Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2022, Vol. 42 Issue (1/2): 146-159    DOI: 10.13523/j.cb.2108005
综述     
食用菌多糖的提取纯化及生物活性研究进展*
赵炳杰1,2,郭岩彬1,2,**()
1 中国农业大学资源与环境学院 北京 100193
2 生物多样性与有机农业北京市重点实验室 北京 100193
Advances in Extraction, Purification and Bioactivity of Polysaccharides from Edible Fungi
ZHAO Bing-jie1,2,GUO Yan-bin1,2,**()
1 College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
2 Beijing Key Laboratory of Biodiversity and Organic Farming, Beijing 100193, China
 全文: PDF(1515 KB)   HTML
摘要:

食用菌多糖因具有抗氧化、免疫调节、抗肿瘤、降血糖、降血脂等生物活性而备受关注。食用菌多糖的结构影响其生物活性,具有(1→3)、(1→4)、(1→6)及混合糖苷键的β-D-葡聚糖是高活性食用菌多糖的结构特征之一,展现出提高抗氧化酶活性、促进分泌抗癌因子、刺激脾脏和胸腺细胞增殖等不同功能。酸碱、超声波及微波、Sevag法、树脂法、亲和层析等不同提取纯化方法会影响食用菌多糖得率,同时会改变食用菌多糖结构,影响其生物活性。详述食用菌多糖的提取纯化方法及其对结构与活性的影响,食用菌多糖的组成结构和构效关系,以及食用菌多糖在抗氧化、抗肿瘤、免疫调节、降血糖和降血脂等方面的功能、结构特征及生物活性,并提出了食用菌多糖形成的分子机制、多糖活性位点修饰、多糖代谢动力学等未来研究方向。

关键词: 食用菌多糖提取纯化结构生物活性    
Abstract:

Edible fungi polysaccharides have attracted much attention because of their biological activities such as antioxidant, immune regulation, anti-tumor, and hypoglycemic and hypolipidemic effect. The structure of edible fungi polysaccharides affects their biological activityies and has the characteristics of (1→3), (1→4), and (1→6) and mixed glycosidic bonds β-D-glucan is one of the structural characteristics of highly active edible fungi polysaccharides. It shows different functions, such as improving the activity of antioxidant enzymes, promoting the secretion of anticancer factors, and stimulating the proliferation of spleen and thymocytes. Different extraction and purification methods such as acid-base, ultrasonic and microwave, Sevag method, resin method and affinity chromatography will affect the yield of edible fungi polysaccharides, change their structure and affect their biological activities. The extraction and purification methods of edible fungi polysaccharides and their effects on structure and activity, the composition, structure and structure-activity relationship of edible fungi polysaccharides, as well as the functions, structural characteristics and biological activities of edible fungi polysaccharides in antioxidant, antitumor, immune regulation, hypoglycemic and hypolipidemic aspects were described in detail. The molecular mechanism of edible fungi polysaccharides formation, modification of polysaccharide active sites, polysaccharide metabolic kinetics and other future research directions were proposed.

Key words: Edible fungi polysaccharides    Extraction and purification    Structure    Biological activity
收稿日期: 2021-08-02 出版日期: 2022-03-03
ZTFLH:  Q819  
基金资助: * 国家公益性行业(农业)科研专项(201303106)
通讯作者: 郭岩彬     E-mail: guoyb@cau.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
赵炳杰
郭岩彬

引用本文:

赵炳杰,郭岩彬. 食用菌多糖的提取纯化及生物活性研究进展*[J]. 中国生物工程杂志, 2022, 42(1/2): 146-159.

ZHAO Bing-jie,GUO Yan-bin. Advances in Extraction, Purification and Bioactivity of Polysaccharides from Edible Fungi. China Biotechnology, 2022, 42(1/2): 146-159.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.2108005        https://manu60.magtech.com.cn/biotech/CN/Y2022/V42/I1/2/146

图1  食用菌葡聚糖基本结构示意图[31]
菌种 多糖 单糖组成
(摩尔比)
分子量
/kDa
结构特征 生物活性 参考
文献
担子菌门
Basidiomycota
多孔菌目
Polyporales
猴头菇
H.erinaceus
