Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2022, Vol. 42 Issue (1/2): 182-190    DOI: 10.13523/j.cb.2108071
综述     
重金属胁迫下的细菌适应性进化研究进展*
马春兰,李金花,白雨凡,魏云林()
昆明理工大学生命科学与技术学院 昆明 650500
Advances in Bacterial Adaptive Evolution under Heavy Metal Ion Stress
MA Chun-lan,LI Jin-hua,BAI Yu-fan,WEI Yun-lin()
Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
 全文: PDF(1543 KB)   HTML
摘要:

细菌进化的本质是碱基突变、基因重排或水平基因转移,在适应性进化过程中,主要受生物和非生物因素的影响,其中重金属胁迫也是细菌适应性进化的主要因素之一。重金属胁迫促使细菌适应性地强化与金属输入和转化有关的代谢途径,而过量的金属则诱导金属积累和外排过程。在重金属胁迫下,基于重金属抗性(HMR)基因和酶蛋白的适应,细菌抗性机制亦发生适应性进化,整理和总结了包括隔离机制适应、金属调控蛋白调控机制适应及酶解毒机制适应方面的研究。目前,重金属离子已对环境造成严重污染,威胁人类健康和生态系统的稳定,因此,阐明重金属胁迫下的细菌适应性进化,不仅丰富了细菌进化研究的内容,而且为在复杂环境条件下实现重金属离子污染的微生物的修复提供了理论基础。

关键词: 重金属细菌适应性进化胁迫微生物修复    
Abstract:

Base mutation, gene re-arrangement or horizontal gene transfer are the fundamental mechanisms involved in bacterial evolution. During adaptive evolution, they are mainly affected by biological and abiological factors. Among them, heavy metal ion stress is also one of the main reasons during bacterial adaptive evolution, and it drives bacteria to adaptively strengthen the metabolic pathways related to metal input and/or transformation. On the other hand, excessive metal ion also can induce metal accumulation and efflux. Under heavy metal stress, heavy metal resistance (HMR) gene and enzyme protein play an important role involved in mechanisms of bacterial adaptive evolution. The mechanisms include the adaptation of isolation, the regulatory adaptation of metal regulatory protein and the adaptation of enzyme detoxification. The current research status and progress were summarized in this paper. Heavy metal ions have polluted the environment and threatened human health and ecosystem stability. Therefore, to elucidate the molecular mechanisms of adaptive evolution of bacteria under heavy metal stress, this paper not only enriches the content of bacterial evolutionism, but also provides a theoretical basis for the biological remediation of environmental pollution by heavy metal ions.

Key words: Heavy metal ions    Bacteria    Adaptive evolution    Stress    Bioremediation
收稿日期: 2021-08-30 出版日期: 2022-03-03
ZTFLH:  Q93  
基金资助: * 国家自然科学基金(31960232)
通讯作者: 魏云林     E-mail: homework18@126.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
马春兰
李金花
白雨凡
魏云林

引用本文:

马春兰,李金花,白雨凡,魏云林. 重金属胁迫下的细菌适应性进化研究进展*[J]. 中国生物工程杂志, 2022, 42(1/2): 182-190.

