Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2022, Vol. 42 Issue (3): 62-71    DOI: 10.13523/j.cb.2108066
综述     
肠道菌群及其代谢产物与T2DM发病机制及干预措施*
甘巧,孟庆雄**()
昆明理工大学生命科学与技术学院 昆明 650504
Intestinal Microflora and Its Metabolites in Relation to the Pathogenesis and Intervention of T2DM
GAN Qiao,MENG Qing-xiong**()
Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650504, China
 全文: PDF(2828 KB)   HTML
摘要:

2型糖尿病(type 2 diabetes mellitus,T2DM)是一种因胰岛素分泌不足或胰岛素抵抗而引起的慢性代谢疾病,T2DM患病人数的快速增长使治疗和预防T2DM成为世界上亟待解决的医学问题。随着微生物组学技术的进步,肠道菌群及其代谢产物与T2DM的研究亦逐渐深入,肠道菌群可能成为治疗和预防T2DM的靶点。肠道菌群及其代谢产物作用于T2DM的潜在机制,主要是参与体内炎症反应、增加肠道短链脂肪酸产量、调节肠道胆汁酸的代谢、调节支链氨基酸的代谢等。目前,治疗T2DM的药物可能会产生一些副作用,而基于肠道菌群干预T2DM的措施相对安全无害。例如,可通过严格控制的特定结构饮食长期摄入或增加益生菌的长期摄取控制血糖,或通过口服可影响肠道菌群生态结构的降糖药物(二甲双胍、阿卡波糖)有效地调控血糖水平。综述基于肠道菌群及其代谢产物诱发T2DM的潜在机制,研讨基于肠道菌群干预T2DM的措施,从肠道菌群的新视角探索治疗T2DM的新方法,为彻底治疗T2DM提供一种新可能。

关键词: 肠道菌群2型糖尿病代谢产物二甲双胍    
Abstract:

Type 2 diabetes mellitus (T2DM) is a chronic metabolic disease caused by insufficient insulin secretion or insulin resistance. The rapid increase in the number of patients with T2DM makes the treatment and prevention of T2DM an urgent problem in the world. With the advancement of microbiome technology, the research on the intestinal flora, its metabolites and the T2DM has gradually deepened. Perhaps the intestinal flora can be used as a target for the treatment and prevention of T2DM. The potential mechanism of intestinal flora acting on T2DM is reviewed. It mainly participates in the inflammatory response in the body, increasing the production of intestinal short-chain fatty acids, regulating the metabolism of intestinal bile acids and their product distribution, and ajusting the metabolism of branched-chain amino acids. Currently, drugs for T2DM may have some side effects. Measures based on the intestinal flora to intervene in T2DM are relatively safe and harmless. Long-term intake of a strictly controlled diet with a specific structure can be used to control blood sugar or increase the long-term intake of probiotics. It can also affect the ecological structure of the intestinal flora through oral administration. Sugar drugs (metformin and acarbose) effectively regulate blood sugar levels. The potential mechanism of T2DM induced by the intestinal flora and its metabolites is reviewed, and measures for the intervention of T2DM based on the intestinal flora are also discussed. In addition, new methods for the treatment of T2DM from a new perspective of the intestinal flora are explored, which may provide a thorough treatment of T2DM in the future.

Key words: Intestinal microflora    Type 2 diabetes mellitus (T2DM)    Metabolite    Metformin
收稿日期: 2021-08-27 出版日期: 2022-04-07
ZTFLH:  R587.1R378.2  
基金资助: * 国家自然科学基金资助项目(31860096)
通讯作者: 孟庆雄     E-mail: qxmeng@sina.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
甘巧
孟庆雄

引用本文:

甘巧, 孟庆雄. 肠道菌群及其代谢产物与T2DM发病机制及干预措施*[J]. 中国生物工程杂志, 2022, 42(3): 62-71.

