Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2022, Vol. 42 Issue (3): 91-98    DOI: 10.13523/j.cb.2108045
综述     
同义密码子使用模式对蛋白产物表达及构象形成的影响*
蒲飞洋1,2,李易聪1,2,王慧慧1,2,冯茜莉1,2,李倬1,2,马忠仁1,周建华1,3,**()
1 西北民族大学生物医学研究中心 兰州 730030
2 西北民族大学生命科学与工程学院 兰州 730010
3 中国农业科学院兰州兽医研究所 兰州 730046
Effects of Synonymous Codon Usage Patterns on Protein Product Expression and Conformation Formation
PU Fei-yang1,2,LI Yi-cong1,2,WANG Hui-hui1,2,FENG Xi-li1,2,LI Zhuo1,2,MA Zhong-ren1,ZHOU Jian-hua1,3,**()
1 Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, China
2 College of Life Science and Engineering, Northwest Minzu University, Lanzhou 730010, China
3 Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
 全文: PDF(2489 KB)   HTML
摘要:

鉴于遗传密码子的简并性能够将基因遗传信息的容量提升,同义密码子使用偏嗜性得以在生物体的基因组中广泛存在。虽然同义密码子之间碱基的变化并不能导致氨基酸种类的改变,在研究mRNA半衰期、编码多肽翻译效率及肽链空间构象正确折叠的准确性和翻译等这一系列过程中发现,同义密码子使用的偏嗜性在某种程度上通过精微调控翻译机制体现其遗传学功能。同义密码子指导tRNA在翻译过程中识别核糖体的速率变化是由氨基酸的特定顺序决定,并且在新生多肽链合成时,蛋白质共翻译转运机制同时调节其空间构象的正确折叠从而保证蛋白的正常生物学功能。某些同义密码子使用偏嗜性与特定蛋白结构的形成具有显著相关性,密码子使用偏嗜性一旦改变将可能导致新生多肽空间构象出现错误折叠。结合近些年来国内外在此领域的研究成果,阐述同义密码子使用偏嗜性如何发挥精微调控翻译的生物学功能与作用。

关键词: 同义密码子基因多肽精微调控翻译共翻译机制空间构象    
Abstract:

The degeneracy in genetic codons further improves the capacity of genetic information. The genetic feature leads to synonymous codon usage bias representing a universal feature across all organisms’ genomes. Although synonymous codon usage variations in genes have no effects on the amino acid compositions, more and more studies point out that synonymous codon usage bias plays an important role in half-life of gene transcriptions, translational efficiency and accuracy and folding structure via fine-tune translation regulation mechanisms. Synonymous codons are used to mediate the translation rates in the process of ribosomal for transferring tRNA following the specific amino acid sequence, and the co-translation mechanism regulates the correct folding structure of the newborn peptide chain to ensure the normal biological function of the protein product. In particular, some synonymous codon usage patterns have the significantly positive correlations with folding structure formation of protein, since changes in synonymous codon usage bias could lead to folding structure of protein. Based on the previous reports in recent years, we review the related context for synonymous codon bias in fine-tune translation regulation.

Key words: Synonymous codon    Gene    Peptide    Fine-tune translation selection    Co-translation mechanism    Folding structure
收稿日期: 2021-08-18 出版日期: 2022-04-07
ZTFLH:  Q819  
基金资助: * 动物医学生物工程教育部创新团队流动滚动项目资助项目(IRT-17R88)
通讯作者: 周建华     E-mail: zhoujianhuazjh@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
蒲飞洋
李易聪
王慧慧
冯茜莉
李倬
马忠仁
周建华

引用本文:

蒲飞洋,李易聪,王慧慧,冯茜莉,李倬,马忠仁,周建华. 同义密码子使用模式对蛋白产物表达及构象形成的影响*[J]. 中国生物工程杂志, 2022, 42(3): 91-98.

PU Fei-yang,LI Yi-cong,WANG Hui-hui,FENG Xi-li,LI Zhuo,MA Zhong-ren,ZHOU Jian-hua. Effects of Synonymous Codon Usage Patterns on Protein Product Expression and Conformation Formation. China Biotechnology, 2022, 42(3): 91-98.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.2108045        https://manu60.magtech.com.cn/biotech/CN/Y2022/V42/I3/91

图1  同义密码子使用在基因转录与翻译过程中可能发挥的生物学作用
图2  核糖体扫描翻译速率的改变会影响多肽链空间构象的形成
图3  同义密码子使用模式的改变在基因复制、转录及翻译过程中的生物学效应
[1] 尚方建, 石哲芳, 王聪, 等. 新型冠状病毒(SARS-CoV-2)的密码子偏爱性分析. 中国人兽共患病学报, 2021, 37(1):15-21, 38.
