Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2022, Vol. 42 Issue (3): 124-131    DOI: 10.13523/j.cb.2108019
综述     
碱性木聚糖酶研究进展*
田文卓1,王国栋1,马俊1,魏晓凤1,王瑞明1,2,李丕武1,2,肖静1,2,汪俊卿1,2,**()
1 齐鲁工业大学(山东省科学院)生物工程学院 济南 250353
2 生物基材料与绿色造纸国家重点实验室 济南 250353
Research Progress of Alkaline Xylanase
TIAN Wen-zhuo1,WANG Guo-dong1,MA Jun1,WEI Xiao-feng1,WANG Rui-ming1,2,LI Pi-wu1,2,XIAO Jing1,2,WANG Jun-qing1,2,**()
1 School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
2 State Key Laboratory of Biobased Materials and Green Papermaking, Jinan 250353, China
 全文: PDF(1508 KB)   HTML
摘要:

木聚糖是一种在自然界中含量仅次于纤维素的丰富的可再生资源,木聚糖酶是一类可以将木聚糖水解成单糖和寡糖的酶,利用木聚糖酶将木聚糖分解后的产物被广泛应用于食品、造纸以及纺织等行业。木聚糖酶按其对酸碱环境的耐受能力分为碱性木聚糖酶、中性木聚糖酶和酸性木聚糖酶,其中碱性木聚糖酶适合应用于造纸工业中,尤其在造纸的制浆、促进漂白及废纸脱墨等多种工艺中,可以显著提高纸张质量,有效降低氯气排放量,从而减少对环境的污染。随着生物技术的进步,利用基因工程技术可以对碱性木聚糖酶进行分子改造,以提高其耐碱、耐热能力,扩大其在工业应用中的条件范围。介绍碱性木聚糖酶在分子改造方面的研究进展以及其在造纸漂白和制浆、废纸脱墨中的应用。

关键词: 碱性木聚糖酶分子改造制浆和造纸    
Abstract:

Xylan is an abundant renewable resource in nature, the content of which is second only to cellulose. Xylanase is a kind of enzyme that can hydrolyze xylan into monosaccharides and oligosaccharides. The products decomposed by xylanase can be widely used in food, papermaking, textile and other industries. Xylanase can be divided into alkaline xylanase, neutral xylanase and acidic xylanase according to its tolerance to acid-base environment. Alkaline xylanase is suitable for paper industry, especially in various processes such as pulping, bleaching and waste paper deinking, which can significantly improve paper quality, effectively reduce chlorine emission, and reduce environmental pollution. With the progress of biotechnology, the molecular modification of alkaline xylanase can be carried out by means of genetic engineering, so as to improve its alkali resistance and heat resistance and expand its condition range in industrial application. This paper introduces the research progress of alkaline xylanase in molecular modification, and briefly introduces its applications in pulping, bleaching and waste deinking.

Key words: Alkaline xylanase    Molecular modification    Pulping and papermaking
收稿日期: 2021-08-04 出版日期: 2022-04-07
ZTFLH:  Q556  
基金资助: * 国家重点研发计划(2019YFC1905902);山东省重点研发计划(2020CXGC010603);山东省重点研发计划(2019JZZY011003);国家自然科学基金资助项目(31801527)
通讯作者: 汪俊卿     E-mail: wjqtt.6082@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
田文卓
王国栋
马俊
魏晓凤
王瑞明
李丕武
肖静
汪俊卿

引用本文:

田文卓,王国栋,马俊,魏晓凤,王瑞明,李丕武,肖静,汪俊卿. 碱性木聚糖酶研究进展*[J]. 中国生物工程杂志, 2022, 42(3): 124-131.