MA Chun-lan,LI Jin-hua,BAI Yu-fan,WEI Yun-lin. Advances in Bacterial Adaptive Evolution under Heavy Metal Ion Stress. China Biotechnology, 2022, 42(1/2): 182-190.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.2108071        https://manu60.magtech.com.cn/biotech/CN/Y2022/V42/I1/2/182

影响因素
(Influence factor)
分类
(Classification)
机制
(Mechanism)
例子
(Example)
参考文献
(Reference)
生物因素 细菌-噬菌体
的互作
BPI
噬菌体和前噬菌体介导的 HGT
1) 吸附抑制;
2) CRISPR-Cas系统;
3) 限制修饰系统(RM系统);
4) 毒素-抗毒素系统(TA系统);
5) Rex系统。
1)E.coli噬菌体编码调节因子调节mRNA的表达;
2)S.aureus前噬菌体编码免疫蛋白利于抵抗和逃避免疫;
3)E.faecalis前噬菌体编码整合酶蛋白维持溶源性以促进细菌适应性进化等。
[12-16]
细菌-真菌
的互作
BFI
代谢基因介导的 HGT
1)感知真菌释放的代谢产物并促进生长;
2)沿真菌菌丝扩散使鞭毛菌的适应性提高;
3)产生未知性质的信号诱导真菌生长。
1)Ave1和葡萄糖基转移酶编码基因可使V.dahliae的毒力降低,发现44个HGT候选基因,均来自细菌,并且HGT3、HGT5、HGT19、HGT22、HGT42 都可以编码糖基水解酶,参与碳水化合物的代谢;
2)HGT5、HGT8参与Colletotrichum的碳水化合物代谢,HGT1、HGT7参与氨基酸代谢,且HGT9同时参与多种代谢过程等。
[17-18]
细菌-细菌
的互作BBI
毒力因子、胞外多糖、群体感应(QS)信号分子介导的基因重排 1)P.aeruginosa 分泌铁载体、生物表面活性剂和毒素等因子实现菌株间合作共享;
2)QS信号分子AI-2诱导P.aeruginosa感知其他菌株的存在并调整基因表达等。
[18]
非生物因素 抗生素 HGT和基因突变
1)改变抗生素靶标;
2)降解或修饰抗生素药物;
3)减少抗生素药物的摄取或增加外排。
1)靶基因突变、替换:细菌拓扑异构酶突变引起喹诺酮类耐药性,由于获得嵌合青霉素结合蛋白引起内酰胺耐药性;
2)酶修饰:通过细胞壁的重组获得万古霉素耐药性;
3)靶基因保护:QnrA蛋白保护细菌拓扑异构酶免受喹诺酮类药物的抑制活性等。
[19]
温度 特定生理机制适应和耐受低温
1)调节细胞质膜的流动性;
2)节约/产生能源(生产渗透保护剂或兼容溶质、热休克和冷休克蛋白);
3)表达冷活性酶。
1)嗜冷菌的冷适应性进化与CG含量及DNA内在柔韧性有关;
2)E.coli表达热休克蛋白/冷休克蛋白以促进温度适应性等。
[20]
酸碱性 细胞器和代谢相关基因介导的HGT
嗜酸细菌
1)细胞膜阻止质子进入胞内;
2)借助质子泵和消耗质子的酶在胞内中和或排出质子。
嗜碱细菌
1) Na+/H+反向运输系统;
2) 产碱性酶并形成离子屏障;
3) 细胞壁上多聚物的调节作用。
嗜中性细菌
1)泵出质子,产生氨和消耗质子的脱羧反应;
2)改变细胞膜的脂质含量。
1)嗜酸细菌表达钾转移蛋白形成细胞膜内部正电位,puf,puhrbcfrmcyn等HGT基因参与环境适应和代谢活动;
2)Bacillus mannanilyticus产几丁质酶,使其具有较高的热稳定性和最适温度;
3)嗜碱和嗜中性细菌胞内磷酸丝氨酸转氨酶动力学和酶学性质相似且遵循相似的动力学规律等。
[21-23]
非生物因素 重金属 HGT和基因突变
1)单核苷酸多态性(SNP);
2)插入序列(IS);
3)基因缺失/重组/转座;
4)加强酶蛋白的合成;
5)改变酶蛋白的催化活性、结构和功能。
1)C.Metalliduans引入Mer基因,与亲本基因组相比,有8个IS、3个基因缺失和9个SNP,增强了的整体重金属抗性;
2)在Zn2+胁迫下,PseudomonasputidaCzcCBA1发生突变,大量表达CadA1以合成蛋白CadA1,增加酶蛋白的合成;
3)在Cd2+胁迫下,细菌易分泌PN来实现自我保护,更高的PN含量或PN/PS比值可显著增加EPS的疏水性,增强与Cd2+的亲和力;
4)在Zn2+的胁迫下,B.subtilis表达Zur(来自Fur家族)和CzrA(来自ArsR/SmtB家族)对Zn2+进行调控,蛋白Zur调节Zn2+吸收,蛋白CzrA调节Zn2+流出,以便B. subtilis适应Zn2+浓度等。
[24-28]
表1  影响细菌适应性进化的因素
图1  重金属胁迫下的细菌抗性机制
[1] Ruan L W, Lin W Y, Shi H, et al. Characterization of a novel extracellular CuZn superoxide dismutase from Rimicaris exoculata living around deep-sea hydrothermal vent. International Journal of Biological Macromolecules, 2020(163):2346-2356.