GAN Qiao, MENG Qing-xiong. Intestinal Microflora and Its Metabolites in Relation to the Pathogenesis and Intervention of T2DM. China Biotechnology, 2022, 42(3): 62-71.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.2108066        https://manu60.magtech.com.cn/biotech/CN/Y2022/V42/I3/62

图1  健康人群和T2DM患者葡萄糖和肠道菌群代谢产物转运图
图2  肠道菌群及其代谢产物调节糖代谢途径
图3  Bacteroides fragilis-GUDCA-肠FXR轴
[1] 中华医学会糖尿病学分会. 中国2型糖尿病防治指南(2017年版). 中国实用内科杂志, 2018, 38(4):292-344.
Chinese Diabetes Society. Guidelines for the prevention and control of type 2 diabetes in China(2017 Edition). Chinese Journal of Practical Internal Medicine, 2018, 38(4):292-344.
[2] Chen L, Magliano D J, Zimmet P Z. The worldwide epidemiology of type 2 diabetes mellitus-present and future perspectives. Nature Reviews Endocrinology, 2012, 8(4):228-236.
doi: 10.1038/nrendo.2011.183
[3] Viigimaa M, Sachinidis A, Toumpourleka M, et al. Macrovascular complications of type 2 diabetes mellitus. Current Vascular Pharmacology, 2020, 18(2):110-116.
doi: 10.2174/1570161117666190405165151 pmid: 30961498
[4] Khan N U, Lin J, Liu X K, et al. Insights into predicting diabetic nephropathy using urinary biomarkers. Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics, 2020, 1868(10):140475.
doi: 10.1016/j.bbapap.2020.140475
[5] Amaefule C E, Sasitharan A, Kalra P, et al. The accuracy of haemoglobin A1c as a screening and diagnostic test for gestational diabetes: a systematic review and meta-analysis of test accuracy studies. Current Opinion in Obstetrics & Gynecology, 2020, 32(5):322-334.
[6] Luca M, Di Mauro M, Di Mauro M, et al. Gut microbiota in Alzheimer’s disease, depression, and type 2 diabetes mellitus: the role of oxidative stress. Oxidative Medicine and Cellular Longevity, 2019, 2019:4730539.
[7] Caesar R. Pharmacologic and nonpharmacologic therapies for the gut microbiota in type 2 diabetes. Canadian Journal of Diabetes, 2019, 43(3):224-231.
doi: 10.1016/j.jcjd.2019.01.007
[8] Morais L H, Schreiber H L, Mazmanian S K. The gut microbiota-brain axis in behaviour and brain disorders. Nature Reviews Microbiology, 2021, 19(4):241-255.
doi: 10.1038/s41579-020-00460-0 pmid: 33093662
[9] Wang R, Tang R Q, Li B, et al. Gut microbiome, liver immunology, and liver diseases. Cellular & Molecular Immunology, 2021, 18(1):4-17.
[10] Wang Z Y, Zeng M M, Wang Z J, et al. Dietary polyphenols to combat nonalcoholic fatty liver disease via the gut-brain-liver axis: a review of possible mechanisms. Journal of Agricultural and Food Chemistry, 2021, 69(12):3585-3600.
doi: 10.1021/acs.jafc.1c00751
[11] Fried S, Wemelle E, Cani P D, et al. Interactions between the microbiota and enteric nervous system during gut-brain disorders. Neuropharmacology, 2021, 197:108721.
doi: 10.1016/j.neuropharm.2021.108721
[12] Wang S Z, Yu Y J, Adeli K. Role of gut microbiota in neuroendocrine regulation of carbohydrate and lipid metabolism via the microbiota-gut-brain-liver axis. Microorganisms, 2020, 8(4):527.
doi: 10.3390/microorganisms8040527
[13] Pagliari D, Saviano A, Newton E E, et al. Gut microbiota-immune system crosstalk and pancreatic disorders. Mediators of Inflammation, 2018, 2018:7946431.
[14] Maranta F, Cianfanelli L, Cianflone D. Glycaemic control and vascular complications in diabetes mellitus type 2. Advances in Experimental Medicine and Biology, 2021, 1307:129-152.