TIAN Wen-zhuo,WANG Guo-dong,MA Jun,WEI Xiao-feng,WANG Rui-ming,LI Pi-wu,XIAO Jing,WANG Jun-qing. Research Progress of Alkaline Xylanase. China Biotechnology, 2022, 42(3): 124-131.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.2108019        https://manu60.magtech.com.cn/biotech/CN/Y2022/V42/I3/124

图1  木聚糖酶典型结构
来源 表达菌株 表达载体 最适pH 最适温度 /℃ 参考文献
Thermobifida halotolerans sp.YIM 90462T E.coli BL21(DE3) pET28-a(+) 9.0 70 [20]
Bacillus pumilus BYG E.coli BL21(DE3) pET28-a(+) 9.0 50 [21]
Bacillus pumilus G1-3 E.coli BL21(DE3) pET22-b (+) 8.0 55 [12]
Streptomyces sp. WMN-3 E.coli BL21(DE3) pET28-a(+) 8.0 55 [22]
Rhodothermaceae sp. RA E.coli BL21(DE3) pET28-a(+) 8.0 60 [16]
Caulobacter crescentus E.coli BL21(DE3) pTrcHisA 8.0 60 [15]
Marinimicrobium sp. LS-A18 E.coli BL21(DE3) pET28-a(+) 7.5 40 [17]
表1  部分碱性木聚糖酶的表达及酶学性质
改造方式 酶的来源 改造目的 改造结果 参考文献
定向进化筛选 Aspergillus oryzae 提高热稳定性 改造后最适温度为65℃,较改造前提高10℃ [26]
Bacillus sp. strain 41M-1 提高耐热性 改造后最适温度为65℃,较改造前提高4℃ [27]
Bacillus sp. 30Y5 提高催化性能 改造后比活力为1 016.8 U/mg,较改造前提高65% [28]
半理性设计 Cellulomonas uda 提高最适pH、最适温度 改造后最适温度为60℃,较改造前提高10℃
改造后最适pH为7.5,较改造前提高1.0
[29]
Aspergillus fumigatus Z5 提高热稳定性 改造后65℃时T1/2为9 h,较改造前提高34% [30]
Aspergillus niger NL-1 提高热稳定性、pH稳定性 改造后最适温度为50℃,较改造前提高10℃
改造后pH稳定性为194%,较改造前提高74%
[31]
理性设计 Bacillus circulans 提高催化性能 改造后比活力为1 030.7 U/mg,较改造前提高38% [32]
Bacillus halodurans S7 降低最适pH 改造后最适pH为6.0,较改造前降低3.0 [33]
Penicillium janthinellum MA21601 提高热稳定性 改造后最适温度为70℃,较改造前提高20℃ [34]
表2  木聚糖酶分子改造重要进展
[1] 姚银, 闵琪, 熊海容, 等. 木聚糖酶和甘露聚糖酶在毕赤酵母中的共表达及产酶分析. 中国生物工程杂志, 2019, 39(3):37-45.
Yao Y, Min Q, Xiong H R, et al. Co-expression of xylanase and mannanase in Pichia pastoris and the enzymatic analyses. China Biotechnology, 2019, 39(3):37-45.
[2] Sharma D, Chaudhary R, Kaur J, et al. Greener approach for pulp and paper industry by xylanase and laccase. Biocatalysis and Agricultural Biotechnology, 2020, 25:101604.
doi: 10.1016/j.bcab.2020.101604
[3] 李吉萍, 包昌杰, 陈光, 等. 木聚糖酶异源表达的研究进展. 中国生物工程杂志, 2019, 39(7):91-99.
Li J P, Bao C J, Chen G, et al. Research advances in heterologous expression of xylanase. China Biotechnology, 2019, 39(7):91-99.
[4] Chang X Y, Xu B, Bai Y G, et al. Role of N-linked glycosylation in the enzymatic properties of a thermophilic GH 10 xylanase from Aspergillus fumigatus expressed in Pichia pastoris. PLoS One, 2017, 12(2):e0171111.
doi: 10.1371/journal.pone.0171111
[5] Fujimoto Z, Kishine N, Teramoto K, et al. Structure-based substrate specificity analysis of GH11 xylanase from Streptomyces olivaceoviridis E-86. Applied Microbiology and Biotechnology, 2021, 105(5):1943-1952.
doi: 10.1007/s00253-021-11098-0 pmid: 33564921
[6] Suzuki M, Takita T, Kuwata K, et al. Insight into the mechanism of thermostabilization of GH10 xylanase from Bacillus sp. strain TAR-1 by the mutation of S92 to E. Bioscience, Biotechnology, and Biochemistry, 2021, 85(2):386-390.
doi: 10.1093/bbb/zbaa003
[7] Bhardwaj N, Kumar B, Verma P. A detailed overview of xylanases: an emerging biomolecule for current and future prospective. Bioresources and Bioprocessing, 2019, 6:40.
doi: 10.1186/s40643-019-0276-2
[8] Bai W Q, Zhou C, Zhao Y J, et al. Structural insight into and mutational analysis of family 11 xylanases: implications for mechanisms of higher pH catalytic adaptation. PLoS One, 2015, 10(7):e0132834.
doi: 10.1371/journal.pone.0132834
[9] Satyanarayana L, Gaikwad S M, Balkrishnan H, et al. Crystal structure and fluorescence analysis of alkaline thermostable xylanase from Bacillus sp. (NCL 87-6-10). Protein & Peptide Letters, 2013, 20(2):125-132.