[2] 张亚男, 宋娜, 徐丽, 等. CD109的生物学功能及其与乳腺癌的关系. 中华细胞与干细胞杂志(电子版), 2019, 9(3):182-187.
Zhang Y N, Song N, Xu L, et al. Biological function of CD109 and its relationship with breast cancer. Chinese Journal of Cell and Stem Cell (Electronic Edition), 2019, 9(3):182-187.
[3] Cheng Y Q, Yang R J, Lyu M Y, et al. IdeR, a DtxR family iron response regulator, controls iron homeostasis, morphological differentiation, secondary metabolism, and the oxidative stress response in Streptomyces avermitilis. Applied and Environmental Microbiology, 2018, 84(22):e01503-e01518.
[4] Liu Q, Song W Z, Zhou Y G, et al. Phenotypic divergence of thermotolerance: molecular basis and cold adaptive evolution related to intrinsic DNA flexibility of glacier-inhabiting Cryobacterium strains. Environmental Microbiology, 2020, 22(4):1409-1420.
doi: 10.1111/emi.v22.4
[5] Chandrangsu P, Rensing C, Helmann J D. Metal homeostasis and resistance in bacteria. Nature Reviews Microbiology, 2017, 15(6):338-350.
doi: 10.1038/nrmicro.2017.15 pmid: 28344348
[6] Presentato A, Piacenza E, Turner R J, et al. Processing of metals and metalloids by actinobacteria: cell resistance mechanisms and synthesis of metal(loid)-based nanostructures. Microorganisms, 2020, 8(12):2027.
doi: 10.3390/microorganisms8122027
[7] Daisley B A, Monachese M, Trinder M, et al. Immobilization of cadmium and lead by Lactobacillus rhamnosus GR-1 mitigates apical-to-basolateral heavy metal translocation in a Caco-2 model of the intestinal epithelium. Gut Microbes, 2019, 10(3):321-333.
doi: 10.1080/19490976.2018.1526581
[8] Kalidasan V, Joseph N, Kumar S, et al. Iron and virulence in Stenotrophomonas maltophilia: all we know so far. Frontiers in Cellular and Infection Microbiology, 2018, 8:401.
doi: 10.3389/fcimb.2018.00401 pmid: 30483485
[9] Zeng F R, Zahoor M, Waseem M, et al. Influence of metal-resistant Staphylococcus aureus strain K1 on the alleviation of chromium stress in wheat. Agronomy, 2020, 10(9):1354.
doi: 10.3390/agronomy10091354
[10] León-Torres A, Arango E, Castillo E, et al. CtpB is a plasma membrane copper (I) transporting P-type ATPase of Mycobacterium tuberculosis. Biological Research, 2020, 53(1):6.
doi: 10.1186/s40659-020-00274-7 pmid: 32054527
[11] Srivastava J, Chandra H, Singh N, et al. Understanding the development of environmental resistance among microbes: a review. CLEAN - Soil, Air, Water, 2016, 44(7):901-908.
doi: 10.1002/clen.v44.7
[12] Eriksen R S, Krishna S. Defence versus growth in a hostile world: lessons from phage and bacteria. Royal Society Open Science, 2020, 7(9):201118.
doi: 10.1098/rsos.201118
[13] Hampton H G, Smith L M, Ferguson S, et al. Functional genomics reveals the toxin-antitoxin repertoire and AbiE activity in Serratia. Microbial Genomics, 2020, 6(11):mgen000458.