[15] Galicia-Garcia U, Benito-Vicente A, Jebari S, et al. Pathophysiology of type 2 diabetes mellitus. International Journal of Molecular Sciences, 2020, 21(17):6275.
doi: 10.3390/ijms21176275
[16] Merino B, Fernández-Díaz C M, Cózar-Castellano I, et al. Intestinal fructose and glucose metabolism in health and disease. Nutrients, 2019, 12(1):94.
doi: 10.3390/nu12010094
[17] Nilsson E, Matte A, Perfilyev A, et al. Epigenetic alterations in human liver from subjects with type 2 diabetes in parallel with reduced folate levels. The Journal of Clinical Endocrinology & Metabolism, 2015, 100(11):E1491-E1501.
doi: 10.1210/jc.2015-3204
[18] Mazoochian L, Mohammad Sadeghi H M, Pourfarzam M. The effect of FADS2 gene rs174583 polymorphism on desaturase activities, fatty acid profile, insulin resistance, biochemical indices, and incidence of type 2 diabetes. Journal of Research in Medical Sciences, 2018, 23:47.
doi: 10.4103/jrms.JRMS_961_17 pmid: 29937909
[19] Fu S Y, Meng Y H, Zhang W L, et al. Transcriptomic responses of skeletal muscle to acute exercise in diabetic goto-kakizaki rats. Frontiers in Physiology, 2019, 10:872.
doi: 10.3389/fphys.2019.00872
[20] Volkov P, Bacos K, Ofori J K, et al. Whole-genome bisulfite sequencing of human pancreatic islets reveals novel differentially methylated regions in type 2 diabetes pathogenesis. Diabetes, 2017, 66(4):1074-1085.
doi: 10.2337/db16-0996 pmid: 28052964
[21] Taneera J, Fadista J, Ahlqvist E, et al. Expression profiling of cell cycle genes in human pancreatic islets with and without type 2 diabetes. Molecular and Cellular Endocrinology, 2013, 375(1-2):35-42.
doi: 10.1016/j.mce.2013.05.003 pmid: 23707792
[22] García-Chapa E G, Leal-Ugarte E, Peralta-Leal V, et al. Genetic epidemiology of type 2 diabetes in Mexican mestizos. BioMed Research International, 2017, 2017:3937893.
[23] Engwa G A, Nwalo F N, Chikezie C C, et al. Possible association between ABCC8 C49620T polymorphism and type 2 diabetes in a Nigerian population. BMC Medical Genetics, 2018, 19(1):78.
doi: 10.1186/s12881-018-0601-1
[24] Ling C, Rönn T. Epigenetics in human obesity and type 2 diabetes. Cell Metabolism, 2019, 29(5):1028-1044.
doi: 10.1016/j.cmet.2019.03.009
[25] Koh A, Molinaro A, Ståhlman M, et al. Microbially produced imidazole propionate impairs insulin signaling through mTORC1. Cell, 2018, 175(4):947-961, e17.
doi: 10.1016/j.cell.2018.09.055
[26] Pedersen H K, Gudmundsdottir V, Nielsen H B, et al. Human gut microbes impact host serum metabolome and insulin sensitivity. Nature, 2016, 535(7612):376-381.
doi: 10.1038/nature18646
[27] Ebrahimzadeh Leylabadlo H, Sanaie S, Sadeghpour Heravi F, et al. From role of gut microbiota to microbial-based therapies in type 2-diabetes. Infection,Genetics and Evolution, 2020, 81:104268.
doi: 10.1016/j.meegid.2020.104268
[28] Egshatyan L, Kashtanova D, Popenko A, et al. Gut microbiota and diet in patients with different glucose tolerance. Endocrine Connections, 2016, 5(1):1-9.