[10] 宋玉玲. GH10家族碱性木聚糖酶耐碱机制的研究. 长春: 东北师范大学, 2019.
Song Y L. Study on the alkali-resistant mechanism of GH10 family alkaline xylanase. Changchun: Northeast Normal University, 2019.
[11] 闵柔, 李剑芳, 高树娟, 等. 木聚糖酶EvXyn11TS耐热性与其N端二硫键的相关性分析. 微生物学报, 2013, 53(4):346-353.
Min R, Li J F, Gao S J, et al. Correlation between thermostability of the xylanase EvXyn11 TS and its N-terminal disulfide bridge. Acta Microbiologica Sinica, 2013, 53(4):346-353.
[12] 郑宏臣, 刘逸寒, 刘晓光, 等. 碱性木聚糖酶产生菌的筛选、XynG1-3基因克隆表达及酶学性质研究. 生物技术通报, 2012(10):106-113.
Zheng H C, Liu Y H, Liu X G, et al. Screening of alkaline xylanase producing strains and cloning, expression and characterization of xylanase gene XynG1-3. Biotechnology Bulletin, 2012(10):106-113.
[13] Long L F, Zhang Y B, Ren H Y, et al. Recombinant expression of Aspergillus niger GH10 endo-xylanase in Pichia pastoris by constructing a double-plasmid co-expression system. Journal of Chemical Technology & Biotechnology, 2020, 95(3):535-543.
[14] Mhiri S, Bouanane-Darenfed A, Jemli S, et al. A thermophilic and thermostable xylanase from Caldicoprobacter algeriensis: recombinant expression, characterization and application in paper biobleaching. International Journal of Biological Macromolecules, 2020, 164:808-817.
doi: 10.1016/j.ijbiomac.2020.07.162
[15] Jacomini D, Bussler L, Corrêa J M, et al. Cloning, expression and characterization of C. crescentus xynA2 gene and application of xylanase II in the deconstruction of plant biomass. Molecular Biology Reports, 2020, 47(6):4427-4438.
doi: 10.1007/s11033-020-05507-2 pmid: 32424521
[16] Liew K J, Ngooi C Y, Shamsir M S, et al. Heterologous expression, purification and biochemical characterization of a new endo-1, 4-β-xylanase from Rhodothermaceae bacterium RA. Protein Expression and Purification, 2019, 164:105464.
doi: 10.1016/j.pep.2019.105464
[17] Yu H, Zhao S X, Fan Y Q, et al. Cloning and heterologous expression of a novel halo/alkali-stable multi-domain xylanase (XylM_18) from a marine bacterium Marinimicrobium sp. strain LS-A18. Applied Microbiology and Biotechnology, 2019, 103(21-22):8899-8909.
doi: 10.1007/s00253-019-10140-6
[18] Li Z Y, Li X M, Liu T H, et al. The critical roles of exposed surface residues for the thermostability and halotolerance of a novel GH11 xylanase from the metagenomic library of a saline-alkaline soil. International Journal of Biological Macromolecules, 2019, 133:316-323.
doi: 10.1016/j.ijbiomac.2019.04.090
[19] Khandeparker R, Parab P, Amberkar U. Recombinant xylanase from Bacillus tequilensis BT21: biochemical characterisation and its application in the production of xylobiose from agricultural residues. Food Technology and Biotechnology, 2017, 55(2):164-172.
doi: 10.17113/ftb.55.02.17.4896 pmid: 28867946
[20] Zhang F, Chen J J, Ren W Z, et al. Cloning, expression, and characterization of an alkaline thermostable GH11 xylanase from Thermobifida halotolerans YIM 90462 T. Journal of Industrial Microbiology & Biotechnology, 2012, 39(8):1109-1116.