HPB-3 Fuc∶Gal∶Glc=
5.2∶23.9∶1
15 α-L-Fucp-(1→, →2,6)-α-D-Galp-(1→,→6)-α-D-Galp-(1→ 激活巨噬细胞;
NO↑;TNF-α↑
[35]
HPB-W Fuc∶Gal∶Glc∶Man∶Rha=1.59∶7.06∶5.60∶0.89∶0.98 15.9 α-D-Glcp-(1→, →3,6)-α-D-Glcp-(1→, →2,6)-α-D-Galp-(1→,β-Galp-(1→, →3,4)-β-D-Manp,→3)-α-Rhap→2)-β-L-Fucp 强化巨噬细胞吞噬;NO↑;IL-6↑;TNF-α↑ [36]
灵芝
G.lucidum
GLPL2 Glc∶Gal∶Man=
29∶1.8∶1.0
15.4 →3)-D-Glcp-(1→, →4)-D-Glcp-(1→, →6)-D-Glcp-(1→, →3,6)-D-Glcp-(1→ and →4,6)-D-Glcp-(1→;→6)-D-Galp-(1→ · O 2 -↓、
·OH↓、
H2O2
[37]
GLP-2 Glc 19.5 →6)-β-D-Glcp-(1→,→3)-β-D-Glcp-(1→ 脾脏胸腺,血清IgA↑ [38]
灰树花
P.frondosus
GP11 Man∶Glc∶Gal=
1∶5.04∶2.61
6.9 →1)-β-Manp-(6→,→1)-β-Glcp-(4→,→1)-β-Galp-(6→,→2,3,6)-β-Glcp-(1→ 抑制Heps生长,
NO↑;IL-2↑;TNF-α↑
[39]
GF70-F1 Gal∶Glc∶Man=
1.24∶56∶1
1 260 (1→3),(1→6)-β-D-葡聚糖;β-(1→4)-糖苷键主链;β-(1→6)-糖苷键支链 抑制NF-κB;IL-6↑;TNF-α↑ [40]
银耳目
Tremella
银耳
T.fuciformis
TAPA1 Man∶Xyl∶Glc =
5∶4∶1
135 4-β-D-Manp-(1→3)-β-D-Xylp-(1→4)-β-D-GlcAp-(1→2)-α-D-Manp-(1→ 刺激小鼠脾淋巴细胞增殖 [41]
PTF-M38 Xyl∶Man∶Glc∶Gal = 1∶1.47∶0.48∶0.34 1.24 [42]
木耳菌目
Auriculariales
黑木耳
A.auricula
CEPSN-2 Ara∶Fuc∶Gal∶Glc∶GalA∶GlcA∶Man=0.11∶0.45∶1.04∶97.56∶0.20∶0.50∶0.14 6.7 (1→4)-α-D-葡聚糖骨架 NO↑;IL-6↑;IL-10↑;TNF-α↑ [43]
AAPHs-F Gal∶Glc∶Man=
1∶3.25∶12.7
0.885 (1→3)-β-α-D-吡喃葡萄糖,-COOH和乙酰胺 SOD↑;GSH-Px↑;CAT↑ [44]
伞菌目
Agaricales
香菇
L.edodes
JLNT 605.4 β-(1→3)-D-葡萄糖主链
β-(1→6)-D-葡萄糖侧链
Bax↑; Bal↓
激活Caspase-3
[45]
PBPs Man∶Rib∶GluA∶Glu∶Gal∶Ara∶Fuc=8.22∶1.33∶1.14∶72.50∶12.71∶0.52∶3.60 3.906 β-葡聚糖苷键
吡喃糖环
清除DPPH;
· O 2 -; ·OH
[46]
ASMCP Rha∶Ara∶Gal∶Glu=
4∶3∶1∶4
2.177 α-(1→3)-糖苷键 TNF-α↑
IL-1β↑; IL-6↑
[47]
杏鲍菇
P.eryngii
PEPw Ara∶Man∶Gal=
1.2∶2.3∶6.2
25 1,6-D-Galp, 1,2,6-D-Galp, 1,4-D-Manp NK细胞增殖
IL-2↑;TNF-α↑
[48]
MG-Pe Man∶3-O-Me-Gal∶Gal=32.9∶15:521 20.9 α-1,6-D-Galp, α-1,6-3-O-Me-D-Galp 小鼠黑色素瘤体积减少60% [49]
金针菇
F.velutipes
GNP Glc∶Man∶Xyl=
3.5∶0.8∶1.4
353 α-1,4-糖苷键主链
α-1,6-糖苷键支链
CD4+↓、CD8+↓、ICAM-1↓、MPO↓ [50]
FVPB2 Gal∶Man∶Fuc∶Glc=1.9∶1.2∶1∶2.5 15 α-D-Manp-(1→; →3,4)-α-D-Galp-(1→; →6)-α-D-Glcp-(1→; α-L-Fucp-(1→;→2)-α-D-Galp-(1→; →3,6)-β-D-Glcp-(1→ 免疫调节
IgM↑;IgG↑
[51]
平菇
P.ostreatus
KOMAP Glc∶Man∶Ara=
6.2∶2.1∶2.0
21 β-1,4-Glu;β-1,3,6-Man; α-1-Ara 免疫调节,IL-2↑;TNF-α↑;IFN-γ↑ [52]
POP Glc∶Fuc∶Rha∶Gal∶Xyl∶Man∶Ara=10.6∶2.0∶3.5∶45.6∶4.6∶28.3∶5.4 (1→6)-β-D-葡聚糖,在O-3位置略微分支 [53]
白灵菇
P.nebrodensis
PNPS Glc∶Man∶Gal=
1∶18∶1
5 012 →4)-β-D-Glcp-(1→6)-α-D-Galp-(1→6)-α-D-Manp-(1→4)-α-D-Glcp-(1→4)-β-D-Glcp-(1→ 降血脂 [54]
子囊菌门
Ascomycota
麦角菌目
Clavicipitales
蛹虫草
C.militaris
CBP-1 Man∶Gal∶Glc=
3.15∶4.34∶1
17 →4)-α-D-Manp-(1→4)-α-D-Manp-(1→4)-α-D-Manp-(1→; β-D-Galp-(1→6)-β-D-Galp-(1→4)-α-D-Glcp 抗氧化·OH↓ [55]
CMP-W1 Man∶Glc∶Gal=
2.84∶1∶1.29
366 1→,1→6,1→2,1→2,6糖苷键;α-Manp-(1→3)-Glcp 免疫力↑;脾淋巴细胞增殖 [56]
蝉花Isaria
cicadae
Miquel
JCH-1 Glc∶Man∶Gal=
41.75∶33.67∶24.85
30.9 NO↑;IL-6↑;TNF-α↑ [57]
JCH-2 Glc∶Man∶Gal=
72.59∶13.99∶13.42
555.3 JCH-2<JCH-1 [58]
盘菌目
Pezizales
羊肚菌
M.esculenta
NMCP-2 Man∶Glc∶Gal∶Xyl=3.35∶19.57∶1∶3.14 48.3 →4)-β-D-Galp-(1→4)-β-D-Xylp-(1→6)-α-D-Glup-(1→4)-α-D-Glup-(1→ Bcl-2↓;Bax↑ [59]
MIPW50-1 GlcNAc∶Gal∶Glc∶Man=1∶14.95∶1.53∶10.51 28.5 →2,3,6)-α-D-Manp-(1→,→3,6)-α-D-Manp-(1→,→2)-α-D-Galp-(1→,→6)-α-D-Manp-(1→,→4)-β-D-Glcp-(1→,→4)-α-D-GlcpNAc-(1→,→6)-α-D-Glcp-(1→ 强化吞噬细胞
NO↑;IL-6↑;TNF-α↑
[60]
表1  主要种类食用菌多糖的单糖组成、结构特征及生物活性
[1] 周艳, 张聪, 赵丹丹. 食用菌多糖的结构修饰及其修饰后的抗肿瘤活性研究进展. 中国农学通报, 2020, 36(6):89-92.
