Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2022, Vol. 42 Issue (3): 47-54    DOI: 10.13523/j.cb.2108024
技术与方法     
地衣芽孢杆菌BF-002高产芽孢的氮源流加工艺研究*
许慧,丁健,史仲平**()
江南大学生物工程学院 工业生物技术教育部重点实验室 无锡 214122
Research on a Fed-batch of Nitrogen Source Fermentation Process to Improve the Spores of Bacillus Licheniformis BF-002
XU Hui,DING Jian,SHI Zhong-ping**()
Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
 全文: PDF(3636 KB)   HTML
摘要:

目的: 提高地衣芽孢杆菌BF-002的芽孢产量,实现氮源流加过程的自动化控制,降低生产成本,为其他芽孢杆菌提高芽孢产率的研究提供一种思路。方法: 通过摇瓶做单因素实验,筛选最佳温度和碳氮源,在此基础上进行5 L发酵罐实验。初始添加不同浓度的氮源,探索芽孢形成与氮源的关系。提出相对氨基氮的概念,通过恒速补料、间歇补料和基于尾气CO2浓度反馈流加三个策略控制相对氨基氮浓度水平。采用Python语言编写计算机控制程序,实现基于尾气CO2浓度反馈流加策略的自动化控制。结果: 摇瓶筛选最佳温度及碳氮源分别为:37℃、葡萄糖、鱼粉蛋白胨、豆粕。上罐结果表明,相对氨基氮浓度越低芽孢率越高,采用基于尾气CO2浓度反馈流加能将相对氨基氮控制在8.42 mg/OD600水平,芽孢量可达4.25×109 cfu/mL。利用计算机程序自动控制低价氮源氯化铵的流加,可以使芽孢量达到1.87×1010 cfu/mL,是前期最优批次的4.4倍,同时降低原料成本。结论: 将相对氨基氮浓度控制在适宜水平可以得到芽孢量较高的培养液,自动流加氯化铵策略能降低生产成本并实现自动化控制,为研究芽孢杆菌产孢提供一种思路。

关键词: 地衣芽孢杆菌芽孢相对氨基氮自动化控制    
Abstract:

Objective: Base on spore products of Bacillus licheniformis can be produced comparatively easily and incorporated into everyday foods/feeds with high stability retaining their viability. The spore production with a good sporulation efficiency is a key step in bio-products development. It is important to study a production method that can reduce manufacturing costs and realize automatic control to enhance the productivity of Bacillus licheniformis and provide a way for other bacilli to heighten the productivity of spores. Methods: The optimal culture temperature, carbon sources and nitrogen sources of Bacillus licheniformis BF-002 were determined by the single factor experiment in shake flasks. On this basis, the experiment of the 5 L fermentor was carried out. It explored the relationship between spore formation and nitrogen sources that different concentrations of nitrogen sources were added initially. It controlled relative amino nitrogen level by fed-batch, constant speed of fed-batch and fed-batch on tail gas CO2 concentration feedback. The computer control program was written in Python language to realize automatic control. Results: The optimal culture temperature, carbon source and nitrogen source determined by the single factor experiment were: 37℃, glucose and peptone from fish: soybean meal=1∶1. The results showed that the lower the relative amino nitrogen was, the higher the spore rate was. The relative amino nitrogen was controlled at the level of 8.42 mg / OD600 by fed-batch on tail gas CO2 concentration feedback, and the number of spores can reach 4.25×10 9 cfu/ mL. The number of spores can get 1.87×1010 cfu / mL by using an automatic fed-batch of ammonium chloride, 4.4 times the optimal batch in the early stage. Conclusion: There was a correlation between spore rate and relative amino nitrogen. The strategy of using an automatic fed-batch of ammonium chloride can reduce the production cost and realize automatic control, which provides an idea for the study of Bacillus.

Key words: Bacillus licheniformis    Spore    Relative amino nitrogen    Automatic control
收稿日期: 2021-08-10 出版日期: 2022-04-07
ZTFLH:  Q819  
基金资助: * 国家重点研发计划(2021YFC2101100);2020内蒙古自治区科技重大专项;2021内蒙古自治区“科技兴蒙”合作引导资助项目(2021SCG0347)
通讯作者: 史仲平     E-mail: zpshi@jiangnan.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
许慧
丁健
史仲平

引用本文:

许慧, 丁健, 史仲平. 地衣芽孢杆菌BF-002高产芽孢的氮源流加工艺研究*[J]. 中国生物工程杂志, 2022, 42(3): 47-54.