[21] Wang J, Zhang W W, Liu J N, et al. An alkali-tolerant xylanase produced by the newly isolated alkaliphilic Bacillus pumilus from paper mill effluent. Molecular Biology Reports, 2010, 37(7):3297-3302.
doi: 10.1007/s11033-009-9915-6
[22] 周鹏. Streptomyces sp.WMN-3碱性内切木聚糖酶新基因的克隆和表达. 深圳: 深圳大学, 2018.
Zhou P. Cloning and expression of an endoxylanase gene from Streptomyces sp.WMN-3. Shenzhen: Shenzhen University, 2018.
[23] 张群. 基于结构生物信息学指导稳定性杂合木聚糖酶的设计初探. 济南: 山东大学, 2018.
Zhang Q. Design of stable hybrid xylanase based on structural bioinformatics methods. Jinan: Shandong University, 2018.
[24] Xu J, Cen Y X, Singh W, et al. Stereodivergent protein engineering of a lipase to access all possible stereoisomers of chiral esters with two stereocenters. Journal of the American Chemical Society, 2019, 141(19):7934-7945.
doi: 10.1021/jacs.9b02709
[25] 曲戈, 朱彤, 蒋迎迎, 等. 蛋白质工程: 从定向进化到计算设计. 生物工程学报, 2019, 35(10):1843-1856.
Qu G, Zhu T, Jiang Y Y, et al. Protein engineering: from directed evolution to computational design. Chinese Journal of Biotechnology, 2019, 35(10):1843-1856.
[26] 吴芹, 臧嘉, 胡蝶, 等. 定点饱和突变改善米曲霉木聚糖酶的温度特性. 食品与生物技术学报, 2019, 38(7):65-70.
Wu Q, Zang J, Hu D, et al. Improvement in the temperature properties of xylanase by site-saturated mutagenesis. Journal of Food Science and Biotechnology, 2019, 38(7):65-70.
[27] Takita T, Nakatani K, Katano Y, et al. Increase in the thermostability of GH11 xylanase XynJ from Bacillus sp. strain 41M-1 using site saturation mutagenesis. Enzyme and Microbial Technology, 2019, 130:109363.
doi: 10.1016/j.enzmictec.2019.109363
[28] Lai Z H, Zhou C, Ma X C, et al. Enzymatic characterization of a novel thermostable and alkaline tolerant GH10 xylanase and activity improvement by multiple rational mutagenesis strategies. International Journal of Biological Macromolecules, 2021, 170:164-177.
doi: 10.1016/j.ijbiomac.2020.12.137
[29] Cayetano-Cruz M, Caro-Gómez L A, Plascencia-Espinosa M, et al. Effect of the single mutation N9Y on the catalytical properties of xylanase Xyn11A from Cellulomonas uda: a biochemical and molecular dynamic simulation analysis. Bioscience, Biotechnology, and Biochemistry, 2021, 85(9):1971-1985.
doi: 10.1093/bbb/zbab124
[30] Li G Q, Zhou X, Li Z H, et al. Significantly improving the thermostability of a hyperthermophilic GH10 family xylanase XynAF1 by semi-rational design. Applied Microbiology and Biotechnology, 2021, 105(11):4561-4576.
doi: 10.1007/s00253-021-11340-9
[31] Li Q, Wu T, Duan Y, et al. Improving the thermostability and pH stability of Aspergillus niger xylanase by site-directed mutagenesis. Applied Biochemistry and Microbiology, 2019, 55(2):136-144.
doi: 10.1134/S0003683819020108
[32] Min K, Kim H, Park H J, et al. Improving the catalytic performance of xylanase from Bacillus circulans through structure-based rational design. Bioresource Technology, 2021, 340:125737.
doi: 10.1016/j.biortech.2021.125737
[33] Xiang L, Wang M X, Wu L, et al. Structural insights into xylanase mutant 254RL1 for improved activity and lower pH optimum. Enzyme and Microbial Technology, 2021, 147:109786.
doi: 10.1016/j.enzmictec.2021.109786
[34] Teng C, Jiang Y F, Xu Y Q, et al. Improving the thermostability and catalytic efficiency of GH11 xylanase PjxA by adding disulfide bridges. International Journal of Biological Macromolecules, 2019, 128:354-362.
doi: 10.1016/j.ijbiomac.2019.01.087
[35] 王希曼, 陈建华. 易错PCR在酶的非理性设计改造中的应用. 科学技术创新, 2019(13):46-47.
Wang X M, Chen J H. Application of error-prone PCR in irrational design and transformation of enzyme. Scientific and Technological Innovation, 2019(13):46-47.
