Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2022, Vol. 42 Issue (1/2): 139-145    DOI: 10.13523/j.cb.2107055
综述     
噬菌体温度适应性的研究进展*
李金花,白雨凡,马春兰,季秀玲,魏云林()
昆明理工大学生命科学与技术学院 昆明 650500
Research Progress on Temperature Adaptation of Bacteriophage
LI Jin-hua,BAI Yu-fan,MA Chun-lan,JI Xiu-ling,WEI Yun-lin()
Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
 全文: PDF(1048 KB)   HTML
摘要:

噬菌体在自然界中分布广泛,是一类感染细菌的病毒总称。同时噬菌体繁殖迅速,对宿主的选择具有非常高的特异性,当其作为细菌感染的抗生素替代疗法时不易让宿主菌形成耐药性。因其严格寄生,其增殖过程除受环境因素(pH、离子强度、温度)影响外,往往还受宿主代谢水平的影响。在外部环境因素中,温度对噬菌体的影响尤为突出,其对噬菌体的活性、稳定性、保藏和进化等都有重要影响。对噬菌体在温度适应性机制研究方面的研究进展进行了总结,重点对噬菌体在温度胁迫下的适应性进化研究进行了整理和归纳,以期为进一步开展噬菌体研究提供帮助。

关键词: 噬菌体细菌温度适应性进化    
Abstract:

Bacteriophages are widely distributed in nature. They are a kind of viruses that infect only bacteria. Phages multiply rapidly and have very high specificity for host selection, and are less likely to cause host bacteria to develop resistance when they are used as an antibiotic replacement therapy for bacterial infections. Because it is strictly selected by parasitism, its proliferation process is affected not only by environmental factors (pH, ionic strength, temperature), but also by the host metabolic level. Among the external environmental factors, temperature has an important influence on phage activity, stability, preservation and evolution. In this paper, the research progress of phage in temperature adaptation mechanism was summarized. In addition, the research on phage adaptation evolution under temperatures stress was classified further, and thus will provide help for research in this field.

Key words: Bacteriophage    Bacterial    Temperature    Adaptation    Evolution
收稿日期: 2021-07-25 出版日期: 2022-03-03
ZTFLH:  Q819  
基金资助: * 国家自然科学基金(31960232)
通讯作者: 魏云林     E-mail: homework18@126.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
李金花
白雨凡
马春兰
季秀玲
魏云林

引用本文:

李金花,白雨凡,马春兰,季秀玲,魏云林. 噬菌体温度适应性的研究进展*[J]. 中国生物工程杂志, 2022, 42(1/2): 139-145.

LI Jin-hua,BAI Yu-fan,MA Chun-lan,JI Xiu-ling,WEI Yun-lin. Research Progress on Temperature Adaptation of Bacteriophage. China Biotechnology, 2022, 42(1/2): 139-145.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.2107055        https://manu60.magtech.com.cn/biotech/CN/Y2022/V42/I1/2/139

温度 /℃ 噬菌体(宿主) 衣壳形态 其他特点 基因组类型 参考文献
55~95 AP45(气生芽孢杆菌CEMTC656) 长尾噬菌体科 二十面体(60 nm) 长的尾巴(160 nm) dsDNA [12]
80 ID8(大肠杆菌C) 微小噬菌体科 二十面体 有包膜和衣壳结构 ssDNA [13]
60~70 Wc4(胡萝卜软腐果胶杆菌亚种KPM17) 肌尾噬菌体科 二十面体[(57.5±5.0)nm] 长不可收缩尾 [(97.3±3.6)nm] dsDNA [14]
CX5(阿托品杆菌WHG10001) 短尾噬菌体科 二十面体[(55.6±3.0)nm] 短不可收缩尾[(18.0±2)nm]
P-PSG-11(青枯雷尔氏菌) 短尾噬菌体科 二十面体[(42.7±2.6)nm] 短不可收缩尾[(12.0±2.3)nm]
40~60 PSM6(肠炎沙门氏菌) 肌尾噬菌体科 二十面体(72 nm) 短末端纤维细长的尾(122.0 nm) dsDNA [15]
40~50 vB_EcoM_F2(大肠杆菌) 肌尾噬菌体科 二十面体(60 nm) 可收缩尾(150.0 nm) dsDNA [16]