Shang F J, Shi Z F, Wang C, et al. Analysis of SARS-CoV-2 codon usage preference. Chinese Journal of Zoonoses, 2021, 37(1):15-21, 38.
[2] Plotkin J B, Kudla G. Synonymous but not the same: the causes and consequences of codon bias. Nature Reviews Genetics, 2011, 12(1):32-42.
doi: 10.1038/nrg2899 pmid: 21102527
[3] Liu Y, Yang Q, Zhao F Z. Synonymous but not silent: the codon usage code for gene expression and protein folding. Annual Review of Biochemistry, 2021, 90:375-401.
doi: 10.1146/annurev-biochem-071320-112701 pmid: 33441035
[4] 廖丹妮, 张昭旸, 靳瑾, 等. 微生物tRNA与密码子系统应用研究进展. 中国生物工程杂志, 2021, 41(4):64-73.
Liao D N, Zhang Z Y, Jin J, et al. Progress in the study of microbial tRNA and genetic codon system related applications. China Biotechnology, 2021, 41(4):64-73.
[5] 赵旭东, 黄永志, 毕延震, 等. 动物转基因高效表达策略研究进展. 生物技术通报, 2020, 36(3):45-53.
doi: 10.13560/j.cnki.biotech.bull.1985.2019-0989
Zhao X D, Huang Y Z, Bi Y Z, et al. Strategies for efficient exogenous gene expression in transgenic animals. Biotechnology Bulletin, 2020, 36(3):45-53.
doi: 10.13560/j.cnki.biotech.bull.1985.2019-0989
[6] Yang Q, Lyu X L, Zhao F Z, et al. Effects of codon usage on gene expression are promoter context dependent. Nucleic Acids Research, 2021, 49(2):818-831.
doi: 10.1093/nar/gkaa1253
[7] Dong H J, Nilsson L, Kurland C G. Co-variation of tRNA abundance and codon usage in Escherichia coli at different growth rates. Journal of Molecular Biology, 1996, 260(5):649-663.
pmid: 8709146
[8] Kane J F. Effects of rare codon clusters on high-level expression of heterologous proteins in Escherichia coli. Current Opinion in Biotechnology, 1995, 6(5):494-500.
pmid: 7579660
[9] Li G W, Oh E, Weissman J S. The anti-Shine-Dalgarno sequence drives translational pausing and codon choice in bacteria. Nature, 2012, 484(7395):538-541.
doi: 10.1038/nature10965
[10] Zhou J H, Zhang J, Sun D J, et al. Potential roles of synonymous codon usage and tRNA concentration in hosts on the two initiation regions of foot-and-mouth disease virus RNA. Virus Research, 2013, 176(1-2):298-302.
doi: 10.1016/j.virusres.2013.06.006
[11] Zhou J H, Zhang J, Ding Y Z, et al. Characteristics of codon usage bias in two regions downstream of the initiation codons of foot-and-mouth disease virus. Biosystems, 2010, 101(1):20-28.
doi: 10.1016/j.biosystems.2010.04.001
[12] Ma X X, Feng Y P, Gu Y X, et al. Effect of the nucleotides surrounding the start codon on the translation of foot-and-mouth disease virus RNA. Acta Virologica, 2016, 60(2):151-155.
pmid: 27265464
[13] Li B, Xiao S B, Wang Y W, et al. Immunogenicity of the highly pathogenic porcine reproductive and respiratory syndrome virus GP5 protein encoded by a synthetic ORF5 gene. Vaccine, 2009, 27(13):1957-1963.
doi: 10.1016/j.vaccine.2009.01.098
[14] Bahir I, Fromer M, Prat Y, et al. Viral adaptation to host: a proteome-based analysis of codon usage and amino acid preferences. Molecular Systems Biology, 2009, 5:311.