Zhou Y, Zhang C, Zhao D D. Structure modification of edible fungi polysaccharides and their antitumor activities: a review. Chinese Agricultural Science Bulletin, 2020, 36(6):89-92.
[2] 王豪, 钱坤, 司静, 等. 桑黄类真菌多糖研究进展. 菌物学报, 2021, 40(4):895-911.
Wang H, Qian K, Si J, et al. Research advances on polysaccharides from Sanghuang. Mycosystema, 2021, 40(4):895-911.
[3] Maity P, Sen I K, Chakraborty I, et al. Biologically active polysaccharide from edible mushrooms: a review. International Journal of Biological Macromolecules, 2021, 172:408-417.
doi: 10.1016/j.ijbiomac.2021.01.081
[4] Wasser S P. Medicinal mushrooms as a source of antitumor and immunomodulating polysaccharides. Applied Microbiology and Biotechnology, 2002, 60(3):258-274.
pmid: 12436306
[5] Mohammed A, Naveed M, Jost N. Polysaccharides; classification, chemical properties, and future perspective applications in fields of pharmacology and biological medicine (a review of current applications and upcoming potentialities). Journal of Polymers and the Environment, 2021, 29(8):2359-2371.
doi: 10.1007/s10924-021-02052-2
[6] Rodrigues Barbosa J, dos Santos Freitas M M, da Silva Martins L H, et al. Polysaccharides of mushroom Pleurotus spp.: new extraction techniques, biological activities and development of new technologies. Carbohydrate Polymers, 2020, 229:115550.
doi: S0144-8617(19)31218-4 pmid: 31826512
[7] Leong Y K, Yang F C, Chang J S. Extraction of polysaccharides from edible mushrooms: emerging technologies and recent advances. Carbohydrate Polymers, 2021, 251:117006.
doi: 10.1016/j.carbpol.2020.117006
[8] 尹艳, 高文宏, 于淑娟. 多糖提取技术的研究进展. 食品工业科技, 2007, 28(2):248-250.
Yin Y, Gao W H, Yu S J. Research progress of polysaccharide extraction technology. Science and Technology of Food Industry, 2007, 28(2):248-250.
[9] Liu G, Ye J, Li W, et al. Extraction, structural characterization, and immunobiological activity of ABP Ia polysaccharide from Agaricus bisporus. International Journal of Biological Macromolecules, 2020, 162:975-984.
doi: 10.1016/j.ijbiomac.2020.06.204
[10] Zhao S, Rong C B, Liu Y, et al. Extraction of a soluble polysaccharide from Auricularia polytricha and evaluation of its anti-hypercholesterolemic effect in rats. Carbohydrate Polymers, 2015, 122:39-45.
doi: 10.1016/j.carbpol.2014.12.041
[11] 李淑荣, 王丽, 唐选民, 等. 响应面法优化海鲜菇中多糖提取工艺. 食品工业科技, 2018, 39(1):172-176.
Li S R, Wang L, Tang X M, et al. Optimization of polysaccharides from Hypsizygus marmoreus by response surface methodology. Science and Technology of Food Industry, 2018, 39(1):172-176.
[12] Su C H, Lai M N, Ng L T. Effects of different extraction temperatures on the physicochemical properties of bioactive polysaccharides from Grifola frondosa. Food Chemistry, 2017, 220:400-405.
doi: 10.1016/j.foodchem.2016.09.181
[13] 王艺涵, 吴琴, 迟原龙, 等. 酸碱法和酶法辅助提取银耳粗多糖的特性研究. 食品科技, 2019, 44(4):200-204.
Wang Y H, Wu Q, Chi Y L, et al. Properties of crude polysaccharides extracted from Tremella fuciformis by acid, alkali and enzyme-assisted methods. Food Science and Technology, 2019, 44(4):200-204.
[14] Zhang B R, Li Y Y, Zhang F M, et al. Extraction, structure and bioactivities of the polysaccharides from Pleurotus eryngii: a review. International Journal of Biological Macromolecules, 2020, 150:1342-1347.
doi: 10.1016/j.ijbiomac.2019.10.144
[15] Xu Y Y, Shen M, Chen Y D, et al. Optimization of the polysaccharide hydrolysate from Auricularia auricula with antioxidant activity by response surface methodology. International Journal of Biological Macromolecules, 2018, 113:543-549.
doi: 10.1016/j.ijbiomac.2018.02.059
[16] Gu J Y, Li Q W, Liu J, et al. Ultrasonic-assisted extraction of polysaccharides from Auricularia auricula and effects of its acid hydrolysate on the biological function of Caenorhabditis elegans. International Journal of Biological Macromolecules, 2021, 167:423-433.
doi: 10.1016/j.ijbiomac.2020.11.160
[17] Yan J K, Ding Z C, Gao X L, et al. Comparative study of physicochemical properties and bioactivity of Hericium erinaceus polysaccharides at different solvent extractions. Carbohydrate Polymers, 2018, 193:373-382.
doi: 10.1016/j.carbpol.2018.04.019
[18] Zhu Z Y, Dong F Y, Liu X C, et al. Effects of extraction methods on the yield, chemical structure and anti-tumor activity of polysaccharides from Cordyceps gunnii mycelia. Carbohydrate Polymers, 2016, 140:461-471.
doi: 10.1016/j.carbpol.2015.12.053
[19] Cui F J, Qian L S, Sun W J, et al. Ultrasound-assisted extraction of polysaccharides from Volvariella volvacea: process optimization and structural characterization. Molecules, 2018, 23(7):1706.