XU Hui, DING Jian, SHI Zhong-ping. Research on a Fed-batch of Nitrogen Source Fermentation Process to Improve the Spores of Bacillus Licheniformis BF-002. China Biotechnology, 2022, 42(3): 47-54.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.2108024        https://manu60.magtech.com.cn/biotech/CN/Y2022/V42/I3/47

图1  培养温度、碳源、氮源对BF-002活菌量、芽孢量和芽孢率的影响
图2  初始氮源对芽孢的影响
图3  不同流速下的活菌量、芽孢量、芽孢率、相对氨基氮
图4  间歇补料发酵性能
图5  基于尾气CO2浓度的反馈流加发酵性能
图6  自动流加氯化铵发酵性能
[1] Mingmongkolchai S, Panbangred W. Bacillus probiotics: an alternative to antibiotics for livestock production. Journal of Applied Microbiology, 2018, 124(6):1334-1346.
doi: 10.1111/jam.13690 pmid: 29316021
[2] 李欣泽, 郝贺, 石玉祥. 饮水中添加地衣芽孢杆菌对肉鸡生长性能和肉品质的影响. 北方牧业, 2020, 595(3):28-28.
Li X Z, Hao H, Shi Y X. The effect of Bacillus licheniformis added to drinking water on the growth performance and meat quality of broilers. Northren Animal Husbandry, 2020, 595(3):28.
[3] Brashears M M, Amezquita A, Jaroni D. Lactic acid bacteria and their uses in animal feeding to improve food safety. Advances in Food and Nutrition Research, 2005, 50:1-31.
pmid: 16263426
[4] Watson R, Preedy V. Probiotics, prebiotics, and synbiotics. Amsterdam: Elsevier, 2016: 279-302.
[5] Krehbiel C R, Rust S R, Zhang G, et al. Bacterial direct-fed microbials in ruminant diets: performance response and mode of action. Journal of Animal Science, 2003, 81(14_suppl_2):E120-E132.
[6] Soccol C R, Vandenberghe L, Spier M R, et al. The potential of probiotics: a review. Food Technology & Biotechnology, 2010, 48(4):413-434.
[7] Cutting S M. Bacillus probiotics. Food Microbiology, 2011, 28(2):214-220.
doi: 10.1016/j.fm.2010.03.007 pmid: 21315976
[8] Elshaghabee F M F, Rokana N, Gulhane R D, et al. Bacillus as potential probiotics: status, concerns, and future perspectives. Frontiers in Microbiology, 2017, 8:1490.
doi: 10.3389/fmicb.2017.01490 pmid: 28848511
[9] Gaggìa F, Mattarelli P, Biavati B. Probiotics and prebiotics in animal feeding for safe food production. International Journal of Food Microbiology, 2010, 141 Suppl 1: S15-S28.
doi: 10.1016/j.ijfoodmicro.2010.02.031
[10] 高研, 张远龙, 陈宁, 等. 益生菌纳豆芽孢杆菌在动物饲料中的应用研究. 中国饲料添加剂, 2018(3):1-5.
Gao Y, Zhang Y L, Chen N, et al. Study on the application of Probiotic Bacillus natto in animal feed. China Feed Additive, 2018 (3):1-5.
[11] 焉兆萍, 宋士良, 陆克文. 地衣芽孢杆菌在畜牧生产中应用研究进展. 中国饲料添加剂, 2018(12):18-21.
Yan Z P, Song S L, Lu K W. Review on the application of Bacillus licheniformis in animal production. China Feed Additive, 2018(12):18-21.