doi: 10.1038/msb.2009.71 pmid: 19888206
[15] Zhou J H, Li X R, Lan X, et al. The genetic divergences of codon usage shed new lights on transmission of hepatitis E virus from swine to human. Infection, Genetics and Evolution, 2019, 68:23-29.
doi: 10.1016/j.meegid.2018.11.024
[16] Ge Z Y, Li X R, Cao X A, et al. Viral adaption of staphylococcal phage: a genome-based analysis of the selective preference based on codon usage Bias. Genomics, 2020, 112(6):4657-4665.
doi: 10.1016/j.ygeno.2020.08.012
[17] Zhou J H, Gao Z L, Zhang J, et al. The analysis of codon bias of foot-and-mouth disease virus and the adaptation of this virus to the hosts. Infection, Genetics and Evolution, 2013, 14:105-110.
doi: 10.1016/j.meegid.2012.09.020
[18] Hanson G, Coller J. Codon optimality, bias and usage in translation and mRNA decay. Nature Reviews Molecular Cell Biology, 2018, 19(1):20-30.
doi: 10.1038/nrm.2017.91 pmid: 29018283
[19] Brule C E, Grayhack E J. Synonymous codons: choose wisely for expression. Trends in Genetics, 2017, 33(4):283-297.
doi: 10.1016/j.tig.2017.02.001
[20] Yu C H, Dang Y K, Zhou Z P, et al. Codon usage influences the local rate of translation elongation to regulate co-translational protein folding. Molecular Cell, 2015, 59(5):744-754.
doi: 10.1016/j.molcel.2015.07.018
[21] 任元雪, 高鑫, 刘茜, 等. 密码子优化提高狂犬病病毒CTN-1株核蛋白在大肠埃希菌中的表达. 中华微生物学和免疫学杂志, 2021, 41(5):333-337.
Ren Y X, Gao X, Liu Q, et al. Codon optimization improves the expression of nucleoprotein of rabies virus CTN-1 strain in E.coli. Chinese Journal of Microbiology and Immunology, 2021, 41(5):333-337.
[22] Zhou J H, You Y N, Chen H T, et al. The effects of the synonymous codon usage and tRNA abundance on protein folding of the 3C protease of foot-and-mouth disease virus. Infection,Genetics and Evolution, 2013, 16:270-274.
doi: 10.1016/j.meegid.2013.02.017
[23] Chen F, Wu P, Deng S Y, et al. Dissimilation of synonymous codon usage bias in virus-host coevolution due to translational selection. Nature Ecology & Evolution, 2020, 4(4):589-600.
[24] Ferina J, Daggett V. Visualizing protein folding and unfolding. Journal of Molecular Biology, 2019, 431(8):1540-1564.
doi: 10.1016/j.jmb.2019.02.026
[25] Spencer P S, Siller E, Anderson J F, et al. Silent substitutions predictably alter translation elongation rates and protein folding efficiencies. Journal of Molecular Biology, 2012, 422(3):328-335.
doi: 10.1016/j.jmb.2012.06.010 pmid: 22705285
[26] Buhr F, Jha S, Thommen M, et al. Synonymous codons direct cotranslational folding toward different protein conformations. Molecular Cell, 2016, 61(3):341-351.
doi: 10.1016/j.molcel.2016.01.008
[27] Kimchi-Sarfaty C, Oh J M, Kim I W, et al. A "silent" polymorphism in the MDR1 gene changes substrate specificity. Science, 2007, 315(5811):525-528.
pmid: 17185560
[28] Zhou M, Wang T, Fu J J, et al. Nonoptimal codon usage influences protein structure in intrinsically disordered regions. Molecular Microbiology, 2015, 97(5):974-987.
doi: 10.1111/mmi.2015.97.issue-5
[29] Zhou M, Guo J H, Cha J, et al. Non-optimal codon usage affects expression, structure and function of clock protein FRQ. Nature, 2013, 495(7439):111-115.
doi: 10.1038/nature11833
[30] Fu J J, Murphy K A, Zhou M, et al. Codon usage affects the structure and function of the Drosophila circadian clock protein period. Genes & Development, 2016, 30(15):1761-1775.
doi: 10.1101/gad.281030.116
[31] Kim S J, Yoon J S, Shishido H, et al. Translational tuning optimizes nascent protein folding in cells. Science, 2015, 348(6233):444-448.