doi: 10.3390/molecules23071706
[20] Kang Q Z, Chen S S, Li S F, et al. Comparison on characterization and antioxidant activity of polysaccharides from Ganoderma lucidum by ultrasound and conventional extraction. International Journal of Biological Macromolecules, 2019, 124:1137-1144.
doi: 10.1016/j.ijbiomac.2018.11.215
[21] Zhang A Q, Deng J Y, Yu S Y, et al. Purification and structural elucidation of a water-soluble polysaccharide from the fruiting bodies of the Grifola frondosa. International Journal of Biological Macromolecules, 2018, 115:221-226.
doi: 10.1016/j.ijbiomac.2018.04.061
[22] 邵双宇, 司夏利, 张岩松, 等. 食用菌多糖分析方法研究进展. 食品科学, 2020, 41(19):272-280.
Shao S Y, Si X L, Zhang Y S, et al. Recent advances in analytical methods for polysaccharides from edible mushroom. Food Science, 2020, 41(19):272-280.
[23] Xing X H, Cui S W, Nie S P, et al. A review of isolation process, structural characteristics, and bioactivities of water-soluble polysaccharides from Dendrobium plants. Bioactive Carbohydrates and Dietary Fibre, 2013, 1(2):131-147.
doi: 10.1016/j.bcdf.2013.04.001
[24] 何美佳, 刘晓, 唐翠翠, 等. 多糖脱蛋白方法的研究进展. 中国海洋药物, 2019, 38(3):82-86.
He M J, Liu X, Tang C C, et al. Research progress on the methods for deproteinization of polysaccharide. Chinese Journal of Marine Drugs, 2019, 38(3):82-86.
[25] 金贺伟, 闫如霞, 年芳, 等. 硒多糖的来源、提取及其生物学功能研究进展. 中国饲料, 2021(9):12-16, 21.
Jin H W, Yan R X, Nian F, et al. Research progresses on source, extraction and biological function of selenium polysaccharide. China Feed, 2021(9):12-16, 21.
[26] 王珊, 黄胜阳. 植物多糖提取液脱蛋白方法的研究进展. 食品科技, 2012, 37(9):188-191.
Wang S, Huang S Y. Deprotein of plant polysaccharide extract. Food Science and Technology, 2012, 37(9):188-191.
[27] 王维香, 王晓君, 黄潇, 等. 川芎多糖脱色方法比较. 离子交换与吸附, 2010, 26(1):74-82.
Wang W X, Wang X J, Huang X, et al. Comparison study of decolorization ways for polyssacharide from Ligusticum Chuanxiong hort. Ion Exchange and Adsorption, 2010, 26(1):74-82.
[28] 镇卫国, 张红梅, 杨晓丰, 等. 树脂纯化武当道茶多糖的研究. 中国农学通报, 2017, 33(16):146-151.
Zhen W G, Zhang H M, Yang X F, et al. Polysaccharide purification from Wudang Taoism tea by resin. Chinese Agricultural Science Bulletin, 2017, 33(16):146-151.
[29] 李雪梅, 李丽梅, 陈辉, 等. 海湾扇贝多糖的纯化、分离及抗肿瘤活性研究. 中国食品学报, 2016, 16(7):121-127.
Li X M, Li L M, Chen H, et al. Purification, separation and antitumor activity evaluation of polysaccharides from bay scallop. Journal of Chinese Institute of Food Science and Technology, 2016, 16(7):121-127.
[30] Cheng L Z, Wang Y F, He X X, et al. Preparation, structural characterization and bioactivities of Se-containing polysaccharide: a review. International Journal of Biological Macromolecules, 2018, 120:82-92.
doi: 10.1016/j.ijbiomac.2018.07.106
[31] Synytsya A, Novák M. Structural diversity of fungal glucans. Carbohydrate Polymers, 2013, 92(1):792-809.
doi: 10.1016/j.carbpol.2012.09.077 pmid: 23218369
[32] Sheng K J, Wang C L, Chen B T, et al. Recent advances in polysaccharides from Lentinus edodes (Berk.): Isolation, structures and bioactivities. Food Chemistry, 2021, 358:129883.
doi: 10.1016/j.foodchem.2021.129883
[33] Khan A A, Gani A, Shah A, et al. Effect of γ-irradiation on structural, functional and antioxidant properties of β-glucan extracted from button mushroom (Agaricus bisporus). Innovative Food Science & Emerging Technologies, 2015, 31:123-130.
[34] Maity P, Sen I K, Maji P K, et al. Structural, immunological, and antioxidant studies of β-glucan from edible mushroom Entoloma lividoalbum. Carbohydrate Polymers, 2015, 123:350-358.
doi: 10.1016/j.carbpol.2015.01.051
[35] Li Q Z, Wu D, Zhou S, et al. Structure elucidation of a bioactive polysaccharide from fruiting bodies of Hericium erinaceus in different maturation stages. Carbohydrate Polymers, 2016, 144:196-204.
doi: 10.1016/j.carbpol.2016.02.051
[36] Wu F F, Zhou C H, Zhou D D, et al. Structural characterization of a novel polysaccharide fraction from Hericium erinaceus and its signaling pathways involved in macrophage immunomodulatory activity. Journal of Functional Foods, 2017, 37:574-585.
doi: 10.1016/j.jff.2017.08.030
[37] Liu W, Wang H Y, Pang X B, et al. Characterization and antioxidant activity of two low-molecular-weight polysaccharides purified from the fruiting bodies of Ganoderma lucidum. International Journal of Biological Macromolecules, 2010, 46(4):451-457.
doi: 10.1016/j.ijbiomac.2010.02.006
[38] Li J, Gu F F, Cai C, et al. Purification, structural characterization, and immunomodulatory activity of the polysaccharides from Ganoderma lucidum. International Journal of Biological Macromolecules, 2020, 143:806-813.
