcw@jnu.edu.cn
作者简介: ** 对本文具有同等贡献
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
张虎
赵亮
陈义
高保燕
胡强
张成武

引用本文:

张虎, 赵亮, 陈义, 高保燕, 胡强, 张成武. 微藻异养高密度培养研究进展与发展趋势*[J]. 中国生物工程杂志, 2022, 42(3): 110-123.

ZHANG Hu, ZHAO Liang, CHEN Yi, GAO Bao-yan, HU Qiang, ZHANG Cheng-wu. Research Progress and Future Direction on High-cell-density Heterotrophic Cultivation of Microalgae. China Biotechnology, 2022, 42(3): 110-123.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.2109051        https://manu60.magtech.com.cn/biotech/CN/Y2022/V42/I3/110

图1  尖状栅藻在室外大规模培养时(10 000 L)的藻种制备过程
图2  尖状栅藻异养培养时两种常见的污染物
图3  尖状栅藻在两种策略下进行补料分批培养时藻液葡萄糖浓度和细胞生物质浓度的变化曲线[3]
Algal division Strain Target product Culture
volume
/L
Maximum
biomass
concentration
/(g·L-1)
Average
biomass
productivity
/[g/(L·h-1)]
References
Dinophyta Cryptecodinium cohnii DHA 2.0 109.0 0.27a [14]
Chrysophyta Poterioochromonas malhamensis β-1,3-glucan 7.5 32.8 0.23a [13]
Bacillariophyta Nitzschia laevis EPA 2.2 40.0 0.09a [52]
Bacillariophyta Nitzschia laevis Fucoxanthin 3.0 17.3 0.07a [61]
Rhodophyta Galdieria sulphuraria Phycocyanin 3.0 116.0 0.34a [47]
Rhodophyta Galdieria sulphuraria Phycocyanin 3.0 109.0 0.72 [62]
Chlorophyta Haematococcus pluvialis Astaxanthin 50.0 26.0 0.06 [56]
Chlorophyta Chromochloris zofingiensis Astaxanthin 3.7 71.1 0.24 [57]
Chlorophyta Auxenochlorella protothecoides Lutein 3.7 19.6 0.14 [20]
Chlorophyta Chlorella vulgaris Lutein 5.0 47.4 0.49a [63]
Chlorophyta Chlorella vulgaris Lutein 25 000 49.0 1.53a [63]
Chlorophyta Chlorella vulgaris Lutein 240 000 49.1 1.36a [63]
Chlorophyta Chlorella regularis Phytochemicals 2.6 84.0 2.76 [64]
Chlorophyta Chlorella pyrenoidosa Protein 5.0 132.2 1.50 [65]
Chlorophyta Chlorella pyrenoidosa Protein 50.0 149.4 1.78 [65]
Chlorophyta Chlorella pyrenoidosa Protein 1 500.0 31.1 0.40 [65]
Chlorophyta Botryococcus braunii Hydrocarbons 5.0 37.0 0.06 [66]
Chlorophyta Auxenochlorella protothecoides Lipids 2.0 144.0 0.69a [67]
Chlorophyta Auxenochlorella protothecoides Lipids 5.0 15.5 0.08a [44]
Chlorophyta Auxenochlorella protothecoides Lipids 5.0 51.2 0.28 [30]
Chlorophyta Auxenochlorella protothecoides Lipids 5.0 97.1 0.53a [12]
Chlorophyta Auxenochlorella protothecoides Lipids 5.5 45.2 0.23 [68]
Chlorophyta Auxenochlorella protothecoides Lipids 7.0 46.0 0.26 [68]
Chlorophyta Auxenochlorella protothecoides Lipids 750.0 12.8 0.07a [44]
Chlorophyta Auxenochlorella protothecoides Lipids 11 000.0 14.2 0.07a [44]
Chlorophyta Auxenochlorella protothecoides Lipids 60 000.0 33.1 0.16 [69]
Chlorophyta Chlorella sorokiniana Lipids 50.0 103.8 0.45 [70]
Chlorophyta Scenedesmus acuminatus Lipids 7.5 286.0 1.49 [11]
Chlorophyta Scenedesmus acuminatus Lipids 1 000 283.5 1.69 [11]
Chlorophyta Chlamydomonas reinhardtii Biomass 5.0 23.8 0.10 [71]
Chlorophyta Chlamydomonas reinhardtii Biomass 50.0 25.4 0.11 [71]
Chlorophyta Auxenochlorella protothecoides Biomass 19.0 116.0 0.98a [38]
Chlorophyta Chlorella sorokiniana Biomass 7.5 271.0 1.61 [10]