[14] Rostøl J T, Marraffini L. (Ph)ighting phages: how bacteria resist their parasites. Cell Host & Microbe, 2019, 25(2):184-194.
[15] Derry W B. CRISPR: development of a technology and its applications. The FEBS Journal, 2021, 288(2):358-359.
doi: 10.1111/febs.v288.2
[16] Brovedan M A, Cameranesi M M, Limansky A S, et al. What do we know about plasmids carried by members of the Acinetobacter genus? World Journal of Microbiology & Biotechnology, 2020, 36(8):109.
doi: 10.1007/s11274-020-02890-7
[17] Shi-Kunne X, van Kooten M, Depotter J R L, et al. The genome of the fungal pathogen Verticillium dahliae reveals extensive bacterial to fungal gene transfer. Genome Biology and Evolution, 2019, 11(3):855-868.
doi: 10.1093/gbe/evz040 pmid: 30799497
[18] Jaramillo V D, Sukno S A, Thon M R. Identification of horizontally transferred genes in the genus Colletotrichum reveals a steady tempo of bacterial to fungal gene transfer. BMC Genomics, 2015, 16(1):2.
doi: 10.1186/1471-2164-16-2
[19] Rezzoagli C, Granato E T, Kümmerli R. Harnessing bacterial interactions to manage infections: a review on the opportunistic pathogen Pseudomonas aeruginosa as a case example. Journal of Medical Microbiology, 2020, 69(2):147-161.
doi: 10.1099/jmm.0.001134 pmid: 31961787
[20] Martinez J L. General principles of antibiotic resistance in bacteria. Drug Discovery Today: Technologies, 2014, 11:33-39.
doi: 10.1016/j.ddtec.2014.02.001 pmid: 24847651
[21] Li L Z, Liu Z H, Zhang M, et al. Insights into the metabolism and evolution of the genus Acidiphilium, a typical acidophile in acid mine drainage. mSystems, 2020, 5(6):e00867-20.
[22] Aktuganov G E, Galimzianova N F, Gilvanova E A, et al. Characterization of chitinase produced by the alkaliphilic Bacillus mannanilyticus IB-OR17 B1 strain. Applied Biochemistry and Microbiology, 2018, 54(5):505-511.
doi: 10.1134/S0003683818050022
[23] Koivulehto M, Battchikova N, Korpela S, et al. Comparison of kinetic and enzymatic properties of intracellular phosphoserine aminotransferases from alkaliphilic and neutralophilic bacteria. Open Chemistry, 2020, 18(1):149-164.
doi: 10.1515/chem-2020-0014
[24] Millacura F A, Janssen P J, Monsieurs P, et al. Unintentional genomic changes endow Cupriavidus metallidurans with an augmented heavy-metal resistance. Genes, 2018, 9(11):551.
doi: 10.3390/genes9110551
[25] 王伟. 恶臭假单胞菌CD2 P型ATP酶基因cadA1抗Zn2+功能的确定. 武汉: 华中农业大学, 2008.
Wang W. Determination of Zn2+-resistant function of P-type ATPase gene cadA1 in Pseudomonas putida CD2. Wuhan: Huazhong Agricultural University, 2008.
[26] Dai M X, Zhou G Q, Ng H Y, et al. Diversity evolution of functional bacteria and resistance genes (CzcA) in aerobic activated sludge under Cd(II) stress. Journal of Environmental Management, 2019, 250:109519.
doi: 10.1016/j.jenvman.2019.109519
[27] Randazzo P, Anba-Mondoloni J, Aubert-Frambourg A, et al. Bacillus subtilis regulators MntR and zur participate in redox cycling, antibiotic sensitivity, and cell wall plasticity. Journal of Bacteriology, 2020, 202(5):e00547-e00519.