doi: 10.1016/j.ijbiomac.2019.09.141
[39] Mao G H, Ren Y, Feng W W, et al. Antitumor and immunomodulatory activity of a water-soluble polysaccharide from Grifola frondosa. Carbohydrate Polymers, 2015, 134:406-412.
doi: 10.1016/j.carbpol.2015.08.020
[40] Su C H, Lu M K, Lu T J, et al. A (1→6)-branched (1→4)-β-d-glucan from Grifola frondosa inhibits lipopolysaccharide-induced cytokine production in RAW264.7 macrophages by binding to TLR2 rather than dectin-1 or CR3 receptors. Journal of Natural Products, 2020, 83(2):231-242.
doi: 10.1021/acs.jnatprod.9b00584
[41] Du X J, Zhang J S, Yang Y, et al. Structural elucidation and immuno-stimulating activity of an acidic heteropolysaccharide (TAPA1) from Tremella aurantialba. Carbohydrate Research, 2009, 344(5):672-678.
doi: 10.1016/j.carres.2009.01.021
[42] Zhu H Y, Yuan Y, Liu J, et al. Comparing the sugar profiles and primary structures of alkali-extracted water-soluble polysaccharides in cell wall between the yeast and mycelial phases from Tremella fuciformis. Journal of Microbiology (Seoul, Korea), 2016, 54(5):381-386.
[43] Zhang Y, Zeng Y, Men Y, et al. Structural characterization and immunomodulatory activity of exopolysaccharides from submerged culture of Auricularia auricula-judae. International Journal of Biological Macromolecules, 2018, 115:978-984.
doi: S0141-8130(18)30922-X pmid: 29715555
[44] Fang Z Y, Chen Y T, Wang G, et al. Evaluation of the antioxidant effects of acid hydrolysates from Auricularia auricular polysaccharides using a Caenorhabditis elegans model. Food & Function, 2019, 10(9):5531-5543.
[45] Zhang Y, Li Q, Shu Y M, et al. Induction of apoptosis in S180 tumour bearing mice by polysaccharide from Lentinus edodes via mitochondria apoptotic pathway. Journal of Functional Foods, 2015, 15:151-159.
doi: 10.1016/j.jff.2015.03.025
[46] Lin Y Y, Zeng H Y, Wang K, et al. Microwave-assisted aqueous two-phase extraction of diverse polysaccharides from Lentinus edodes: process optimization, structure characterization and antioxidant activity. International Journal of Biological Macromolecules, 2019, 136:305-315.
doi: 10.1016/j.ijbiomac.2019.06.064
[47] Song X L, Ren Z Z, Wang X X, et al. Antioxidant, anti-inflammatory and renoprotective effects of acidic-hydrolytic polysaccharides by spent mushroom compost (Lentinula edodes) on LPS-induced kidney injury. International Journal of Biological Macromolecules, 2020, 151:1267-1276.
doi: 10.1016/j.ijbiomac.2019.10.173
[48] Yang Z Y, Xu J, Fu Q, et al. Antitumor activity of a polysaccharide from Pleurotus eryngii on mice bearing renal cancer. Carbohydrate Polymers, 2013, 95(2):615-620.
doi: 10.1016/j.carbpol.2013.03.024
[49] Biscaia S M P, Carbonero E R, Bellan D L, et al. Safe therapeutics of murine melanoma model using a novel antineoplasic, the partially methylated mannogalactan from Pleurotus eryngii. Carbohydrate Polymers, 2017, 178:95-104.
doi: S0144-8617(17)31001-9 pmid: 29050620
[50] Wu D M, Duan W Q, Liu Y, et al. Anti-inflammatory effect of the polysaccharides of Golden needle mushroom in burned rats. International Journal of Biological Macromolecules, 2010, 46(1):100-103.
doi: 10.1016/j.ijbiomac.2009.10.013
[51] Wang W H, Zhang J S, Feng T, et al. Structural elucidation of a polysaccharide from Flammulina velutipes and its immunomodulation activities on mouse B lymphocytes. Scientific Reports, 2018, 8:3120.
doi: 10.1038/s41598-018-21375-0
[52] Liu X K, Wang L, Zhang C M, et al. Structure characterization and antitumor activity of a polysaccharide from the alkaline extract of king oyster mushroom. Carbohydrate Polymers, 2015, 118:101-106.
doi: 10.1016/j.carbpol.2014.10.058
[53] Baeva E, Bleha R, Lavrova E, et al. Polysaccharides from basidiocarps of cultivating mushroom Pleurotus ostreatus: isolation and structural characterization. Molecules (Basel, Switzerland), 2019, 24(15):2740.
doi: 10.3390/molecules24152740
[54] Gao Y Y, Guo Q B, Zhang K L, et al. Polysaccharide from Pleurotus nebrodensis: Physicochemical, structural characterization and in vitro fermentation characteristics. International Journal of Biological Macromolecules, 2020, 165:1960-1969.
doi: 10.1016/j.ijbiomac.2020.10.071
[55] Yu R M, Yin Y, Yang W, et al. Structural elucidation and biological activity of a novel polysaccharide by alkaline extraction from cultured Cordyceps militaris. Carbohydrate Polymers, 2009, 75(1):166-171.
doi: 10.1016/j.carbpol.2008.07.023
[56] Luo X P, Duan Y Q, Yang W Y, et al. Structural elucidation and immunostimulatory activity of polysaccharide isolated by subcritical water extraction from Cordyceps militaris. Carbohydrate Polymers, 2017, 157:794-802.
doi: 10.1016/j.carbpol.2016.10.066
[57] Xu Z C, Yan X T, Song Z Y, et al. Two heteropolysaccharides from Isaria cicadae Miquel differ in composition and potentially immunomodulatory activity. International Journal of Biological Macromolecules, 2018, 117:610-616.