25~45 vB_SauS_SAP3(金黄色葡萄球菌D085)
vB_SauS_SH-St 15644(耐甲氧西林金黄色葡萄球菌)
长尾噬菌体科 二十面体[(60nm±5)nm]
二十面体(长:75.0 nm; 宽:40.0 nm)
长而灵活的尾[(170±5)nm]
长非收缩性尾(长:250 nm;宽:20 nm)
dsDNA [17-18]
20~50 vB-SdyS-ISF003(痢疾链球菌PTCC 1188) 长尾噬菌体科 二十面体[长:(70±3.0)nm;宽:(55±3.0)nm] 无收缩尾[(160±5.0)nm] dsDNA [19]
PH1(交替假单胞菌BH1) 短尾噬菌体科 二十面体(60.0 nm) 短尾 (26.0 nm) dsDNA [20]
25和37 øBp-AMP1(类鼻疽伯克氏菌K96243) 短尾噬菌体科 二十面体 不可收缩尾 dsDNA [21]
4~32 vB_PagS_AAS21(成团泛菌) 长尾噬菌体科 二十面体[(84.75±3.20)nm] 不可收缩,灵活的长尾[长:(173.59 ± 11.52)nm;宽:(10.27 ± 0.87) nm] dsDNA [22]
4~37 VMY22(蜡样芽孢杆菌) 短尾噬菌体科 二十面体(长:59.2 nm;宽:31.9 nm) 短尾(43.2 nm) dsDNA [4]
4~28 VSW-3(荧光假单胞菌) 短尾噬菌体科 二十面体(56 nm) 短尾(20 nm×12 nm) dsDNA [6]
4~25 VW-6和VW-6B(荧光假单胞菌) 长尾噬菌体科 二十面体(66.7 nm;61.1 nm) 长尾(长:233.3 nm;宽:8.3 nm。长:166.7 nm;宽:11.1 nm) dsDNA [7]
4~20 MYSP06(紫色杆菌MYB06) 长尾噬菌体科 二十面体(74 nm) 长尾(长:210 nm;宽:10 nm) dsDNA [5]
-20~4 PH1(交替假单胞菌BH1) 短尾噬菌体科 二十面体(60.0 nm) 短尾(26.0 nm) dsDNA [20]
vB-SdyS-ISF003(痢疾链球菌PTCC 1188) 长尾噬菌体科 二十面体[长:(70±3.0)nm;宽:(55±3.0)nm] 无收缩尾[(160±5.0)nm] dsDNA [19]
-12和8 9A(冷红科韦尔氏菌34H) 长尾噬菌体科 二十面体 长而灵活的尾 dsDNA [23]
表1  不同温度下噬菌体的分布及主要特征
[1] 王韧韬, 刘又宁. 噬菌体治疗细菌感染的临床应用与进展. 中华结核和呼吸杂志, 2020, 43(6):539-543.
Wang R T, Liu Y N. Phage therapy clinical application and progress in bacterial infections. Chinese Journal of Tuberculosis and Respiration, 2020, 43(6):539-543.
[2] Sulakvelidze A. Bacteriophage: a new journal for the most ubiquitous organisms on Earth. Bacteriophage, 2011, 1(1):1-2.
doi: 10.4161/bact.1.1.15030 pmid: 21687529
[3] Ye M, Sun M M, Huang D, et al. A review of bacteriophage therapy for pathogenic bacteria inactivation in the soil environment. Environment International, 2019, 129:488-496.
doi: 10.1016/j.envint.2019.05.062
[4] Ji X L, Zhang C J, Fang Y, et al. Isolation and characterization of glacier VMY22, a novel lytic cold-active bacteriophage of Bacillus cereus. Virologica Sinica, 2015, 30(1):52-58.
doi: 10.1007/s12250-014-3529-4
[5] Li M Y, Wang J L, Zhang Q, et al. Isolation and characterization of the lytic cold-active bacteriophage MYSP06 from the mingyong glacier in China. Current Microbiology, 2016, 72(2):120-127.
doi: 10.1007/s00284-015-0926-3
[6] Qin K H, Ji X L, Zhang C J, et al. Isolation and characterization of wetland VSW-3, a novel lytic cold-active bacteriophage of Pseudomonas fluorescens. Canadian Journal of Microbiology, 2017, 63(2):110-118.
doi: 10.1139/cjm-2016-0368
[7] Xiang Y Y, Wang S, Li J K, et al. Isolation and characterization of two lytic cold-active bacteriophages infecting Pseudomonas fluorescens from the Napahai plateau wetland. Canadian Journal of Microbiology, 2018, 64(3):183-190.
doi: 10.1139/cjm-2017-0572
[8] 李明源, 王继莲, 魏云林, 等. 明永冰川三株黄杆菌低温噬菌体的生物学特性研究. 生命科学研究 2014, 18(2):114-120.