doi: 10.1530/EC-15-0094 pmid: 26555712
[29] Wu H, Esteve E, Tremaroli V, et al. Metformin alters the gut microbiome of individuals with treatment-naive type 2 diabetes, contributing to the therapeutic effects of the drug. Nature Medicine, 2017, 23(7):850-858.
doi: 10.1038/nm.4345
[30] Amyot J, Semache M, Ferdaoussi M, et al. Lipopolysaccharides impair insulin gene expression in isolated islets of Langerhans via Toll-Like Receptor-4 and NF-κB signalling. PLoS One, 2012, 7(4):e36200.
doi: 10.1371/journal.pone.0036200
[31] Cani P D, Possemiers S, van de Wiele T, et al. Changes in gut microbiota control inflammation in obese mice through a mechanism involving GLP-2-driven improvement of gut permeability. Gut, 2009, 58(8):1091-1103.
doi: 10.1136/gut.2008.165886
[32] Li B, Fang J, Zuo Z C, et al. Activation of porcine alveolar macrophages by Actinobacillus pleuropneumoniae lipopolysaccharide via the toll-like receptor 4/NF-κB-mediated pathway. Infection and Immunity, 2018, 86(3):e00642-17.
[33] Dey P. Gut microbiota in phytopharmacology: a comprehensive overview of concepts, reciprocal interactions, biotransformations and mode of actions. Pharmacological Research, 2019, 147:104367.
doi: 10.1016/j.phrs.2019.104367
[34] Chassaing B, Raja S M, Lewis J D, et al. Colonic microbiota encroachment correlates with dysglycemia in humans. Cellular and Molecular Gastroenterology and Hepatology, 2017, 4(2):205-221.
doi: 10.1016/j.jcmgh.2017.04.001 pmid: 28649593
[35] Guo Y, Zou J, Xu X F, et al. Short-chain fatty acids combined with intronic DNA methylation of HIF3A: potential predictors for diabetic cardiomyopathy. Clinical Nutrition (Edinburgh, Scotland), 2021, 40(6):3708-3717.
doi: 10.1016/j.clnu.2021.04.007
[36] Vallianou N G, Stratigou T, Tsagarakis S. Metformin and gut microbiota: their interactions and their impact on diabetes. Hormones(Athens), 2019, 18(2):141-144.
[37] Schoeler M, Caesar R. Dietary lipids, gut microbiota and lipid metabolism. Reviews in Endocrine and Metabolic Disorders, 2019, 20(4):461-472.
doi: 10.1007/s11154-019-09512-0 pmid: 31707624
[38] Zhao L P, Zhang F, Ding X Y, et al. Gut bacteria selectively promoted by dietary fibers alleviate type 2 diabetes. Science, 2018, 359(6380):1151-1156.
doi: 10.1126/science.aao5774
[39] Tirosh A, Calay E S, Tuncman G, et al. The short-chain fatty acid propionate increases glucagon and FABP4 production, impairing insulin action in mice and humans. Science Translational Medicine, 2019, 11(489): eaav0120.
[40] Perry R J, Peng L, Barry N A, et al. Acetate mediates a microbiome-brain-β-cell axis to promote metabolic syndrome. Nature, 2016, 534(7606):213-217.
doi: 10.1038/nature18309
[41] Wu L W, Feng J, Li J J, et al. The gut microbiome-bile acid axis in hepatocarcinogenesis. Biomedicine & Pharmacotherapy, 2021, 133:111036.
doi: 10.1016/j.biopha.2020.111036
[42] Yehualashet A S, Yikna B B. Microbial ecosystem in diabetes mellitus: consideration of the gastrointestinal system. Diabetes, Metabolic Syndrome and Obesity, 2021, 14:1841-1854.