doi: 10.1016/j.ijbiomac.2018.05.164
[58] Xu Z C, Lin R Y, Hou X N, et al. Immunomodulatory mechanism of a purified polysaccharide isolated from Isaria cicadae Miquel on RAW264.7 cells via activating TLR4-MAPK-NF-κB signaling pathway. International Journal of Biological Macromolecules, 2020, 164:4329-4338.
doi: 10.1016/j.ijbiomac.2020.09.035
[59] Xu N, Lu Y, Hou J M, et al. A polysaccharide purified from Morchella conica pers. prevents oxidative stress induced by H2O2 in human embryonic kidney (HEK) 293T cells. International Journal of Molecular Sciences, 2018, 19(12):4027.
doi: 10.3390/ijms19124027
[60] Wen Y, Peng D, Li C L, et al. A new polysaccharide isolated from Morchella importuna fruiting bodies and its immunoregulatory mechanism. International Journal of Biological Macromolecules, 2019, 137:8-19.
doi: 10.1016/j.ijbiomac.2019.06.171
[61] Ge X Y, Huang W W, Xu X Q, et al. Production, structure, and bioactivity of polysaccharide isolated from Tremella fuciformis XY. International Journal of Biological Macromolecules, 2020, 148:173-181.
doi: 10.1016/j.ijbiomac.2020.01.021
[62] Wan X L, Jin X, Wu X M, et al. Structural characterisation and antitumor activity against non-small cell lung cancer of polysaccharides from Sanghuangporus vaninii. Carbohydrate Polymers, 2022, 276:118798.
doi: 10.1016/j.carbpol.2021.118798
[63] Fan Y N, Wu X Y, Zhang M, et al. Physical characteristics and antioxidant effect of polysaccharides extracted by boiling water and enzymolysis from Grifola frondosa. International Journal of Biological Macromolecules, 2011, 48(5):798-803.
doi: 10.1016/j.ijbiomac.2011.03.013
[64] Shi K Y, Yang G, He L, et al. Purification, characterization, antioxidant, and antitumor activity of polysaccharides isolated from silkworm Cordyceps. Journal of Food Biochemistry, 2020, 44(11):e13482.
[65] Wu Y J, Wei Z X, Zhang F M, et al. Structure, bioactivities and applications of the polysaccharides from Tremella fuciformis mushroom: a review. International Journal of Biological Macromolecules, 2019, 121:1005-1010.
doi: 10.1016/j.ijbiomac.2018.10.117
[66] Liao W Z, Ning Z X, Chen L Y, et al. Intracellular antioxidant detoxifying effects of diosmetin on 2, 2-azobis(2-amidinopropane) dihydrochloride (AAPH)-induced oxidative stress through inhibition of reactive oxygen species generation. Journal of Agricultural and Food Chemistry, 2014, 62(34):8648-8654.
doi: 10.1021/jf502359x
[67] Pan K, Jiang Q G, Liu G Q, et al. Optimization extraction of Ganoderma lucidum polysaccharides and its immunity and antioxidant activities. International Journal of Biological Macromolecules, 2013, 55:301-306.
doi: 10.1016/j.ijbiomac.2013.01.022 pmid: 23370161
[68] Ruan Y, Li H, Pu L M, et al. Tremella fuciformis polysaccharides attenuate oxidative stress and inflammation in macrophages through miR-155. Analytical Cellular Pathology, 2018, 2018:5762371.
[69] Li W, Cai Z N, Mehmood S, et al. Polysaccharide FMP-1 from Morchella esculenta attenuates cellular oxidative damage in human alveolar epithelial A549 cells through PI3K/AKT/Nrf2/HO-1 pathway. International Journal of Biological Macromolecules, 2018, 120:865-875.
doi: 10.1016/j.ijbiomac.2018.08.148
[70] Wu J Y, Siu K C, Geng P. Bioactive ingredients and medicinal values of Grifola frondosa (Maitake). Foods (Basel, Switzerland), 2021, 10(1):95.
[71] Mandal E K, Maity K, Maity S, et al. Structural characterization of an immunoenhancing cytotoxic heteroglycan isolated from an edible mushroom Calocybe indica var. APK2. Carbohydrate Research, 2011, 346(14):2237-2243.
doi: 10.1016/j.carres.2011.07.009
[72] Nandi A K, Sen I K, Samanta S, et al. Glucan from hot aqueous extract of an ectomycorrhizal edible mushroom, Russula albonigra (Krombh.) Fr.: structural characterization and study of immunoenhancing properties. Carbohydrate Research, 2012, 363:43-50.
doi: 10.1016/j.carres.2012.10.002
[73] Nandi A K, Samanta S, Sen I K, et al. Structural elucidation of an immunoenhancing heteroglycan isolated from Russula albonigra (Krombh.) Fr. Carbohydrate Polymers, 2013, 94(2):918-926.
doi: 10.1016/j.carbpol.2013.02.019
[74] Shi M, Zhang Z Y, Yang Y N. Antioxidant and immunoregulatory activity of Ganoderma lucidum polysaccharide (GLP). Carbohydrate Polymers, 2013, 95(1):200-206.
doi: 10.1016/j.carbpol.2013.02.081
[75] Zhu L L, Wu D, Zhang H N, et al. Effects of atmospheric and room temperature plasma (ARTP) mutagenesis on physicochemical characteristics and immune activity in vitro of Hericium erinaceus polysaccharides. Molecules (Basel, Switzerland), 2019, 24(2):262.
doi: 10.3390/molecules24020262
[76] Meng X, Che C C, Zhang J M, et al. Structural characterization and immunomodulating activities of polysaccharides from a newly collected wild Morchella sextelata. International Journal of Biological Macromolecules, 2019, 129:608-614.
doi: S0141-8130(18)36907-1 pmid: 30771397
[77] Chen X, Fang D L, Zhao R Q, et al. Effects of ultrasound-assisted extraction on antioxidant activity and bidirectional immunomodulatory activity of Flammulina velutipes polysaccharide. International Journal of Biological Macromolecules, 2019, 140:505-514.