[28] Harvie D R, Andreini C, Cavallaro G, et al. Predicting metals sensed by ArsR-SmtB repressors: allosteric interference by a non-effector metal. Molecular Microbiology, 2006, 59(4):1341-1356.
doi: 10.1111/mmi.2006.59.issue-4
[29] Touchon M, Bernheim A, Rocha E P. Genetic and life-history traits associated with the distribution of prophages in bacteria. The ISME Journal, 2016, 10(11):2744-2754.
doi: 10.1038/ismej.2016.47
[30] Vandecraen J, Monsieurs P, Mergeay M, et al. Zinc-induced transposition of insertion sequence elements contributes to increased adaptability of Cupriavidus metallidurans. Frontiers in Microbiology, 2016, 7:359.
doi: 10.3389/fmicb.2016.00359 pmid: 27047473
[31] Zhang S H, Yang G L, Hou S G, et al. Analysis of heavy metal-related indices in the Eboling permafrost on the Tibetan Plateau. CATENA, 2021, 196:104907.
doi: 10.1016/j.catena.2020.104907
[32] 王敏. 嗜冷微生物对Cu2+胁迫的应答及其代谢组学研究. 哈尔滨: 哈尔滨工业大学, 2012.
Wang M. Stress responses and metabolomics under Cu2+ in psychrophilic microorganism. Harbin: Harbin Institute of Technology, 2012.
[33] Alfano M, Cavazza C. Structure, function, and biosynthesis of nickel-dependent enzymes. Protein Science, 2020, 29(5):1071-1089.
doi: 10.1002/pro.v29.5
[34] Chirgadze Y N, Boshkova E A, Battaile K P, et al. Crystal structure of Staphylococcus aureus Zn-glyoxalase I: new subfamily of glyoxalase I family. Journal of Biomolecular Structure & Dynamics, 2018, 36(2):376-386.
[35] Kim J, Choi D, Cha S Y, et al. Zinc-mediated reversible multimerization of Hsp31 enhances the activity of holding chaperone. Journal of Molecular Biology, 2018, 430(12):1760-1772.
doi: 10.1016/j.jmb.2018.04.029
[36] Raytapadar S, Datta R, Paul A K. Effects of some heavy metals on growth, pigment and antibiotic production by Streptomyces galbus. Acta Microbiologica et Immunologica Hungarica, 1995, 42(2):171-177.
pmid: 7551710
[37] Remenár M, Karelová E, Harichová J, et al. Actinobacteria occurrence and their metabolic characteristics in the nickel-contaminated soil sample. Biologia, 2014, 69(11):1453-1463.
doi: 10.2478/s11756-014-0451-z
[38] Caldeira J B, Chung A P, Morais P V, et al. Relevance of FeoAB system in Rhodanobacter sp. B2A1Ga4 resistance to heavy metals, aluminium, gallium, and indium. Applied Microbiology and Biotechnology, 2021, 105(8):3301-3314.
doi: 10.1007/s00253-021-11254-6 pmid: 33791837
[39] Manley O M, Myers P D, Toney D J, et al. Evaluation of the regulatory model for Ni2+ sensing by Nur from Streptomyces coelicolor. Journal of Inorganic Biochemistry, 2020, 203:110859.
doi: 10.1016/j.jinorgbio.2019.110859
[40] Baksh K A, Pichugin D, Prosser R S, et al. Allosteric regulation of the nickel-responsive NikR transcription factor from Helicobacter pylori. Journal of Biological Chemistry, 2021, 296:100069.
doi: 10.1074/jbc.RA120.015459
[41] Lee C W, Giedroc D P. 1H, 13C, and 15N resonance assignments of NmtR, a Ni(II)/Co(II) metalloregulatory protein of Mycobacterium tuberculosis. Biomolecular NMR Assignments, 2013, 7(2):145-148.
doi: 10.1007/s12104-012-9397-7
[42] Higgins K, Surette V, Swanson G, et al. Characterization of KmtR from Mycobacterium tuberculosis. Abstracts of Papers of the American Chemical Society, 2017, 254.