[43] Fiorucci S, Distrutti E. Bile acid-activated receptors, intestinal microbiota, and the treatment of metabolic disorders. Trends in Molecular Medicine, 2015, 21(11):702-714.
doi: S1471-4914(15)00175-6 pmid: 26481828
[44] Ramírez-Pérez O, Cruz-Ramón V, Chinchilla-López P, et al. The role of the gut microbiota in bile acid metabolism. Annals of Hepatology, 2017, 16(Suppl. 1: s3-105.):15-20.
doi: 10.5604/01.3001.0010.5494 pmid: 29080339
[45] Zheng X J, Chen T L, Jiang R Q, et al. Hyocholic acid species improve glucose homeostasis through a distinct TGR5 and FXR signaling mechanism. Cell Metabolism, 2021, 33(4):791-803, e7.
doi: 10.1016/j.cmet.2020.11.017
[46] Kuang J L, Zheng X J, Huang F J, et al. Anti-adipogenic effect of theabrownin is mediated by bile acid alternative synthesis via gut microbiota remodeling. Metabolites, 2020, 10(11):475.
doi: 10.3390/metabo10110475
[47] Zhang B, Chen Y, Shi X L, et al. Regulation of branched-chain amino acid metabolism by hypoxia-inducible factor in glioblastoma. Cellular and Molecular Life Sciences: CMLS, 2021, 78(1):195-206.
doi: 10.1007/s00018-020-03483-1
[48] Tian J, Liu C, Zheng X, et al. Porphyromonas gingivalis induces insulin resistance by increasing BCAA levels in mice. Journal of Dental Research, 2020, 99(7):839-846.
doi: 10.1177/0022034520911037 pmid: 32176550
[49] Eslami M, Bahar A, Hemati M, et al. Dietary pattern, colonic microbiota and immunometabolism interaction: new frontiers for diabetes mellitus and related disorders. Diabetic Medicine: a journal of the British Diabetic Association, 2021, 38(2):e14415.
[50] Allin K H, Nielsen T, Pedersen O. Mechanisms in endocrinology: gut microbiota in patients with type 2 diabetes mellitus. European Journal of Endocrinology, 2015, 172(4):R167-R177.
doi: 10.1530/EJE-14-0874
[51] Saad M J A, Santos A, Prada P O. Linking gut microbiota and inflammation to obesity and insulin resistance. Physiology (Bethesda, Md), 2016, 31(4):283-293.
[52] Fassarella M, Blaak E E, Penders J, et al. Gut microbiome stability and resilience: elucidating the response to perturbations in order to modulate gut health. Gut, 2021, 70(3):595-605.
doi: 10.1136/gutjnl-2020-321747 pmid: 33051190
[53] Li X X, Zhang X X, Zhang R, et al. Gut modulation based anti-diabetic effects of carboxymethylated wheat bran dietary fiber in high-fat diet/streptozotocin-induced diabetic mice and their potential mechanisms. Food and Chemical Toxicology, 2021, 152:112235.
doi: 10.1016/j.fct.2021.112235
[54] Kovatcheva-Datchary P, Nilsson A, Akrami R, et al. Dietary fiber-induced improvement in glucose metabolism is associated with increased abundance of Prevotella. Cell Metabolism, 2015, 22(6):971-982.
doi: 10.1016/j.cmet.2015.10.001 pmid: 26552345
[55] Neinast M, Murashige D, Arany Z. Branched chain amino acids. Annual Review of Physiology, 2019, 81:139-164.
doi: 10.1146/physiol.2019.81.issue-1
[56] Cummings N E, Williams E M, Kasza I, et al. Restoration of metabolic health by decreased consumption of branched-chain amino acids. The Journal of Physiology, 2018, 596(4):623-645.
doi: 10.1113/JP275075 pmid: 29266268
[57] Liu R X, Hong J, Xu X Q, et al. Gut microbiome and serum metabolome alterations in obesity and after weight-loss intervention. Nature Medicine, 2017, 23(7):859-868.
doi: 10.1038/nm.4358
[58] Tiderencel K A, Hutcheon D A, Ziegler J. Probiotics for the treatment of type 2 diabetes: a review of randomized controlled trials. Diabetes/Metabolism Research and Reviews, 2020, 36(1):e3213.