doi: S0141-8130(19)33268-4 pmid: 31437508
[78] Kasimu R, Chen C L, Xie X Y, et al. Water-soluble polysaccharide from Erythronium sibiricum bulb: structural characterisation and immunomodulating activity. International Journal of Biological Macromolecules, 2017, 105:452-462.
doi: S0141-8130(17)30262-3 pmid: 28711615
[79] Meng Y, Yan J M, Yang G, et al. Structural characterization and macrophage activation of a hetero-galactan isolated from Flammulina velutipes. Carbohydrate Polymers, 2018, 183:207-218.
doi: S0144-8617(17)31414-5 pmid: 29352876
[80] Yim M H, Shin J W, Son J Y, et al. Soluble components of Hericium erinaceum induce NK cell activation via production of interleukin-12 in mice splenocytes. Acta Pharmacologica Sinica, 2007, 28(6):901-907.
doi: 10.1111/aphs.2007.28.issue-6
[81] Ni J, Wang X, Stojanovic A, et al. Single-cell RNA sequencing of tumor-infiltrating NK cells reveals that inhibition of transcription factor HIF-1α unleashes NK cell activity. Immunity, 2020, 52(6):1075-1087.e8.
doi: 10.1016/j.immuni.2020.05.001
[82] Wang Y Y, Zeng Y Q, Zhu L Y, et al. Polysaccharides from Lentinus edodes inhibits lymphangiogenesis via the toll-like receptor 4/JNK pathway of cancer-associated fibroblasts. Frontiers in Oncology, 2021, 10:547683.
doi: 10.3389/fonc.2020.547683
[83] Li Y T, Ban L T, Meng S L, et al. Bioactivities of crude polysaccharide extracted from fermented soybean curd residue by Cordyceps militaris. Biotechnology & Biotechnological Equipment, 2021, 35(1):342-353.
[84] Xu J, Tan Z C, Shen Z Y, et al. Cordyceps cicadae polysaccharides inhibit human cervical cancer hela cells proliferation via apoptosis and cell cycle arrest. Food and Chemical Toxicology, 2021, 148:111971.
doi: 10.1016/j.fct.2021.111971
[85] Xu H, Zou S W, Xu X J, et al. Anti-tumor effect of β-glucan from Lentinus edodes and the underlying mechanism. Scientific Reports, 2016, 6:28802.
doi: 10.1038/srep28802
[86] Xu H, Zou S W, Xu X J. The β-glucan from Lentinus edodes suppresses cell proliferation and promotes apoptosis in estrogen receptor positive breast cancers. Oncotarget, 2017, 8(49):86693-86709.
doi: 10.18632/oncotarget.v8i49
[87] Ya G W. A Lentinus edodes polysaccharide induces mitochondrial-mediated apoptosis in human cervical carcinoma HeLa cells. International Journal of Biological Macromolecules, 2017, 103:676-682.
doi: 10.1016/j.ijbiomac.2017.05.085
[88] Lu J H, He R J, Sun P L, et al. Molecular mechanisms of bioactive polysaccharides from Ganoderma lucidum (Lingzhi), a review. International Journal of Biological Macromolecules, 2020, 150:765-774.
doi: 10.1016/j.ijbiomac.2020.02.035
[89] Wang J L, Li W Y, Huang X, et al. A polysaccharide from Lentinus edodes inhibits human colon cancer cell proliferation and suppresses tumor growth in athymic nude mice. Oncotarget, 2017, 8(1):610-623.
doi: 10.18632/oncotarget.v8i1
[90] Lee J S, Hong E K. Hericium erinaceus enhances doxorubicin-induced apoptosis in human hepatocellular carcinoma cells. Cancer Letters, 2010, 297(2):144-154.
doi: 10.1016/j.canlet.2010.05.006
[91] Wang D Q, Wang D G, Yan T X, et al. Nanostructures assembly and the property of polysaccharide extracted from Tremella fuciformis fruiting body. International Journal of Biological Macromolecules, 2019, 137:751-760.
doi: 10.1016/j.ijbiomac.2019.06.198
[92] Wińska K, Mᶏczka W, Gabryelska K, et al. Mushrooms of the genus Ganoderma used to treat diabetes and insulin resistance. Molecules (Basel, Switzerland), 2019, 24(22):4075.
doi: 10.3390/molecules24224075
[93] 焦佳琪, 肖春, 吴清平, 等. 重要食药用菌多糖降血糖分子机制研究进展. 微生物学通报, 2021, 48(1):197-209.
Jiao J Q, Xiao C, Wu Q P, et al. Hypoglycemic effect of important edible and medicinal fungi polysaccharides: a review. Microbiology China, 2021, 48(1):197-209.
[94] 刘韫滔, 曾思琪, 唐倩倩, 等. 两种梭柄松苞菇富硒多糖的制备及其降血糖和抗氧化活性研究. 现代食品科技, 2016, 32(10):60-65.
Liu Y T, Zeng S Q, Tang Q Q, et al. Preparation of Se-enriched polysaccharides from Catathelasma ventricosum by two approaches and their antioxidant and antihyperglycemic activities. Modern Food Science and Technology, 2016, 32(10):60-65.
[95] Zhou N, Long H R, Wang C H, et al. Research progress on the biological activities of selenium polysaccharides. Food & Function, 2020, 11(6):4834-4852.
[96] Sun H Q, Yu X F, Li T, et al. Structure and hypoglycemic activity of a novel exopolysaccharide of Cordyceps militaris. International Journal of Biological Macromolecules, 2021, 166:496-508.
doi: 10.1016/j.ijbiomac.2020.10.207
[97] Shang X L, Pan L C, Tang Y, et al. 1H NMR-based metabonomics of the hypoglycemic effect of polysaccharides from Cordyceps militaris on streptozotocin-induced diabetes in mice. Natural Product Research, 2020, 34(10):1366-1372.
doi: 10.1080/14786419.2018.1516216
[98] Rahman M A, Abdullah N, Aminudin N. Antioxidative effects and inhibition of human low density lipoprotein oxidation in vitro of polyphenolic compounds in Flammulina velutipes (golden needle mushroom). Oxidative Medicine and Cellular Longevity, 2015, 2015:403023.