Chlorophyta Chlorella sorokiniana Biomass 1 000 247.0 1.77 [10]
Chlorophyta Chlorella regularis Biomass 2.6 84.0 2.76 [64]
Chlorophyta Chlorella vulgaris Biomass 5.0 174.5 1.04 [72]
Chlorophyta Chlorella vulgaris Biomass 50.0 117.2 3.52 [46]
Chlorophyta Chlorella vulgaris Biomass 200.0 94.8 3.37 [46]
Chlorophyta Chlorella vulgaris Biomass 600.0 81.6 1.22 [46]
Chlorophyta Chlorella vulgaris Biomass 4 000.0 43.3 0.62 [73]
Chlorophyta Chlorella USTB-01 Biomass 5 000.0 42.4 0.67 [74]
表1  文献报道中不同微藻在发酵罐中异养高密度培养时的主要指标比较
图4  微藻异养高密度培养时生产的相关生物制品
[1] Dineshbabu G, Goswami G, Kumar R, et al. Microalgae-nutritious, sustainable aqua- and animal feed source. Journal of Functional Foods, 2019, 62:103545.
doi: 10.1016/j.jff.2019.103545
[2] Levasseur W, Perré P, Pozzobon V. A review of high value-added molecules production by microalgae in light of the classification. Biotechnology Advances, 2020, 41:107545.
doi: 10.1016/j.biotechadv.2020.107545
[3] 张虎. 异养-光自养耦合模式提高尖状栅藻油脂产率及其机理研究. 北京: 中国科学院大学, 2019.
Zhang H. Coupled heterotrophic and photoautotrophic cultivation of Scenedesmus acuminatus for high lipid productivity and the related mechanism study. Beijing: University of Chinese Academy of Sciences, 2019.
[4] Perez-Garcia O, Escalante F M E, de-Bashan L E, et al. Heterotrophic cultures of microalgae: metabolism and potential products. Water Research, 2011, 45(1):11-36.
doi: 10.1016/j.watres.2010.08.037 pmid: 20970155
[5] Chen F. High cell density culture of microalgae in heterotrophic growth. Trends in Biotechnology, 1996, 14(11):421-426.
doi: 10.1016/0167-7799(96)10060-3
[6] Pandey A, Lee D J, Chisti Y, et al. Biofuels from algae. Amsterdam: Elsevier Press, 2014: 111-142.
[7] Jiang Y, Chen F. Effects of temperature and temperature shift on docosahexaenoic acid production by the marine microalge Crypthecodinium cohnii. Journal of the American Oil Chemists’ Society, 2000, 77(6):613-617.
doi: 10.1007/s11746-000-0099-0
[8] Vazhappilly R, Chen F. Eicosapentaenoic acid and docosahexaenoic acid production potential of microalgae and their heterotrophic growth. Journal of the American Oil Chemists’ Society, 1998, 75(3):393-397.
doi: 10.1007/s11746-998-0057-0
[9] Jia Z C, Liu Y, Daroch M, et al. Screening, growth medium optimisation and heterotrophic cultivation of microalgae for biodiesel production. Applied Biochemistry and Biotechnology, 2014, 173(7):1667-1679.
doi: 10.1007/s12010-014-0954-7
[10] Jin H, Chuai W H, Li K P, et al. Ultrahigh-cell-density heterotrophic cultivation of the unicellular green alga Chlorella sorokiniana for biomass production. Biotechnology and Bioengineering, 2021, 118(10):4138-4151.
doi: 10.1002/bit.27890 pmid: 34264522
[11] Jin H, Zhang H, Zhou Z W, et al. Ultrahigh-cell-density heterotrophic cultivation of the unicellular green microalga Scenedesmus acuminatus and application of the cells to photoautotrophic culture enhance biomass and lipid production. Biotechnology and Bioengineering, 2020, 117(1):96-108.