[36] 刘俊. 利用组合突变提高木聚糖酶耐碱性的研究. 临汾: 山西师范大学, 2017.
Liu J. Study on improving the alkali resistance of xylanase by combination mutation. Linfen: Shanxi Normal University, 2017.
[37] Chen Y L, Tang T Y, Cheng K J. Directed evolution to produce an alkalophilic variant from a Neocallimastix patriciarum xylanase. Canadian Journal of Microbiology, 2001, 47(12):1088-1094.
pmid: 11822834
[38] 汪俊卿. 宇佐美曲霉木聚糖酶AusXyn10A的克隆表达及耐热性的改造研究. 无锡: 江南大学, 2014.
Wang J Q. Cloning and expression of xylanase AusXyn10A from Aspergillus usamii E001and its thermostability improvement. Wuxi: Jiangnan University, 2014.
[39] Li Q, Sun B G, Jia H Y, et al. Engineering a xylanase from Streptomyce rochei L10904 by mutation to improve its catalytic characteristics. International Journal of Biological Macromolecules, 2017, 101:366-372.
doi: 10.1016/j.ijbiomac.2017.03.135
[40] Bai W Q, Cao Y F, Liu J, et al. Improvement of alkalophilicity of an alkaline xylanase Xyn11A-LC from Bacillus sp. SN5 by random mutation and Glu135 saturation mutagenesis. BMC Biotechnology, 2016, 16(1):1-9.
doi: 10.1186/s12896-015-0230-0
[41] 曹宇帆. 提高11家族木聚糖酶嗜碱性的分子改造. 临汾: 山西师范大学, 2016.
Cao Y F. Improving the alkalophilic performances of family 11 xylanase by molecular modification. Linfen: Shanxi Normal University, 2016.
[42] Xu H, Zhang F W, Shang H Y, et al. Alkalophilic adaptation of XynB endoxylanase from Aspergillus niger via rational design of pKa of catalytic residues. Journal of Bioscience and Bioengineering, 2013, 115(6):618-622.
doi: 10.1016/j.jbiosc.2012.12.006
[43] 石敢当, 张光亚, 方柏山. 新型G/11家族木聚糖酶的设计及生物学分析. 华侨大学学报(自然科学版), 2008, 29(4):559-562.
Shi G D, Zhang G Y, Fang B S. Design and bioinformatical analysis of a novel G/11 xylanase. Journal of Huaqiao University (Natural Science), 2008, 29(4):559-562.
[44] Khandeparkar R, Bhosle N B. Application of thermoalkalophilic xylanase from Arthrobacter sp. MTCC 5214 in biobleaching of kraft pulp. Bioresource Technology, 2007, 98(4):897-903.
pmid: 16617015
[45] Lin X Q, Han S Y, Zhang N, et al. Bleach boosting effect of xylanase A from Bacillus halodurans C-125 in ECF bleaching of wheat straw pulp. Enzyme and Microbial Technology, 2013, 52(2):91-98.
doi: 10.1016/j.enzmictec.2012.10.011
[46] Nagar S, Gupta V K. Hyper production and eco-friendly bleaching of kraft pulp by xylanase from Bacillus pumilus SV-205 using agro waste material. Waste and Biomass Valorization, 2021, 12:4019-4031.
doi: 10.1007/s12649-020-01258-0
[47] 马乐凡, 李洪兵, 邓思任, 等. 木聚糖酶辅助芦苇KP浆CEH漂白. 湖南造纸, 2014 (2):6-9.
Ma L F, Li H B, Deng S R, et al. Xylanase assisted CEH Bleaching of reed KP pulp. Hunan Papermaking, 2014(2):6-9.
[48] 邹连杰, 史军伟, 王庆涛. 木聚糖酶在碱法麦草浆生产中的应用. 中华纸业, 2020, 41(14):67-69.
Zou L J, Shi J W, Wang Q T. Application of xylanase in the production of alkaline wheat straw pulp. China Pulp & Paper Industry, 2020, 41(14):67-69.