Li M Y, Wang J L, Wei Y L, et al. Biological characteristics of three flavobacterium cold-active bacteriophages from mingyong glacier. Life Science Research, 2014, 18(2):114-120.
[9] Fernández L, Gutiérrez D, García P, et al. The perfect bacteriophage for therapeutic applications:A quick guide. Antibiotics, 2019, 8(3):126.
doi: 10.3390/antibiotics8030126
[10] Kassa T. Bacteriophages against pathogenic bacteria and possibilities for future application in Africa. Infection and Drug Resistance, 2021, 14:17-31.
doi: 10.2147/IDR.S284331
[11] Jończyk E, Kłak M, Międzybrodzki R, et al. The influence of external factors on bacteriophages:review. Folia Microbiologica, 2011, 56(3):191-200.
doi: 10.1007/s12223-011-0039-8 pmid: 21625877
[12] Morozova V, Bokovaya O, Kozlova Y, et al. A novel thermophilic Aeribacillus bacteriophage AP45 isolated from the Valley of Geysers, Kamchatka: genome analysis suggests the existence of a new genus within the Siphoviridae family. Extremophiles, 2019, 23(5):599-612.
doi: 10.1007/s00792-019-01119-2 pmid: 31376001
[13] Whittington A C, Rokyta D R. Biophysical spandrels form a hot-spot for kosmotropic mutations in bacteriophage thermal adaptation. Journal of Molecular Evolution, 2019, 87(1):27-36.
doi: 10.1007/s00239-018-9882-4 pmid: 30564861
[14] Kering K K, Zhang X X, Nyaruaba R, et al. Application of adaptive evolution to improve the stability of bacteriophages during storage. Viruses, 2020, 12(4):423.
doi: 10.3390/v12040423
[15] 黄景晓, 尚俊康, 陈慧敏, 等. 一株烈性沙门氏菌噬菌体的生物学特性及基因组分析. 生物技术通报, 2021, 37(6):136-146.
doi: 10.13560/j.cnki.biotech.bull.1985.2020-1385
Huang J X, Shang J K, Chen H M, et al. Biological characterization and genome analysis of a lytic phage infecting Salmonella. Biotechnology Bulletin, 2021, 37(6):136-146.
doi: 10.13560/j.cnki.biotech.bull.1985.2020-1385
[16] 魏炳栋, 丛聪, 于维, 等. 一株多重耐药大肠杆菌噬菌体的分离、鉴定、生物学特性及全基因组分析. 吉林农业大学学报, 2020,1-22. DOI: 10.13327/j.jjlau.2020.5773.
doi: 10.13327/j.jjlau.2020.5773
Wei B D, Con C, Yu W, et al. Isolation, identification, biological characteristics and whole genome analysis of a multi drug resistant Escherichia coli phage. Journal of Jilin Agricultural University, 2020,1-22. DOI: 10.13327/j.jjlau.2020.5773.
doi: 10.13327/j.jjlau.2020.5773
[17] 葛志毅, 韩生义, 曹小安, 等. 一株金黄色葡萄球菌噬菌体的分离鉴定与生物学特性. 微生物学通报, 2021, 48(4):1171-1181.
Ge Z Y, Han S Y, Cao X A, et al. Isolation and biological characterization of a bacteriophage against Staphylococcus aureus. Microbiology China, 2021, 48(4):1171-1181.