[43] Bafana A, Khan F, Suguna K. Structural and functional characterization of mercuric reductase from Lysinibacillus sphaericus strain G1. BioMetals, 2017, 30(5):809-819.
doi: 10.1007/s10534-017-0050-x pmid: 28894951
[44] Kang W, Zheng J, Bao J G, et al. Characterization of the copper resistance mechanism and bioremediation potential of an Acinetobacter calcoaceticus strain isolated from copper mine sludge. Environmental Science and Pollution Research International, 2020, 27(8):7922-7933.
doi: 10.1007/s11356-019-07303-3 pmid: 31893366
[1] 李金花,白雨凡,马春兰,季秀玲,魏云林. 噬菌体温度适应性的研究进展*[J]. 中国生物工程杂志, 2022, 42(1/2): 139-145.
[2] 乔圣泰,王曼琦,徐慧妮. 番茄SlTpx原核表达蛋白的体外功能分析*[J]. 中国生物工程杂志, 2021, 41(8): 25-32.
[3] 袁博鑫,吴昊,闫春晓,路娟娥,魏振平,乔建军,阮海华. 病原细菌效应蛋白靶向宿主细胞核研究进展*[J]. 中国生物工程杂志, 2021, 41(7): 81-90.
[4] 朱潇静,王芮,张欣欣,靳家鑫,路闻龙,丁大顺,霍翠梅,李青梅,孙爱军,庄国庆. 利用细菌人工染色体技术构建整合F基因的重组MDV疫苗株*[J]. 中国生物工程杂志, 2021, 41(10): 33-41.
[5] 常璐, 黄娇芳, 董浩, 周斌辉, 朱小娟, 庄英萍. 合成生物学改造微生物及生物被膜用于重金属污染检测与修复 *[J]. 中国生物工程杂志, 2021, 41(1): 62-71.
[6] 高小朋,何猛超,许可,李春. 工业微生物发酵过程中pH调控研究进展 *[J]. 中国生物工程杂志, 2020, 40(6): 93-99.
[7] 方元,张同伟,曹长乾,田杰生,林巍. 趋磁细菌多样性与应用研究进展 *[J]. 中国生物工程杂志, 2019, 39(12): 73-82.
[8] 王方旭,陈玉玲,耿读艳,陈传芳. 趋磁细菌及磁小体的生物医学应用研究进展 *[J]. 中国生物工程杂志, 2018, 38(9): 74-80.
[9] 叶中杨,邱怀雨,祝丙华,李泽,祝业,王立贵. sRNA调控细菌耐药相关基因表达研究进展 *[J]. 中国生物工程杂志, 2018, 38(7): 89-93.
[10] 曾家伟,侯国锋,郑继平,杨诺,曾纪峰,郭桂英. CRISPR/Cas系统作为抗菌药的现状及展望 *[J]. 中国生物工程杂志, 2018, 38(11): 59-65.
[11] 戈家傲,刘畅,龚建刚,刘艳琴. 抗菌环肽的研究进展 *[J]. 中国生物工程杂志, 2018, 38(11): 76-83.
[12] 刘地, 晏婷, 何秀娟, 郑文云, 马兴元. 细菌性腹泻三联口服疫苗的研制及其免疫效果的初步评价[J]. 中国生物工程杂志, 2017, 37(7): 18-26.
[13] 赵秀丽, 周丹丹, 闫晓光, 吴昊, 财音青格乐, 李艳妮, 乔建军. 细菌小RNA的调控及在代谢工程中的应用[J]. 中国生物工程杂志, 2017, 37(6): 97-106.
[14] 姚长洪, 吴佩春, 曹旭鹏, 刘娇, 姜君鹏, 薛松. 两株筛自大规模生产跑道池的节旋藻性能比较研究[J]. 中国生物工程杂志, 2017, 37(5): 28-37.
[15] 张雪, 陶磊, 乔晟, 杜秉昊, 郭长虹. 谷胱甘肽转移酶在植物抵抗非生物胁迫方面的角色[J]. 中国生物工程杂志, 2017, 37(3): 92-98.