doi: 10.1002/bit.27190 pmid: 31612991
[12] Yan D, Lu Y, Chen Y F, et al. Waste molasses alone displaces glucose-based medium for microalgal fermentation towards cost-saving biodiesel production. Bioresource Technology, 2011, 102(11):6487-6493.
doi: 10.1016/j.biortech.2011.03.036
[13] Ma M Y, Li Y H, Chen J P, et al. High-cell-density cultivation of the flagellate alga Poterioochromonas malhamensis for biomanufacturing the water-soluble β-1, 3-glucan with multiple biological activities. Bioresource Technology, 2021, 337:125447.
doi: 10.1016/j.biortech.2021.125447
[14] de Swaaf M E, Sijtsma L, Pronk J T. High-cell-density fed-batch cultivation of the docosahexaenoic acid producing marine alga Crypthecodinium cohnii. Biotechnology and Bioengineering, 2003, 81(6):666-672.
doi: 10.1002/(ISSN)1097-0290
[15] Wen Z Y, Chen F. Heterotrophic production of eicosapentaenoic acid by microalgae. Biotechnology Advances, 2003, 21(4):273-294.
doi: 10.1016/S0734-9750(03)00051-X
[16] Ogbonna J C, Masui H, Tanaka H. Sequential heterotrophic/autotrophic cultivation - an efficient method of producing Chlorella biomass for health food and animal feed. Journal of Applied Phycology, 1997, 9(4):359-366.
doi: 10.1023/A:1007981930676
[17] Chen G Q, Chen F. Growing phototrophic cells without light. Biotechnology Letters, 2006, 28(9):607-616.
doi: 10.1007/s10529-006-0025-4
[18] Liu J, Huang J C, Fan K W, et al. Production potential of Chlorella zofingienesis as a feedstock for biodiesel. Bioresource Technology, 2010, 101(22):8658-8663.
doi: 10.1016/j.biortech.2010.05.082
[19] Chen F, Johns M R. Substrate inhibition of Chlamydomonas reinhardtii by acetate in heterotrophic culture. Process Biochemistry, 1994, 29(4):245-252.
doi: 10.1016/0032-9592(94)80064-2
[20] Shi X M, Zhang X W, Chen F. Heterotrophic production of biomass and lutein by Chlorella protothecoides on various nitrogen sources. Enzyme and Microbial Technology, 2000, 27(3-5):312-318.
pmid: 10899558
[21] Shen Y, Yuan W, Pei Z, et al. Heterotrophic culture of Chlorella protothecoides in various nitrogen sources for lipid production. Applied Biochemistry and Biotechnology, 2010, 160(6):1674-1684.
doi: 10.1007/s12010-009-8659-z pmid: 19424668
[22] 周文俊, 郑立, 韩笑天. 微藻异养化培养的研究进展. 海洋科学, 2012, 36(2):136-142.
Zhou W J, Zheng L, Han X T. Advancement of the researches for heterotrophic cultivation of microalgae. Marine Sciences, 2012, 36(2):136-142.
[23] 张丽君, 杨汝德, 肖恒. 小球藻的异养生长及培养条件优化. 广西植物, 2001, 21(4):353-357.
Zhang L J, Yang R D, Xiao H. The heterotrophic culture of Chlorella and optimization of growth condition. Guihaia, 2001, 21(4):353-357.
[24] Chen F, Johns M R. Effect of C/N ratio and aeration on the fatty acid composition of heterotrophic Chlorella sorokiniana. Journal of Applied Phycology, 1991, 3(3):203-209.
doi: 10.1007/BF00003578
[25] Gao B Y, Wang F F, Huang L D, et al. Biomass, lipid accumulation kinetics, and the transcriptome of heterotrophic oleaginous microalga Tetradesmus bernardii under different carbon and nitrogen sources. Biotechnology for Biofuels, 2021, 14(1):4.
doi: 10.1186/s13068-020-01868-9
[26] Wen Z Y, Chen F. Continuous cultivation of the diatom Nitzschia laevis for eicosapentaenoic acid production: physiological study and process optimization. Biotechnology Progress, 2002, 18(1):21-28.
doi: 10.1021/bp010125n
[27] 吴耀庭, 魏东, 陈俊辉. 微藻异养化高细胞密度培养技术及其应用. 中国食品添加剂, 2008(6):65-70.