[18] Ji J W, Liu Q, Wang R, et al. Identification of a novel phage targeting methicillin-resistant Staphylococcus aureus in vitro and in vivo. Microbial Pathogenesis, 2020, 149:104317.
doi: 10.1016/j.micpath.2020.104317
[19] Shahin K, Bao H D, Komijani M, et al. Isolation, characterization, and PCR-based molecular identification of a Siphoviridae phage infecting Shigella dysenteriae. Microbial Pathogenesis, 2019, 131:175-180.
doi: 10.1016/j.micpath.2019.03.037
[20] Liu Z Y, Wang M, Meng X, et al. Isolation and genome sequencing of a novel Pseudoalteromonas phage PH1. Current Microbiology, 2017, 74(2):212-218.
doi: 10.1007/s00284-016-1175-9
[21] Shan J Y, Korbsrisate S, Withatanung P, et al. Temperature dependent bacteriophages of a tropical bacterial pathogen. Frontiers in Microbiology, 2014, 5:599.
[22] Šimoliūniene M, Truncaite L, Petrauskaite E, et al. Pantoea agglomerans-infecting bacteriophage vB_PagS_AAS21: a cold-adapted virus representing a novel genus within the family Siphoviridae. Viruses, 2020, 12(4):479.
doi: 10.3390/v12040479
[23] Colangelo-Lillis J R, Deming J W. Genomic analysis of cold-active Colwelliaphage 9A and psychrophilic phage-host interactions. Extremophiles, 2013, 17(1):99-114.
doi: 10.1007/s00792-012-0497-1 pmid: 23224375
[24] Jian H H, Xu J, Xiao X, et al. Dynamic modulation of DNA replication and gene transcription in deep-sea filamentous phage SW1 in response to changes of host growth and temperature. PLoS One, 2012, 7(8):e41578. DOI: 10.1371/journal.pone.0041578.
doi: 10.1371/journal.pone.0041578
[25] Meng C X, Li S T, Fan Q L, et al. The thermo-regulated genetic switch of deep-sea filamentous phage SW1 and its distribution in the Pacific Ocean. FEMS Microbiology Letters, 2020, 367(12):fnaa094.
doi: 10.1093/femsle/fnaa094
[26] Žukauskiene E, Šimoliūniene M, Truncaite L, et al. Pantoea bacteriophage vB_PagS_AAS23: a singleton of the genus sauletekiovirus. Microorganisms, 2021, 9(3):668.
doi: 10.3390/microorganisms9030668
[27] Holder K K, Bull J J. Profiles of adaptation in two similar viruses. Genetics, 2001, 159(4):1393-1404.
doi: 10.1093/genetics/159.4.1393 pmid: 11779783
[28] Betancourt A J. Genomewide patterns of substitution in adaptively evolving populations of the RNA bacteriophage MS2. Genetics, 2009, 181(4):1535-1544.
doi: 10.1534/genetics.107.085837 pmid: 19189959
[29] Lázaro E, Arribas M, Cabanillas L, et al. Evolutionary adaptation of an RNA bacteriophage to the simultaneous increase in the within-host and extracellular temperatures. Scientific Reports, 2018, 8:8080.
doi: 10.1038/s41598-018-26443-z pmid: 29795535
[30] Hossain M T, Yokono T, Kashiwagi A. The single-stranded RNA bacteriophage qβ adapts rapidly to high temperatures: an evolution experiment. Viruses, 2020, 12(6):638.
doi: 10.3390/v12060638
[31] Kashiwagi A, Sugawara R, Sano Tsushima F, et al. Contribution of silent mutations to thermal adaptation of RNA bacteriophage Qβ. Journal of Virology, 2014, 88(19):11459-11468.
doi: 10.1128/JVI.01127-14 pmid: 25056887
[32] Kashiwagi A, Kadoya T, Kumasaka N, et al. Influence of adaptive mutations, from thermal adaptation experiments, on the infection cycle of RNA bacteriophage Qβ. Archives of Virology, 2018, 163(10):2655-2662.
doi: 10.1007/s00705-018-3895-6 pmid: 29869034
[33] Zhang Q G, Buckling A. Antagonistic coevolution limits population persistence of a virus in a thermally deteriorating environment. Ecology Letters, 2011, 14(3):282-288.
doi: 10.1111/ele.2011.14.issue-3
[34] Padfield D, Castledine M, Buckling A. Temperature-dependent changes to host-parasite interactions alter the thermal performance of a bacterial host. The ISME Journal, 2020, 14(2):389-398.