[59] Salgaço M K, Oliveira L G S, Costa G N, et al. Relationship between gut microbiota, probiotics, and type 2 diabetes mellitus. Applied Microbiology and Biotechnology, 2019, 103(23-24):9229-9238.
doi: 10.1007/s00253-019-10156-y pmid: 31664483
[60] Rena G, Hardie D G, Pearson E R. The mechanisms of action of metformin. Diabetologia, 2017, 60(9):1577-1585.
doi: 10.1007/s00125-017-4342-z
[61] Duca F A, Côté C D, Rasmussen B A, et al. Metformin activates a duodenal Ampk-dependent pathway to lower hepatic glucose production in rats. Nature Medicine, 2015, 21(5):506-511.
doi: 10.1038/nm.3787
[62] Maniar K, Moideen A, Mittal A, et al. A story of metformin-butyrate synergism to control various pathological conditions as a consequence of gut microbiome modification: genesis of a wonder drug? Pharmacological Research, 2017, 117:103-128.
doi: S1043-6618(16)30954-9 pmid: 27939359
[63] Sun L L, Xie C, Wang G, et al. Gut microbiota and intestinal FXR mediate the clinical benefits of metformin. Nature Medicine, 2018, 24(12):1919-1929.
doi: 10.1038/s41591-018-0222-4
[64] Wu J Y, Wang K, Wang X M, et al. The role of the gut microbiome and its metabolites in metabolic diseases. Protein & Cell, 2021, 12(5):360-373.
[65] Bryrup T, Thomsen C W, Kern T, et al. Metformin-induced changes of the gut microbiota in healthy young men: results of a non-blinded, one-armed intervention study. Diabetologia, 2019, 62(6):1024-1035.
doi: 10.1007/s00125-019-4848-7
[66] Lee H, Lee Y, Kim J, et al. Modulation of the gut microbiota by metformin improves metabolic profiles in aged obese mice. Gut Microbes, 2018, 9(2):155-165.
doi: 10.1080/19490976.2017.1405209
[67] Shin N R, Lee J C, Lee H Y, et al. An increase in the Akkermansia spp. population induced by metformin treatment improves glucose homeostasis in diet-induced obese mice. Gut, 2014, 63(5):727-735.
doi: 10.1136/gutjnl-2012-303839
[68] Dimitrov D, Thiele I, Ferguson L R. Editorial: the human gutome: nutrigenomics of host-microbiome interactions. Frontiers in Genetics, 2016, 7:158.
doi: 10.3389/fgene.2016.00158 pmid: 27656194
[69] Zhang M C, Feng R L, Yang M, et al. Effects of metformin, acarbose, and sitagliptin monotherapy on gut microbiota in Zucker diabetic fatty rats. BMJ Open Diabetes Research & Care, 2019, 7(1):e000717.
doi: 10.1136/bmjdrc-2019-000717
[70] Zhang X Y, Fang Z W, Zhang C F, et al. Effects of acarbose on the gut microbiota of prediabetic patients: a randomized, double-blind, controlled crossover trial. Diabetes Therapy, 2017, 8(2):293-307.
doi: 10.1007/s13300-017-0226-y
[71] Cao T T B, Wu K C, Hsu J L, et al. Effects of non-insulin anti-hyperglycemic agents on gut microbiota: a systematic review on human and animal studies. Frontiers in Endocrinology (Lausanne), 2020, 11:573891.
[72] Smith B J, Miller R A, Ericsson A C, et al. Changes in the gut microbiome and fermentation products concurrent with enhanced longevity in acarbose-treated mice. BMC Microbiology, 2019, 19(1):130.
doi: 10.1186/s12866-019-1494-7
[73] Gu Y Y, Wang X K, Li J H, et al. Analyses of gut microbiota and plasma bile acids enable stratification of patients for antidiabetic treatment. Nature Communications, 2017, 8(1):1785.
doi: 10.1038/s41467-017-01682-2
[74] Li Y Q, Han L, Xu M, et al. The primary research on the gut microbes in KKAy mice. Indian Journal of Microbiology, 2014, 54(1):12-19.