doi: 10.1126/science.aaa3974
[32] Kirchner S, Cai Z W, Rauscher R, et al. Alteration of protein function by a silent polymorphism linked to tRNA abundance. PLoS Biology, 2017, 15(5):e2000779.
doi: 10.1371/journal.pbio.2000779
[33] Alexaki A, Hettiarachchi G K, Athey J C, et al. Effects of codon optimization on coagulation factor IX translation and structure: implications for protein and gene therapies. Scientific Reports, 2019, 9:15449.
doi: 10.1038/s41598-019-51984-2
[34] Hunt R, Hettiarachchi G, Katneni U, et al. A single synonymous variant (c.354G>A [p.P118P]) in ADAMTS13 confers enhanced specific activity. International Journal of Molecular Sciences, 2019, 20(22):5734.
doi: 10.3390/ijms20225734
[35] Spanne P. X-ray energy optimisation in computed microtomography. Physics in Medicine and Biology, 1989, 34(6):679-690.
pmid: 2740436
[36] Tang C T, Li S, Long C, et al. Setting the pace of the Neurospora circadian clock by multiple independent FRQ phosphorylation events. PNAS, 2009, 106(26):10722-10727.
doi: 10.1073/pnas.0904898106
[37] Baker C L, Kettenbach A N, Loros J J, et al. Quantitative proteomics reveals a dynamic interactome and phase-specific phosphorylation in the Neurospora circadian clock. Molecular Cell, 2009, 34(3):354-363.
doi: 10.1016/j.molcel.2009.04.023
[38] 郑超星, 马小凤, 张永华, 等. 真核生物mRNA翻译起始机制研究进展. 遗传, 2018, 40(8):607-619.
Zheng C X, Ma X F, Zhang Y H, et al. Research progress in the mechanism of translation initiation of eukaryotic mRNAs. Hereditas(Beijing), 2018, 40(8):607-619.
[39] 肇涛澜, 张硕, 钱文峰. 翻译延伸的顺式调控机理与生物学效应. 遗传, 2020, 42(7):613-631.
Zhao T L, Zhang S, Qian W F. Cis-regulatory mechanisms and biological effects of translation elongation. Hereditas(Beijing), 2020, 42(7):613-631.
[40] Gingold H, Tehler D, Christoffersen N R, et al. A dual program for translation regulation in cellular proliferation and differentiation. Cell, 2014, 158(6):1281-1292.
doi: S0092-8674(14)01042-3 pmid: 25215487
[41] Van Bortle K, Phanstiel D H, Snyder M P. Topological organization and dynamic regulation of human tRNA genes during macrophage differentiation. Genome Biology, 2017, 18(1):180.
doi: 10.1186/s13059-017-1310-3 pmid: 28931413
[42] Bornelöv S, Selmi T, Flad S, et al. Codon usage optimization in pluripotent embryonic stem cells. Genome Biology, 2019, 20(1):119.
doi: 10.1186/s13059-019-1726-z pmid: 31174582
[43] Torrent M, Chalancon G, de Groot N S, et al. Cells alter their tRNA abundance to selectively regulate protein synthesis during stress conditions. Science Signaling, 2018, 11(546): eaat6409.
[44] Goodarzi H, Nguyen H C B, Zhang S, et al. Modulated expression of specific tRNAs drives gene expression and cancer progression. Cell, 2016, 165(6):1416-1427.
doi: S0092-8674(16)30649-3 pmid: 27259150
[45] Clarke T F, Clark P L. Increased incidence of rare codon clusters at 5' and 3' gene termini: implications for function. BMC Genomics, 2010, 11:118.
doi: 10.1186/1471-2164-11-118
[46] Pechmann S, Chartron J W, Frydman J. Local slowdown of translation by nonoptimal codons promotes nascent-chain recognition by SRP in vivo. Nature Structural & Molecular Biology, 2014, 21(12):1100-1105.
doi: 10.1038/nsmb.2919
[47] Sanguinetti M, Iriarte A, Amillis S, et al. A pair of non-optimal codons are necessary for the correct biosynthesis of the Aspergillus nidulans urea transporter, UreA. Royal Society Open Science, 2019, 6(11):190773.
doi: 10.1098/rsos.190773
[48] Zhang G, Hubalewska M, Ignatova Z. Transient ribosomal attenuation coordinates protein synthesis and co-translational folding. Nature Structural & Molecular Biology, 2009, 16(3):274-280.