[99] Zhang C, Li J, Wang J, et al. Antihyperlipidaemic and hepatoprotective activities of acidic and enzymatic hydrolysis exopolysaccharides from Pleurotus eryngii SI-04. BMC Complementary and Alternative Medicine, 2017, 17(1):403.
doi: 10.1186/s12906-017-1892-z pmid: 28806986
[100] Wang X Y, Yin J Y, Nie S P, et al. Isolation, purification and physicochemical properties of polysaccharide from fruiting body of Hericium erinaceus and its effect on colonic health of mice. International Journal of Biological Macromolecules, 2018, 107:1310-1319.
doi: 10.1016/j.ijbiomac.2017.09.112
[101] Yang X Q, Lin P, Wang J, et al. Purification, characterization and anti-atherosclerotic effects of the polysaccharides from the fruiting body of Cordyceps militaris. International Journal of Biological Macromolecules, 2021, 181:890-904.
doi: 10.1016/j.ijbiomac.2021.04.083
[102] Urban D, Pöss J, Böhm M, et al. Targeting the proprotein convertase subtilisin/kexin type 9 for the treatment of dyslipidemia and atherosclerosis. Journal of the American College of Cardiology, 2013, 62(16):1401-1408.
doi: 10.1016/j.jacc.2013.07.056
[103] Yang Z X, Yin J Y, Wang Y F, et al. The fucoidan A3 from the seaweed Ascophyllum nodosum enhances RCT-related genes expression in hyperlipidemic C57BL/6J mice. International Journal of Biological Macromolecules, 2019, 134:759-769.
doi: 10.1016/j.ijbiomac.2019.05.070
[104] Spolitu S, Dai W, Zadroga J A, et al. PCSK9 and lipid metabolism. Current Opinion in Lipidology, 2019, 30(3):186.
doi: 10.1097/MOL.0000000000000601
[105] Deng S J, Shen Y S, Gu H M, et al. The role of the C-terminal domain of PCSK9 and SEC24 isoforms in PCSK9 secretion. Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids, 2020, 1865(6):158660.
[106] Wang J, Wang Y H, Yang X Q, et al. Purification, structural characterization, and PCSK9 secretion inhibitory effect of the novel alkali-extracted polysaccharide from Cordyceps militaris. International Journal of Biological Macromolecules, 2021, 179:407-417.
doi: 10.1016/j.ijbiomac.2021.02.191 pmid: 33662421
[1] 郑婕,吴昊,乔建军,朱宏吉. 革兰氏阳性菌荚膜多糖研究进展*[J]. 中国生物工程杂志, 2021, 41(7): 91-98.
[2] 王一涵,李海岩,薛永常. 黄素依赖型卤化酶的结构特点及工程改造*[J]. 中国生物工程杂志, 2021, 41(4): 74-80.
[3] 张虎,刘镇洲,陈家敏,高保燕,张成武. 利用海洋硅藻生产生物活性物质研究进展*[J]. 中国生物工程杂志, 2021, 41(4): 81-90.
[4] 殷芳冰,王成,龙艳,董振营,万向元. 玉米雌穗性状遗传分析与形成机制*[J]. 中国生物工程杂志, 2021, 41(12): 30-46.
[5] 秦文萱,刘鑫,龙艳,董振营,万向元. 玉米叶夹角形成的遗传基础与分子机制解析*[J]. 中国生物工程杂志, 2021, 41(12): 74-87.
[6] 王彦博,魏佳,龙艳,董振营,万向元. 玉米雄穗性状遗传结构与形成分子机制*[J]. 中国生物工程杂志, 2021, 41(12): 88-102.
[7] 明玥,赵自通,王鸿磊,梁志宏. 基于序列和结构分析的酶热稳定性改造策略*[J]. 中国生物工程杂志, 2021, 41(10): 100-108.
[8] 程子昭,陈楚楚,应磊,李校堃,黄志锋. 冠状病毒基因组特征及感染特点比较*[J]. 中国生物工程杂志, 2020, 40(11): 56-66.
[9] 胡妍,李辉,何承文,朱婧,谢志平. 酵母亚细胞结构分离效率评估菌株的构建 *[J]. 中国生物工程杂志, 2020, 40(10): 10-23.
[10] 陈春琳,秦松,宋宛霖,刘志丹,刘正一. 褐藻寡糖生物法制备研究进展 *[J]. 中国生物工程杂志, 2020, 40(10): 85-95.
[11] 胡富,李谦,朱本伟,宁利敏,姚忠,孙芸,杜昱光. 石莼多糖裂解酶的研究进展 *[J]. 中国生物工程杂志, 2019, 39(8): 104-113.
[12] 欧梦莹,王晓政,林双君,关统伟,林宜锦. 链黑菌素研究进展 *[J]. 中国生物工程杂志, 2019, 39(7): 100-107.
[13] 姬凯茜,焦丹,谢忠奎,杨果,段子渊. 棕色脂肪细胞特异基因PRDM16的研究进展与展望 *[J]. 中国生物工程杂志, 2019, 39(4): 84-93.
[14] 仝舟,严景华. 基于非结构蛋白1(NS1)的黄病毒感染诊断研究进展[J]. 中国生物工程杂志, 2019, 39(2): 82-89.
[15] 唐健雪,肖永乐,彭俊杰,赵世纪,万小平,高荣. 融合抗菌肽基因在重组毕赤酵母的表达及体外活性研究 *[J]. 中国生物工程杂志, 2018, 38(6): 9-16.