Wu Y T, Wei D, Chen J H. The technology and application of high-cell density heterotrophic microalgae culture. China Food Additives, 2008(6):65-70.
[28] 张虎, 张桂艳, 温小斌, 等. pH对小球藻Chlorella sp.XQ-200419光合作用、生长和产油的影响. 水生生物学报, 2014, 38(6):1084-1091.
Zhang H, Zhang G Y, Wen X B, et al. Effects of pH on the photosynthesis, growth and lipid production of Chlorella sp.xq-200419. Acta Hydrobiologica Sinica, 2014, 38(6):1084-1091.
[29] Shi X M, Liu H J, Zhang X W, et al. Production of biomass and lutein by Chlorella protothecoides at various glucose concentrations in heterotrophic cultures. Process Biochemistry, 1999, 34(4):341-347.
doi: 10.1016/S0032-9592(98)00101-0
[30] Xiong W, Li X F, Xiang J Y, et al. High-density fermentation of microalga Chlorella protothecoides in bioreactor for microbio-diesel production. Applied Microbiology and Biotechnology, 2008, 78(1):29-36.
pmid: 18064453
[31] Komor E, Tanner W. The hexose-proton symport system of Chlorella vulgaris. European Journal of Biochemistry, 1974, 44(1):219-223.
pmid: 4854863
[32] Komor E. Proton-coupled hexose transport in Chlorella vulgaris. FEBS Letters, 1973, 38(1):16-18.
pmid: 4772688
[33] Hallmann A, Sumper M. The Chlorella hexose/H + symporter is a useful selectable marker and biochemical reagent when expressed in Volvox. PNAS, 1996, 93(2):669-673.
pmid: 8570613
[34] Komor E, Schwab W G W, Tanner W. The effect of intracellular pH on the rate of hexose uptake in Chlorella. Biochimica et Biophysica Acta (BBA) - Biomembranes, 1979, 555(3):524-530.
doi: 10.1016/0005-2736(79)90406-1
[35] Ren H Y, Liu B F, Ma C, et al. A new lipid-rich microalga Scenedesmus sp. strain R-16 isolated using Nile red staining: effects of carbon and nitrogen sources and initial pH on the biomass and lipid production. Biotechnology for Biofuels, 2013, 6(1):143.
doi: 10.1186/1754-6834-6-143
[36] Sakarika M, Kornaros M. Effect of pH on growth and lipid accumulation kinetics of the microalga Chlorella vulgaris grown heterotrophically under sulfur limitation. Bioresource Technology, 2016, 219:694-701.
doi: S0960-8524(16)31161-0 pmid: 27544920
[37] Shi X M, Wu Z Y, Chen F. Kinetic modeling of lutein production by heterotrophic Chlorella at various pH and temperatures. Molecular Nutrition and Food Research, 2006, 50(8):763-768.
doi: 10.1002/(ISSN)1613-4133
[38] Wu Z Y, Shi X M. Optimization for high-density cultivation of heterotrophic Chlorella based on a hybrid neural network model. Letters in Applied Microbiology, 2007, 44(1):13-18.
doi: 10.1111/lam.2007.44.issue-1
[39] 尹建云, 孟海华, 张学松, 等. 酶解糖异养培养微藻发酵条件的优化及生产试验. 食品与发酵工业, 2006, 32(5):55-57, 61.
Yin J Y, Meng H H, Zhang X S, et al. Optimization on fermentation conditions and its production for heterotrophic culture of microalgae with enzymolyzed starch sugar. Food and Fermentation Industries, 2006, 32(5):55-57, 61.