[49] Pandey L K, Kumar A, Singh S P, et al. Xylanase pretreatment of mechanically destructured chips of eucalyptus tereticornis and its effect on kraft pulping. BioResources, 2021, 16(3):5361-5375.
doi: 10.15376/biores
[50] Akgül M, Gücüᶊ M O, Üner B, et al. Effect of xylanase pretreatment on the kraft pulping of poplar. BioResources, 2021, 16(1):979-986.
doi: 10.15376/biores
[51] 刘姗姗, 贺会利, 张强, 等. 木聚糖酶处理改善废纸浆强度性能的研究. 中华纸业, 2019, 40(6):31-35.
Liu S S, He H L, Zhang Q, et al. A study on physical property improvement of recycled pulp through xylanase treatment. China Pulp & Paper Industry, 2019, 40(6):31-35.
[52] Desai D I, Iyer B D. Biodeinking of old newspaper pulp using a cellulase-free xylanase preparation of Aspergillus niger DX-23. Biocatalysis and Agricultural Biotechnology, 2016, 5:78-85.
doi: 10.1016/j.bcab.2015.11.001
[53] 管敏. 绿色木霉VKF3中提取的木聚糖酶用于废旧新闻纸的脱墨. 造纸化学品, 2017, 29(5):19-24.
Guan M. Xylanase extracted from Trichoderma viride VKF3 was used for deinking waste newsprint. Paper Chemicals, 2017, 29(5):19-24.
[54] 张明. 天然脂肪酸基载木聚糖酶脱墨剂的制备及其ONP脱墨应用研究. 广州: 华南理工大学, 2017.
Zhang M. Preparation of natural xylanase loaded fatty acid-based deinking agent and its application in ONP deinking. Guangzhou: South China University of Technology, 2017.
[55] Sango C, Pathak P, Bhardwaj N K, et al. Partial purification of bacterial cellulo-xylanolytic enzymes and their application in deinking of photocopier waste paper. Environmental Science and Pollution Research International, 2021, 28(43):61317-61328.
doi: 10.1007/s11356-021-14709-5
[1] 杜立,宿玲恰,吴敬. 提高源自Bacillus circulans 251的β-CGTase对麦芽糖亲和性及其在生产海藻糖中的应用 *[J]. 中国生物工程杂志, 2019, 39(5): 96-104.
[2] 陈方,徐刚,杨立荣,吴坚平. 定点突变提高醇脱氢酶LkTADH催化制备他汀关键手性砌块的酶活 *[J]. 中国生物工程杂志, 2018, 38(9): 59-64.
[3] 李继彬, 陈志, 陈华友. 腈水解酶克隆表达、固定化及分子改造的研究进展[J]. 中国生物工程杂志, 2017, 37(9): 141-147.
[4] 贺霖伟, 刘璋敏, 冯雁, 崔莉. 谷氨酸依赖型氨基转移酶的高通量筛选方法及其应用[J]. 中国生物工程杂志, 2017, 37(8): 59-65.
[5] 唐存多,史红玲,焦铸锦,刘飞,许建和,阚云超,姚伦广. CPC乙酰化酶底物结合区域Loop上脯氨酸对其催化特性的影响*[J]. 中国生物工程杂志, 2017, 37(12): 34-39.
[6] 马晨露, 唐存多, 史红玲, 王瑞, 岳超, 夏敏, 邬敏辰, 阚云超. 头孢菌素C乙酰化酶的半理性改造及7-ACA的生物合成[J]. 中国生物工程杂志, 2015, 35(12): 65-71.
[7] 唐存多, 史红玲, 唐青海, 焦铸锦, 阚云超, 邬敏辰, 李剑芳. 生物催化剂发现与改造的研究进展[J]. 中国生物工程杂志, 2014, 34(9): 113-121.
[8] 郜赵伟 张宇宏 张伟. 微生物酶分子改造研究进展[J]. 中国生物工程杂志, 2010, 30(01): 98-103.
[9] 赵亚华, 董竟南, 崔红, 白云, 金科华, 蒋智勇. 蜂毒素分子的改造及其基因在毕赤酵母中的表达[J]. 中国生物工程杂志, 2005, 25(02): 45-48,56.
[10] 解复红, 李文鹏, 张克勤. 耐碱和耐热木聚糖酶研究进展[J]. 中国生物工程杂志, 2003, 23(7): 72-75.
[11] 曲音波; 高培基; 陈嘉川. 制浆造纸用木聚糖酶的研究进展[J]. 中国生物工程杂志, 1998, 18(6): 35-39.
[12] 罗明典. 干扰素(IFN)研究在我国的发展[J]. 中国生物工程杂志, 1990, 10(2): 61-63.