doi: 10.1038/nsmb.1554
[49] Saunders R, Deane C M. Synonymous codon usage influences the local protein structure observed. Nucleic Acids Research, 2010, 38(19):6719-6728.
doi: 10.1093/nar/gkq495 pmid: 20530529
[50] Zhou J H, Zhang J, Chen H T, et al. The codon usage model of the context flanking each cleavage site in the polyprotein of foot-and-mouth disease virus. Infection, Genetics and Evolution, 2011, 11(7):1815-1819.
doi: 10.1016/j.meegid.2011.07.014
[51] Gao Z L, Zhou J H, Zhang J, et al. The silent point mutations at the cleavage site of 2A/2B have no effect on the self-cleavage activity of 2A of foot-and-mouth disease virus. Infection, Genetics and Evolution, 2014, 28:101-106.
doi: 10.1016/j.meegid.2014.08.006
[1] 董慧霞, 侯占铭. 尖孢镰刀菌亚麻专化型Folprp4基因参与调控菌丝生长和分生孢子发生[J]. 中国生物工程杂志, 2022, 42(3): 13-26.
[2] 陈涛,刘志华,李霞,谢泽雄. 抑制剂耐受性酵母底盘细胞的设计与构建*[J]. 中国生物工程杂志, 2022, 42(1/2): 1-13.
[3] 虞思倩,夏建业,庄英萍. 基于热力学原理约束的代谢网络模型研究进展及其应用*[J]. 中国生物工程杂志, 2022, 42(1/2): 128-138.
[4] 武秀知,王宏杰,祖尧. 斑马鱼hoxa1a基因调控颅面骨骼发育的功能研究*[J]. 中国生物工程杂志, 2021, 41(9): 20-26.
[5] 贺立恒,张毅,张洁,任豫超,解红娥,唐锐敏,贾小云,武宗信. 基于转录组和WGCNA的甘薯花青素合成相关基因共表达网络的构建及核心基因的挖掘*[J]. 中国生物工程杂志, 2021, 41(9): 27-36.
[6] 陈亚超,李楠楠,刘子迪,胡冰,李春. 源于甘草内生菌的甘草酸合成相关功能基因的宏基因组挖掘*[J]. 中国生物工程杂志, 2021, 41(9): 37-47.
[7] 杨柳,牟豪,许国洋,白运川,余远迪. 培养山羊痘病毒常用细胞在X-gal环境中的显色差异分析*[J]. 中国生物工程杂志, 2021, 41(9): 48-54.
[8] 赵晓煜,徐祺玲,赵晓东,安云飞. 基因治疗慢病毒载体的转导增强策略*[J]. 中国生物工程杂志, 2021, 41(8): 52-58.
[9] 王晓洁,孟凡强,周立邦,吕凤霞,别小妹,赵海珍,陆兆新. 利用基因组改组技术提高短杆菌素产量及其培养条件优化*[J]. 中国生物工程杂志, 2021, 41(8): 42-51.
[10] 郭曼曼,田开仁,乔建军,李艳妮. 噬菌体重组酶系统在合成生物学中的应用*[J]. 中国生物工程杂志, 2021, 41(8): 90-102.
[11] 王宇轩,陈婷,张永亮. MiR-148生物学功能研究进展*[J]. 中国生物工程杂志, 2021, 41(7): 74-80.
[12] 梁晋刚,张旭冬,毕研哲,王颢潜,张秀杰. 转基因抗虫玉米发展现状与展望*[J]. 中国生物工程杂志, 2021, 41(6): 98-104.
[13] 胡暄,王松,于学玲,张晓鹏. 不稳定EGFP细胞模型的构建及其在基因编辑体系评价中的应用*[J]. 中国生物工程杂志, 2021, 41(5): 17-26.
[14] 王艳梅,寇航,马梅,申玉玉,赵宝顶,路福平,黎明. 利用CRISPR-Cas9技术失活黑曲霉中果胶酶基因及突变株性能评价*[J]. 中国生物工程杂志, 2021, 41(5): 35-44.
[15] 冷燕,孙康泰,刘倩倩,蒲阿庆,李翔,万向元,魏珣. 全球基因编辑作物监管趋势研究[J]. 中国生物工程杂志, 2021, 41(12): 24-29.