Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2022, Vol. 42 Issue (3): 38-46    DOI: 10.13523/j.cb.2108063
技术与方法     
稳定表达人源GABAAR-CHO细胞株的建立
张毅,王陈,石晶晶,陈学军,张瑞华,靳倩,石童*(),李丽琴*()
国民核生化灾害防护国家重点实验室 北京 102205
Establishment of Human GABAAR-CHO Cell Line Stable Expression
ZHANG Yi,WANG Chen,SHI Jing-jing,CHEN Xue-jun,ZHANG Rui-hua,JIN Qian,SHI Tong*(),LI Li-qin*()
State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
 全文: PDF(3508 KB)   HTML
摘要:

目的: 构建α1亚基诱导表达、β2和γ2L亚基稳定表达的人源α1β2γ2L-GABAAR-CHO(Chinese hamster ovary)细胞株。方法: 从人cDNA文库中扩增α1、β2、γ2L亚基编码基因,分别构建亚基表达载体;将三个亚基表达载体共转染CHO-K1细胞,通过抗性筛选、膜电位检测法进行稳定表达克隆筛选;通过qPCR、Western blot对亚基表达进行鉴定;以激动剂GABA、阳性变构调节剂地西泮(diazepam,Dia)、拮抗剂荷包牡丹碱(bicuculine)为工具药,采用全细胞膜片钳方法及膜电位检测法对稳定表达细胞的药理学功能进行鉴定。结果: 经克隆筛选获得表达量较高的α1β2γ2L-GABAAR-CHO并对其亚基表达鉴定,结果显示该细胞稳定表达α1、β2、γ2L亚基,构建的α1β2γ2L-GABAAR-CHO细胞仅在加入四环素(tetracyclin)诱导的情况下表达α1亚基并与β2、γ2L组装成具有功能活性的α1β2γ2L-GABAAR;对其进行全细胞膜片钳检测研究发现,GABA可对其产生激动效应,引起α1β2γ2L-GABAAR-CHO细胞产生氯离子通道特征性电流变化,Dia可剂量依赖性地增强GABA对α1β2γ2L-GABAAR的激动效应;在膜电位检测研究中,获得GABA激动效应EC50为(177.72 ± 15.92)nmol/L,Dia变构效应EC50为(3.63±0.52)μmol/L,拮抗剂Bicuculine拮抗效应IC50为(538.83±29.55)nmol/L。结论: 通过采用诱导表达策略,成功构建了α1β2γ2L-GABAAR-CHO稳定表达细胞株,该细胞株具有对激动剂、阳性变构剂、拮抗剂特异性检测的药理学功能。

关键词: α1β2γ2L-GABAAR-CHO诱导表达膜电位检测GABA地西泮    
Abstract:

Objective: A functional α1β2γ2L-GABAAR-CHO human cell line is constructed in which α1 subunit is inducd expression and β2 and γ2L subunits are stable expression. Methods: The coding genes of human subunit α1, β2 and γ2L were amplified from human cDNA library, and the subunit vectors were respectively constructed. The three subunit vectors were cotransfected into CHO-K1 cells, and the stable expression clones were screened by resistance screening and membrane potential detection. The expression of subunits were identified by qPCR and western blot;the pharmacological function of α1β2γ2L-GABAAR-CHO line were identified by whole-cell patch clamp detection and membrane potential detection method. Results: The α1β2γ2L-GABAAR-CHO with high expression level was obtained by screening the clones. The cells stably expressed α1, β2 and γ2L subunits. The constructed α1β2γ2L-GABAAR-CHO cells expressed α1 subunit in the presence of tetracycline, and assembled with β2 and γ2L subunits to form α1β2γ2L-GABAAR with functional activity. Whole-cell patch clamp detection of α1β2γ2L-GABAAR-CHO showed that GABA could stimulate it and cause the characteristic current change of chloride channel in α1β2γ2L-GABAAR-CHO, and diazepam could enhance the activation effect of GABA on α1β2γ2L-GABAAR. Membrane potential detection showed that EC50 of agonist GABA was (177.72±15.92) nmol/L, EC50 of allosteric agent diazepam was (3.63±0.52) μmol/L, and IC50 of antagonist bicuculine was (538.83±29.55) nmol/L, respectively. Conclusion: α1β2γ2L-GABAAR-CHO cell line is successfully constructed by the induced expression strategy, which has the pharmacological function of specific detection of agonists, positive allosteric agents and antagonists.