[40] Wen Z Y, Chen F. Application of statistically-based experimental designs for the optimization of eicosapentaenoic acid production by the diatom Nitzschia laevis. Biotechnology and Bioengineering, 2001, 75(2):159-169.
pmid: 11536138
[41] Jiang Y, Chen F. Effects of salinity on cell growth and docosahexaenoic acid content of the heterotrophic marine microalga Crypthecodinium cohnii. Journal of Industrial Microbiology and Biotechnology, 1999, 23(6):508-513.
doi: 10.1038/sj.jim.2900759
[42] Yoshida F, Yamane T, Nakamoto K I. Fed-batch hydrocarbon fermentation with colloidal emulsion feed. Biotechnology and Bioengineering, 1973, 15(2):257-270.
doi: 10.1002/(ISSN)1097-0290
[43] Xu H, Miao X L, Wu Q Y. High quality biodiesel production from a microalga Chlorella protothecoides by heterotrophic growth in fermenters. Journal of Biotechnology, 2006, 126(4):499-507.
doi: 10.1016/j.jbiotec.2006.05.002
[44] Li X F, Xu H, Wu Q Y. Large-scale biodiesel production from microalga Chlorella protothecoides through heterotrophic cultivation in bioreactors. Biotechnology and Bioengineering, 2007, 98(4):764-771.
doi: 10.1002/(ISSN)1097-0290
[45] Bumbak F, Cook S, Zachleder V, et al. Best practices in heterotrophic high-cell-density microalgal processes: achievements, potential and possible limitations. Applied Microbiology and Biotechnology, 2011, 91(1):31-46.
doi: 10.1007/s00253-011-3311-6
[46] Doucha J, Lívanský K. Production of high-density Chlorella culture grown in fermenters. Journal of Applied Phycology, 2012, 24:35-43.
doi: 10.1007/s10811-010-9643-2
[47] Schmidt R A, Wiebe M G, Eriksen N T. Heterotrophic high cell-density fed-batch cultures of the phycocyanin-producing red alga Galdieria sulphuraria. Biotechnology and Bioengineering, 2005, 90(1):77-84.
doi: 10.1002/(ISSN)1097-0290
[48] Chen F, Johns M R. Heterotrophic growth of Chlamydomonas reinhardtii on acetate in chemostat culture. Process Biochemistry, 1996, 31(6):601-604.
doi: 10.1016/S0032-9592(96)00006-4
[49] Molina Grima E, Sánchez Pérez J A, García Camacho F, et al. Effect of growth rate on the eicosapentaenoic acid and docosahexaenoic acid content of Isochrysis galbana in chemostat culture. Applied Microbiology and Biotechnology, 1994, 41(1):23-27.
doi: 10.1007/BF00166076
[50] Wen X B, Geng Y H, Li Y G. Enhanced lipid production in Chlorella pyrenoidosa by continuous culture. Bioresource Technology, 2014, 161:297-303.
doi: 10.1016/j.biortech.2014.03.077
[51] Ethier S, Woisard K, Vaughan D, et al. Continuous culture of the microalgae Schizochytrium limacinum on biodiesel-derived crude glycerol for producing docosahexaenoic acid. Bioresource Technology, 2011, 102(1):88-93.
doi: 10.1016/j.biortech.2010.05.021
[52] Wen Z Y, Chen F. Perfusion culture of the diatom Nitzschia laevis for ultra-high yield of eicosapentaenoic acid. Process Biochemistry, 2002, 38(4):523-529.
doi: 10.1016/S0032-9592(02)00174-7
[53] 张虎, 刘镇洲, 陈家敏, 等. 利用海洋硅藻生产生物活性物质研究进展. 中国生物工程杂志, 2021, 41(4):81-90.
Zhang H, Liu Z Z, Chen J M, et al. Research progress on the production of bioactive compounds from marine diatoms. China Biotechnology, 2021, 41(4):81-90.
[54] Cohen Z, Ratledge C. Single cell oils. 2nd ed. Pittsburgh: Academic Press and AOCS Press, 2010: 75-96.
[55] Ambati R R, Phang S M, Ravi S, et al. Astaxanthin: sources, extraction, stability, biological activities and its commercial applications- a review. Marine Drugs, 2014, 12(1):128-152.
doi: 10.3390/md12010128 pmid: 24402174
[56] Wan M, Zhang Z, Wang J, et al. Sequential heterotrophy-dilution-photoinduction cultivation of Haematococcus pluvialis for efficient production of astaxanthin. Bioresource Technology, 2015, 198:557-563.
doi: 10.1016/j.biortech.2015.09.031
[57] Sun Z, Zhang Y, Sun L P, et al. Light elicits astaxanthin biosynthesis and accumulation in the fermented ultrahigh-density Chlorella zofinginesis. Journal of Agricultural and Food Chemistry, 2019, 67(19):5579-5586.