doi: 10.1007/s12088-013-0410-3
[75] Olivares M, Neyrinck A M, Pötgens S A, et al. The DPP-4 inhibitor vildagliptin impacts the gut microbiota and prevents disruption of intestinal homeostasis induced by a Western diet in mice. Diabetologia, 2018, 61(8):1838-1848.
doi: 10.1007/s00125-018-4647-6 pmid: 29797022
[1] 谈沛林,张莹,张竣,高笑,王树坤,侯琳,袁增强. 二甲双胍(Metformin)在少突胶质前体细胞分化中的作用和机制*[J]. 中国生物工程杂志, 2021, 41(9): 1-9.
[2] 陈庆宇,王鲜忠,张姣姣. 基因技术在治疗2型糖尿病中的应用*[J]. 中国生物工程杂志, 2020, 40(11): 73-81.
[3] 冯琳晶,于洋,杜红伟. FoxO1在胰岛β细胞代谢灵活性受损及失代偿进程中的作用 *[J]. 中国生物工程杂志, 2018, 38(6): 70-76.
[4] 王得华, 马义, 韩磊, 肖兴, 李艳伟, 党诗莹, 范志勇, 文涛, 洪岸. 新型基因重组PACAP衍生物MPL-2的制备及其抗2型糖尿病作用研究[J]. 中国生物工程杂志, 2017, 37(5): 59-65.
[5] 李金蔓, 裴广倩, 范航, 黄勇, 童贻刚. 肠道菌群核酸提取自动化流程的优化[J]. 中国生物工程杂志, 2017, 37(11): 6-11.
[6] 尹守亮, 张玉秀, 张琪, 豆梦楠, 杨克迁. 无机磷酸盐对链霉菌合成次级代谢产物的影响[J]. 中国生物工程杂志, 2015, 35(9): 105-113.
[7] 李晓梅, 林春燕, 逄爱萍, 李晓波, 赵广荣. 合成生物学在链霉菌次级代谢产物研发中的应用[J]. 中国生物工程杂志, 2015, 35(4): 92-97.
[8] 袁佩佩, 曹伟佳, 王震, 张博文, 陈可泉, 李艳, 欧阳平凯. 大肠杆菌产L-苯丙氨酸发酵调控及代谢通量分析[J]. 中国生物工程杂志, 2015, 35(3): 25-34.
[9] 杨毅, 李治, 高玲霞, 孙燕. 荧光假单胞菌抗生性代谢产物合成相关基因的研究现状[J]. 中国生物工程杂志, 2012, 32(08): 100-106.
[10] 吕志伟, 吴文平, 毕丽伟, 江星星, 王雅英. 建立金线莲原球茎悬浮体系生产次生代谢产物[J]. 中国生物工程杂志, 2012, 32(05): 43-50.
[11] 郑连宝, 裘娟萍. 基因组重排技术在开发新代谢产物中的应用[J]. 中国生物工程杂志, 2012, 32(03): 100-105.
[12] 杜彩贺, 胡芳, 魏婷婷, 张仁敏, 张红琳, 周东蕊, 陆祖宏. PCR-DGGE指纹图谱技术分析2型糖尿病模型小鼠胃微生物菌群结构[J]. 中国生物工程杂志, 2012, 32(03): 25-31.
[13] 刘延杰, 季虹, 林鲁霞, 臧学章, 宋长征, 荣海钦. Exendin-4的固相化学合成及鉴定[J]. 中国生物工程杂志, 2011, 31(02): 69-73.
[14] 陈雯,桂亮,林娟,陈章捷,刘树滔,饶平凡. 小鼠肠道菌群HPLC分析中色谱分离条件的优化[J]. 中国生物工程杂志, 2007, 27(7): 75-79.
[15] 李越中, 陈琦. 海洋微生物资源及其产生生物活性代谢产物的研究[J]. 中国生物工程杂志, 2000, 20(5): 28-31.