Key words: α1β2γ2L-GABAAR-CHO    Induced expression    Membrane potential detection    GABA    Diazepam
收稿日期: 2021-08-27 出版日期: 2022-04-07
ZTFLH:  Q819  
通讯作者: 石童,李丽琴     E-mail: tong198282@126.com;llq969696@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
张毅
王陈
石晶晶
陈学军
张瑞华
靳倩
石童
李丽琴

引用本文:

张毅, 王陈, 石晶晶, 陈学军, 张瑞华, 靳倩, 石童, 李丽琴. 稳定表达人源GABAAR-CHO细胞株的建立[J]. 中国生物工程杂志, 2022, 42(3): 38-46.

ZHANG Yi, WANG Chen, SHI Jing-jing, CHEN Xue-jun, ZHANG Rui-hua, JIN Qian, SHI Tong, LI Li-qin. Establishment of Human GABAAR-CHO Cell Line Stable Expression. China Biotechnology, 2022, 42(3): 38-46.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.2108063        https://manu60.magtech.com.cn/biotech/CN/Y2022/V42/I3/38

Gene Forward primer Reverse primer
α1亚基 ATGGATTGGTTTATT GCCGTG CTGTTGGAGCGTAGTGTTGTTT
β2亚基 TCCTCTCCTGG GTCTCCTTC GGTGTTGATTGTGGTCATTGTG
γ2L亚基 CATCTTTGTCTTCTCTGCTCTGG TTGTCCTTGCTTGGTTTCCG
GAPDH GTATTGGACGCCTGGTTACC CGCTCCTGGAAGATGGTGATGG
表1  α1、β2、γ2L、GAPDH亚基引物序列
图1  GABAAR各亚基表达载体图谱
图2  FLIPR膜电位检测α1β2γ2L-GABAAR的表达
图3  qPCR鉴定GABAAR细胞株α1、β2、γ2L亚基的表达
图4  Western blot鉴定α1、γ2L亚基蛋白表达
图5  全细胞膜片钳检测工具药GABA和Dia的激动效应
图6  膜电位检测工具药激动剂GABA、阳性变构剂Dia和拮抗剂Bicuculine剂量-效应关系
[1] Zhu S T, Noviello C M, Teng J F, et al. Structure of a human synaptic GABAA receptor. Nature, 2018, 559(7712):67-72.
doi: 10.1038/s41586-018-0255-3
[2] Scott S, Aricescu A R. A structural perspective on GABAA receptor pharmacology. Current Opinion in Structural Biology, 2019, 54(2):189-197.
doi: 10.1016/j.sbi.2019.03.023
[3] Casida J E, Durkin K A. Novel GABA receptor pesticide targets. Pesticide Biochemistry and Physiology, 2015, 121(6):22-30.
doi: 10.1016/j.pestbp.2014.11.006
[4] Sieghart W. Allosteric modulation of GABAA receptors via multiple drug-binding sites. Advances in Pharmacology, 2015, 72(10):53-96.
[5] Krall J, Balle T, Krogsgaard-Larsen N, et al. GABAA receptor partial agonists and antagonists: structure, binding mode, and pharmacology. Advances in Pharmacology, 2015, 72(10):201-227.
[6] Maldifassi M C, Baur R, Sigel E. Functional sites involved in modulation of the GABAA receptor channel by the intravenous anesthetics propofol, etomidate and pentobarbital. Neuropharmacology, 2016, 105(6):207-214.
doi: 10.1016/j.neuropharm.2016.01.003
[7] Lu J C, Hsiao Y T, Chiang C W, et al. GABAA receptor-mediated tonic depolarization in developing neural circuits. Molecular Neurobiology, 2014, 49(2):702-723.
doi: 10.1007/s12035-013-8548-x
[8] Goehring A, Lee C H, Wang K H, et al. Screening and large-scale expression of membrane proteins in mammalian cells for structural studies. Nature Protocols, 2014, 9(11):2574-2585.
doi: 10.1038/nprot.2014.173 pmid: 25299155
[9] Olsen R W. GABAA receptor: positive and negative allosteric modulators. Neuropharmacology, 2018, 136:10-22.
doi: 10.1016/j.neuropharm.2018.01.036
[10] Olsen R W. Allosteric ligands and their binding sites define γ-aminobutyric acid (GABA) type A receptor subtypes. Advances in Pharmacology, 2015, 73(1):167-202.
[11] Phulera S, Zhu H T, Yu J, et al. Cryo-EM structure of the benzodiazepine-sensitive α1β1γ2S tri-heteromeric GABAA receptor in complex with GABA. Elife, 2018, 7:e39383.