doi: 10.1021/acs.jafc.9b01176
[58] Fernández-Rojas B, Hernández-Juárez J, Pedraza-Chaverri J. Nutraceutical properties of phycocyanin. Journal of Functional Foods, 2014, 11:375-392.
doi: 10.1016/j.jff.2014.10.011
[59] Wan M X, Wang Z Y, Zhang Z, et al. A novel paradigm for the high-efficient production of phycocyanin from Galdieria sulphuraria. Bioresource Technology, 2016, 218:272-278.
doi: 10.1016/j.biortech.2016.06.045
[60] Zhu F M, Du B, Xu B J. A critical review on production and industrial applications of beta-glucans. Food Hydrocolloids, 2016, 52:275-288.
doi: 10.1016/j.foodhyd.2015.07.003
[61] Lu X, Sun H, Zhao W Y, et al. A hetero-photoautotrophic two-stage cultivation process for production of fucoxanthin by the marine diatom Nitzschia laevis. Marine Drugs, 2018, 16(7):219.
doi: 10.3390/md16070219
[62] Graverholt O S, Eriksen N T. Heterotrophic high-cell-density fed-batch and continuous-flow cultures of Galdieria sulphuraria and production of phycocyanin. Applied Microbiology and Biotechnology, 2007, 77(1):69-75.
pmid: 17786429
[63] Jeon J Y, Kwon J S, Kang S T, et al. Optimization of culture media for large-scale lutein production by heterotrophic Chlorella vulgaris. Biotechnology Progress, 2014, 30(3):736-743.
doi: 10.1002/btpr.1889
[64] Sansawa H, Endo H. Production of intracellular phytochemicals in Chlorella under heterotrophic conditions. Journal of Bioscience and Bioengineering, 2004, 98(6):437-444.
doi: 10.1016/S1389-1723(05)00309-9
[65] 钱峰慧. 小球藻的异养-光自养串联培养工艺优化及初步放大研究. 上海: 华东理工大学, 2007.
Qian F H. Study on the optimization and primary scale-up of Chlorella sequential heterotrophic/autotrophic cultivation technology for high-density and high-quality. Shanghai: East China University of Science and Technology, 2007.
[66] Wan M X, Zhang Z, Wang R X, et al. High-yield cultivation of Botryococcus braunii for biomass and hydrocarbons. Biomass and Bioenergy, 2019, 131:105399.
doi: 10.1016/j.biombioe.2019.105399
[67] de la Hoz Siegler H, McCaffrey W C, Burrell R E, et al. Optimization of microalgal productivity using an adaptive, non-linear model based strategy. Bioresource Technology, 2012, 104:537-546.
doi: 10.1016/j.biortech.2011.10.029 pmid: 22119433
[68] Chen Y H, Walker T H. Biomass and lipid production of heterotrophic microalgae Chlorella protothecoides by using biodiesel-derived crude glycerol. Biotechnology Letters, 2011, 33(10):1973-1983.
doi: 10.1007/s10529-011-0672-y
[69] Xiao Y B, Lu Y, Dai J B, et al. Industrial fermentation of Auxenochlorella protothecoides for production of biodiesel and its application in vehicle diesel engines. Frontiers in Bioengineering and Biotechnology, 2015, 3:164.
[70] Zheng Y B, Li T T, Yu X C, et al. High-density fed-batch culture of a thermotolerant microalga Chlorella sorokiniana for biofuel production. Applied Energy, 2013, 108:281-287.
doi: 10.1016/j.apenergy.2013.02.059
[71] Zhang Z, Tan Y Y, Wang W L, et al. Efficient heterotrophic cultivation of Chlamydomonas reinhardtii. Journal of Applied Phycology, 2019, 31(3):1545-1554.
doi: 10.1007/s10811-018-1666-0
[72] Barros A, Pereira H, Campos J, et al. Heterotrophy as a tool to overcome the long and costly autotrophic scale-up process for large scale production of microalgae. Scientific Reports, 2019, 9:13935.
doi: 10.1038/s41598-019-50206-z pmid: 31558732
[73] 梁世中, 朱明军, 孟海华, 等. 发酵罐葡萄糖流加大规模异养培养小球藻. 华南理工大学学报(自然科学版), 2000, 28(12):66-70.