doi: 10.1038/s41396-019-0526-5
[35] Cox J, Schubert A M, Travisano M, et al. Adaptive evolution and inherent tolerance to extreme thermal environments. BMC Evolutionary Biology, 2010, 10:75.
doi: 10.1186/1471-2148-10-75
[36] Singhal S, Leon Guerrero C M, Whang S G, et al. Adaptations of an RNA virus to increasing thermal stress. PLoS One, 2017, 12(12):e0189602.
doi: 10.1371/journal.pone.0189602
[37] Bayfield O W, Klimuk E, Winkler D C, et al. Cryo-EM structure and in vitro DNA packaging of a thermophilic virus with supersized T=7 capsids. PNAS, 2019, 116(9):3556-3561.
doi: 10.1073/pnas.1813204116 pmid: 30737287
[38] 崔自红, 季秀玲. 细菌-噬菌体对抗性共进化研究进展. 中国生物工程杂志, 2020, 40(1-2):140-145.
Cui Z H, Ji X L. Advances in bacteria-phage antagonistic coevolution. China Biotechnology, 2020, 40(1-2):140-145.
[1] 马春兰,李金花,白雨凡,魏云林. 重金属胁迫下的细菌适应性进化研究进展*[J]. 中国生物工程杂志, 2022, 42(1/2): 182-190.
[2] 郭芳,张良,冯旭东,李春. 植物源UDP-糖基转移酶及其分子改造*[J]. 中国生物工程杂志, 2021, 41(9): 78-91.
[3] 郭曼曼,田开仁,乔建军,李艳妮. 噬菌体重组酶系统在合成生物学中的应用*[J]. 中国生物工程杂志, 2021, 41(8): 90-102.
[4] 陈修月,周文锋,何庆,苏冰,邹亚文. 噬菌体Qβ病毒样颗粒的制备、纯化及鉴定[J]. 中国生物工程杂志, 2021, 41(7): 42-49.
[5] 袁博鑫,吴昊,闫春晓,路娟娥,魏振平,乔建军,阮海华. 病原细菌效应蛋白靶向宿主细胞核研究进展*[J]. 中国生物工程杂志, 2021, 41(7): 81-90.
[6] 朱潇静,王芮,张欣欣,靳家鑫,路闻龙,丁大顺,霍翠梅,李青梅,孙爱军,庄国庆. 利用细菌人工染色体技术构建整合F基因的重组MDV疫苗株*[J]. 中国生物工程杂志, 2021, 41(10): 33-41.
[7] 察亚平, 朱牧孜, 李爽. 体内连续定向进化研究进展 *[J]. 中国生物工程杂志, 2021, 41(1): 42-51.
[8] 孟晓琳,庞锡明,王洁. 农杆菌介导海洋草酸青霉转化体系及聚酮合酶Pks生物学功能*[J]. 中国生物工程杂志, 2020, 40(9): 11-17.
[9] 蔺士新,刘东晨,雷云,熊盛,谢秋玲. TNF-α纳米抗体的筛选、表达及特异性检测 *[J]. 中国生物工程杂志, 2020, 40(7): 15-21.
[10] 秦旭颖,杨洪江. 噬菌体分离纯化技术研究进展*[J]. 中国生物工程杂志, 2020, 40(5): 78-83.
[11] 杨丽,石晓宇,李文蕾,李剑,徐寒梅. 构建噬菌体展示抗体库过程中电穿孔法的条件优化[J]. 中国生物工程杂志, 2020, 40(4): 42-48.
[12] 崔自红,季秀玲. 细菌-噬菌体对抗性共进化研究进展 *[J]. 中国生物工程杂志, 2020, 40(1-2): 140-145.
[13] 王国强,于茵茵,曾华辉,王旭东,吴玉彬,尚立芝,李玉林,张怡青,张西西,张振强,王云龙. 基于MS2噬菌体病毒样颗粒的RT-PCR检测新型冠状病毒(SARS-CoV-2)质控品制备*[J]. 中国生物工程杂志, 2020, 40(12): 31-40.
[14] 赵建民,张思源. 耐药菌感染的噬菌体治疗专利技术[J]. 中国生物工程杂志, 2020, 40(10): 104-111.
[15] 方元,张同伟,曹长乾,田杰生,林巍. 趋磁细菌多样性与应用研究进展 *[J]. 中国生物工程杂志, 2019, 39(12): 73-82.