doi: 10.7554/eLife.39383
[12] Sigel E, Steinmann M E. Structure, function, and modulation of GABA(A) receptors. Journal of Biological Chemistry, 2012, 287(48):40224-40231.
doi: 10.1074/jbc.R112.386664
[13] Engin E, Benham R S, Rudolph U. An emerging circuit pharmacology of GABAA receptors. Trends in Pharmacological Sciences, 2018, 39(8):710-732.
doi: S0165-6147(18)30076-2 pmid: 29903580
[14] Brickley S G, Mody I. Extrasynaptic GABAA receptors: their function in the CNS and implications for disease. Neuron, 2012, 73(1):23-34.
doi: 10.1016/j.neuron.2011.12.012 pmid: 22243744
[15] Seol J, Fujii Y, Park I, et al. Distinct effects of orexin receptor antagonist and GABAA agonist on sleep and physical/cognitive functions after forced awakening. PNAS, 2019, 116(48):24353-24358.
doi: 10.1073/pnas.1907354116
[16] Fogaça M V, Duman R S. Cortical GABAergic dysfunction in stress and depression: new insights for therapeutic interventions. Frontiers in Cellular Neuroscience, 2019, 13(4):87-119.
doi: 10.3389/fncel.2019.00087
[17] Joesch C, Guevarra E, Parel S P, et al. Use of FLIPR membrane potential dyes for validation of high-throughput screening with the FLIPR and microARCS technologies: identification of ion channel modulators acting on the GABA(A) receptor. Journal of Biomolecular Screening, 2008, 13(3):218-228.
doi: 10.1177/1087057108315036
[18] 廉靖靖. 非经典苯二氮䓬结合位点对GABAA受体功能的调节作用研究. 北京: 军事科学院, 2020.
Lian J J. Regulatory effects of nonclassical benzodiazepine binding sites on GABAA receptors. Beijing: Academy of Military Sciences, 2020.
[19] 郑双佳. 基于荧光的中枢神经系统γ-氨基丁酸受体的早期筛选技术的建立. 通辽: 内蒙古民族大学, 2020.
Zheng S J. Establishment of an early screening technique for γ-aminobutyric acid receptors based on fluorescence in central nervous system. Tongliao: Inner Mongolia University for Nationalities, 2020.
[20] 潘东升, 张颖丽, 王三龙. 自动膜片钳技术检测药物对hERG通道抑制作用//第九届药物毒理学年会, 新时代新技术新策略新健康论文集. 武汉: 中国药理学会, 2019: 449-450.
Pan D S, Zhang Y L, Wang S L. Automatic patch clamp technique was used to detect the inhibitory effect of drugs on hERG channels//The 9th Annual Conference on Pharmacotoxicology, New Era, New Technique, New Strategy, New Health. Wuhan: Chinese Pharmacological Society, 2019: 449-450.
[1] 付大伟,孙莹莹,徐伟. 融合蛋白NusA-hRI的高效异源表达、纯化及活性分析[J]. 中国生物工程杂志, 2019, 39(3): 21-28.
[2] 苏燕南, 薛正莲, 陈涛, 马琦亚. 粘质沙雷氏菌PL-06磷脂酶A1基因大肠杆菌优化表达[J]. 中国生物工程杂志, 2013, 33(7): 36-42.
[3] 邹智. 农杆菌vir基因诱导因子研究进展[J]. 中国生物工程杂志, 2011, 31(7): 126-132.
[4] 刘贤德 张国范. 基于MegaBACE 1000的荧光(marker)开发[J]. 中国生物工程杂志, 2009, 29(12): 90-93.
[5] 邓永康1,吴民泸2,刘盛邦1,杜林方1,伍黎黎1,李曼1,孟延发1. 乳糖诱导重组尿酸酶基因在大肠杆菌中的表达[J]. 中国生物工程杂志, 2009, 29(07): 74-79.
[6] 刘石娟,李秀兰. ocs/mas|一个受损伤和植物激素诱导的嵌合启动子的构建与功能分析[J]. 中国生物工程杂志, 2009, 29(07): 37-42.
[7] 杨书慧,赵胜军,刘军,闫达中,易丹. 乳糖诱导甜蛋白Monellin在大肠杆菌中的表达[J]. 中国生物工程杂志, 2008, 28(3): 53-58.
[8] 陈坚,薛绪潮,方国恩,苏长青,钱其军. RU486诱导调控载体的构建及体外表达[J]. 中国生物工程杂志, 2007, 27(6): 1-5.
[9] 张敏,赵丛,杜连祥,路福平,蔡兴旺. 中性蛋白酶基因诱导型表达分泌载体的构建[J]. 中国生物工程杂志, 2007, 27(3): 105-109.
[10] 王义琴, 张利明, 李文彬, 孙勇如. 植物病原相关蛋白研究进展[J]. 中国生物工程杂志, 2000, 20(5): 36-38.
[11] 何晨阳, 王金生. 植物防卫反应基因的类型、表达、调控和应用[J]. 中国生物工程杂志, 1994, 14(4): 46-49.