Liang S Z, Zhu M J, Meng H H, et al. Heterotrophic mass cultures of Chlorella vulgaris with glucose feeding in fermenters. Journal of South China University of Technology (Natural Science Edition), 2000, 28(12):66-70.
[74] 景建克, 许倩倩, 刘硕, 等. 大规模异养发酵培养小球藻USTB-01研究. 现代化工, 2008, 28(12):67-70.
Jing J K, Xu Q Q, Liu S, et al. Heterotrophic mass culture of Chlorella USTB-01 in fermentor. Modern Chemical Industry, 2008, 28(12):67-70.
[75] Wu M C, Qin H, Deng J Q, et al. A new pilot-scale fermentation mode enhances Euglena gracilis biomass and paramylon (β-1, 3-glucan) production. Journal of Cleaner Production, 2021, 321:128996.
doi: 10.1016/j.jclepro.2021.128996
[76] Zhang H, Chen A L, Huang L D, et al. Transcriptomic analysis unravels the modulating mechanisms of the biomass and value-added bioproducts accumulation by light spectrum in Eustigmatos cf. polyphem (Eustigmatophyceae). Bioresource Technology, 2021, 338:125523.
doi: 10.1016/j.biortech.2021.125523
[77] Wang Q K, Yu Z Y, Wei D. High-yield production of biomass, protein and pigments by mixotrophic Chlorella pyrenoidosa through the bioconversion of high ammonium in wastewater. Bioresource Technology, 2020, 313:123499.
doi: 10.1016/j.biortech.2020.123499
[78] Wang Q K, Yu Z Y, Wei D, et al. Mixotrophic Chlorella pyrenoidosa as cell factory for ultrahigh-efficient removal of ammonium from catalyzer wastewater with valuable algal biomass coproduction through short-time acclimation. Bioresource Technology, 2021, 333:125151.
doi: 10.1016/j.biortech.2021.125151
[79] Jaubert M, Bouly J P, Ribera d’Alcalà M, et al. Light sensing and responses in marine microalgae. Current Opinion in Plant Biology, 2017, 37:70-77.
doi: 10.1016/j.pbi.2017.03.005
[80] Wei L, You W X, Gong Y H, et al. Transcriptomic and proteomic choreography in response to light quality variation reveals key adaption mechanisms in marine Nannochloropsis oceanica. Science of the Total Environment, 2020, 720:137667.
doi: 10.1016/j.scitotenv.2020.137667
[81] Chai W S, Tan W G, Halimatul Munawaroh H S, et al. Multifaceted roles of microalgae in the application of wastewater biotreatment: a review. Environmental Pollution, 2021, 269:116236.
doi: 10.1016/j.envpol.2020.116236
[82] Rempel A, Gutkoski J P, Nazari M T, et al. Current advances in microalgae-based bioremediation and other technologies for emerging contaminants treatment. Science of the Total Environment, 2021, 772:144918.
doi: 10.1016/j.scitotenv.2020.144918
[83] Wang X, Zhang M M, Sun Z, et al. Sustainable lipid and lutein production from Chlorella mixotrophic fermentation by food waste hydrolysate. Journal of Hazardous Materials, 2020, 400:123258.
doi: 10.1016/j.jhazmat.2020.123258
[84] Guldhe A, Ansari F A, Singh P, et al. Heterotrophic cultivation of microalgae using aquaculture wastewater: a biorefinery concept for biomass production and nutrient remediation. Ecological Engineering, 2017, 99:47-53.
doi: 10.1016/j.ecoleng.2016.11.013
[85] Sproles A E, Fields F J, Smalley T N, et al. Recent advancements in the genetic engineering of microalgae. Algal Research, 2021, 53:102158.
doi: 10.1016/j.algal.2020.102158
[86] Lee H, Shin W S, Kim Y U, et al. Enhancement of lipid production under heterotrophic conditions by overexpression of an endogenous bZIP transcription factor in Chlorella sp. HS2. Journal of Microbiology and Biotechnology, 2020, 30(10):1597-1606.