[12] Elisashvili V, Kachlishvili E, Chikindas M L. Recent advances in the physiology of spore formation for Bacillus probiotic production. Probiotics and Antimicrobial Proteins, 2019, 11(3):731-747.
doi: 10.1007/s12602-018-9492-x pmid: 30515722
[13] 魏强, 张薇, 石黑虎, 等. 地衣芽孢杆菌(Bacillus licheniformis)10236发酵条件的优化. 河北农业科学, 2019, 23(5):65-70.
Wei Q, Zhang W, Shi H H, et al. Optimization of fermentation conditions of Bacillus licheniformis 10236. Journal of Hebei Agricultural Sciences, 2019, 23(5):65-70.
[14] 郑双凤, 谭武贵, 丰来, 等. 枯草芽孢杆菌NTGB-178高产芽孢发酵工艺优化. 南京农业大学学报, 2017, 40(6):1031-1040.
Zheng S F, Tan W G, Feng L, et al. Optimization of sporulation fermentation process of Bacillus subtilis NTGB-178. Journal of Nanjing Agricultural University, 2017, 40(6):1031-1040.
[15] 孙佼文, 丁健, 贾禄强, 等. Schizochytrium sp.S31生产DHA底物流加策略及呼吸特性分析. 中国油脂, 2018, 43(2):110-114.
Sun J W, Ding J, Jia L Q, et al. Substrate flow strategy for producing DHA by Schizochytrium sp. S31 and respiration characteristics analysis. China Oils and Fats, 2018, 43(2):110-114.
[1] 王晓洁,孟凡强,周立邦,吕凤霞,别小妹,赵海珍,陆兆新. 利用基因组改组技术提高短杆菌素产量及其培养条件优化*[J]. 中国生物工程杂志, 2021, 41(8): 42-51.
[2] 周惠颖,周翠霞,张婷,王雪雨,张会图,冀颐之,路福平. 强化底物利用酶系表达,提升地衣芽孢杆菌生产碱性蛋白酶性能[J]. 中国生物工程杂志, 2021, 41(2/3): 53-62.
[3] 梅雨薇,杨子云,于樊,龙旭伟. 生物表面活性剂脂肽的发酵生产及抑菌应用研究进展*[J]. 中国生物工程杂志, 2020, 40(5): 105-116.
[4] 马翠萍,刘朵朵,潘炳菊,申会涛,宋亚囝. 来源于嗜碱芽孢杆菌N16-5甘露聚糖利用基因簇的乙酰酯酶AesA的克隆及性质分析*[J]. 中国生物工程杂志, 2020, 40(3): 65-71.
[5] 胡艳红,龚雪梅,丁柳柳,高嵩,李婷婷. 利用短短芽孢杆菌进行酮还原酶CgKR2的高效表达与纯化 *[J]. 中国生物工程杂志, 2019, 39(8): 59-65.
[6] 王鑫淼,张康,陈晟,吴敬. 嗜热网球菌纤维二糖差向异构酶在枯草芽孢杆菌中的表达及发酵优化 *[J]. 中国生物工程杂志, 2019, 39(7): 24-31.
[7] 李法彬,刘露,杜燕,班睿. 构建重组枯草芽孢杆菌催化制备D-对羟基苯甘氨酸[J]. 中国生物工程杂志, 2019, 39(3): 75-86.
[8] 程功,焦思明,任立世,冯翠,杜昱光. 枯草芽孢杆菌壳聚糖酶水解制备低脱乙酰度壳寡糖及其组分分析 *[J]. 中国生物工程杂志, 2018, 38(9): 19-26.
[9] 孙帆,宿玲恰,张康,吴敬. D-阿洛酮糖 3-差向异构酶在枯草芽孢杆菌中的高效表达及固定化细胞研究 *[J]. 中国生物工程杂志, 2018, 38(7): 83-88.
[10] 王男,金吕华,张玲,林荣,杨海麟. 信号肽对亮氨酸脱氢酶在Bacillus subtilis中分泌表达的影响及酶学性质研究[J]. 中国生物工程杂志, 2018, 38(4): 46-53.
[11] 张玲,王男,金吕华,林荣,杨海麟. 双启动子促进亮氨酸脱氢酶在Bacillus subtilis中表达及发酵研究 *[J]. 中国生物工程杂志, 2018, 38(12): 21-31.
[12] 刘宇帅,张杰,钟瑾,李晶,孟利强,张淑梅. 解淀粉芽孢杆菌TF28抗菌脂肽芬芥素的分离鉴定及抑菌作用 *[J]. 中国生物工程杂志, 2018, 38(10): 20-29.
[13] 吴洋, 练继建, 闫玥, 齐浩. 巴氏芽孢八叠球菌及相关微生物的生物矿化的分子机理与应用[J]. 中国生物工程杂志, 2017, 37(8): 96-103.
[14] 李阳, 吴酬飞, 吴小芹, 叶建仁, 张立钦. Cry3a杀虫蛋白基因的合成优化及在JK-SH007中高效表达[J]. 中国生物工程杂志, 2017, 37(6): 70-77.
[15] 赵一瑾, 王腾飞, 汪俊卿, 王瑞明. 以CotC为分子载体在枯草芽孢杆菌表面展示海藻糖合酶[J]. 中国生物工程杂志, 2017, 37(1): 71-80.