doi: 10.4014/jmb.2005.05048
[87] Zaslavskaia L A, Lippmeier J C, Shih C, et al. Trophic conversion of an obligate photoautotrophic organism through metabolic engineering. Science, 2001, 292(5524):2073-2075.
pmid: 11408656
[88] Fischer H, Robl I, Sumper M, et al. Targeting and covalent modification of cell wall and membrane proteins heterologously expressed in the diatom Cylindrotheca fusiformis (bacillariophyceae). Journal of Phycology, 1999, 35(1):113-120.
doi: 10.1046/j.1529-8817.1999.3510113.x
[89] Doebbe A, Rupprecht J, Beckmann J, et al. Functional integration of the HUP1 hexose symporter gene into the genome of C. reinhardtii: impacts on biological H2 production. Journal of Biotechnology, 2007, 131(1):27-33.
pmid: 17624461
[1] 章真,刘晓军,陈夏,姚丽萍,张荣庆. 微藻生物技术在碳中和的应用与展望*[J]. 中国生物工程杂志, 2022, 42(1/2): 160-173.
[2] 张虎,刘镇洲,陈家敏,高保燕,张成武. 利用海洋硅藻生产生物活性物质研究进展*[J]. 中国生物工程杂志, 2021, 41(4): 81-90.
[3] 左正三,孙小曼,任路静,黄和. 微藻生产油脂培养新技术 *[J]. 中国生物工程杂志, 2018, 38(7): 102-109.
[4] 孟迎迎, 姚长洪, 刘娇, 申培丽, 薛松, 杨青. 微藻生物质成分检测方法评述[J]. 中国生物工程杂志, 2017, 37(7): 133-143.
[5] 王彩霞, 张腾江, 滕杰, 冯旭东, 李春. 荒漠微藻的碳氧转换与调控[J]. 中国生物工程杂志, 2016, 36(10): 45-52.
[6] 杨凯, 战景明, 高芬芳, 武宝利, 苏丽霞, 周文明, 薛向明, 郝杰, 赵阳. 小球藻用于生物柴油生产的研究进展[J]. 中国生物工程杂志, 2015, 35(11): 99-104.
[7] 李谢昆, 周卫征, 郭颖, 吴浩, 许敬亮, 袁振宏. 微藻生物质制备燃料乙醇关键技术研究进展[J]. 中国生物工程杂志, 2014, 34(5): 92-99.
[8] 李永富, 孟范平, 李祥蕾, 马冬冬. 光照对光生物反应器中微藻高密度光自养培养的影响[J]. 中国生物工程杂志, 2013, 33(2): 103-110.
[9] 胡文军, 罗玮, 李汉广, 顾秋亚, 余晓斌. 产油微藻筛选和鉴定及其产油性能的研究[J]. 中国生物工程杂志, 2012, 32(12): 66-72.
[10] 吕艳霞, 陈兆安, 陆洪斌, 邓麦村, 薛松, 张卫. 细胞固定化方法制备微藻光电极的研究[J]. 中国生物工程杂志, 2012, 32(04): 96-102.
[11] 陈丽红, 孙利芹, 王长海. 微藻抗菌物质及筛选模型[J]. 中国生物工程杂志, 2011, 31(9): 109-116.
[12] 唐小红, 常影, 黄和, 高振, 尹继龙, 纪晓俊. 微藻在CO2生物捕集及废水生态修复领域的研究进展[J]. 中国生物工程杂志, 2011, 31(9): 124-131.
[13] 冯迪娜, 艾江宁, 刘亚男, 陈兆安, 薛松, 张卫. 含氮类培养基对海洋微藻Isochrysis zhanjiangensis 油脂与碳水化合物积累的影响[J]. 中国生物工程杂志, 2011, 31(10): 29-34.
[14] 李涛, 李爱芬, 桑敏, 吴洪, 尹顺吉, 张成武. 富油能源微藻的筛选及产油性能评价[J]. 中国生物工程杂志, 2011, 31(04): 98-105.
[15] 张齐 郑洪立 唐小红 尹继龙 高振 纪晓俊 李文琦 黄和. 基于模糊综合评价的产生物柴油微藻藻种筛选[J]. 中国生物工程杂志, 2010, 30(05): 69-75.