Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2022, Vol. 42 Issue (1/2): 96-103    DOI: 10.13523/j.cb.2107024
技术与方法     
大肠杆菌头孢菌素C乙酰酯酶的敲除对头孢菌素C酰化酶应用的影响
赵强,刘洋,周晶辉,许岗()
湖南福来格生物技术有限公司 医药化工用酶技术国家地方联合工程研究中心 长沙 410100
The Effect of Cephalosporin C Acetyl Esterase Knockout in Escherichia coli on the Application of Cephalosporin C Acylase
ZHAO Qiang,LIU Yang,ZHOU Jing-hui,XU Gang()
National Engineering Research Center for Enzyme Technology in Medicine and Chemical Industry, Hunan Flag Bio-tech Co., Ltd., Changsha 410100, China
 全文: PDF(1595 KB)   HTML
摘要:

7-氨基头孢烷酸(7-ACA)是合成头孢菌素类抗生素的重要中间体,工业上通常采用头孢菌素C酰化酶一步水解头孢菌素C制备,但在该反应产物中存在一个主要杂质3-去乙酰基-7-氨基头孢烷酸(D-7-ACA),该杂质的产生是由大肠杆菌中内源基因aes编码的头孢菌素C乙酰酯酶水解头孢菌素C或7-ACA引起的。为了防止D-7-ACA的形成,获得高品质7-ACA,减少下游精制成本,采用大肠杆菌双质粒pTargetF/pCas敲除系统,设计相应的gRNA以及同源修复供体DNA,对大肠杆菌BL21(DE3) 中的aes进行敲除,从而获得了Aes缺陷型菌株BL21(DE3)△aes。将携带头孢菌素C酰化酶(CPCacy)表达质粒pET30-CPCacy的重组工程菌BL21(DE3)/pET30-CPCacy和BL21(DE3)△aes/pET30-CPCacy所诱导表达的孢菌素C酰化酶细胞破碎上清液进行7-ACA的生产对比试验,结果表明,敲除菌BL21(DE3)△aes/pET30-CPCacy对头孢菌素C的转化率为98.8%而原始菌为98.5%,同时7-ACA的产率为80.7%而原始菌株为80.2%,杂质D-7-ACA的产率仅为0.1%,为原始菌的25%,这些工作为进一步生产高品质的7-ACA奠定了基础。

关键词: 3-去乙酰基-7-氨基头孢烷酸(D-7-ACA)孢菌素C酰化酶(CPCacy)头孢菌素C乙酰酯酶pTargetF/pCas    
Abstract:

7-aminocephalosporanic acid (7-ACA) is an important intermediate for synthesis of cephalosporin antibiotics, which is produced by enzymatic conversion of cephalosporin C using cephalosporin C acylase in industry. However, during the reaction process, there is a major impurity 3-deacetyl-7-aminocephalosporanic acid (D-7-ACA) generated from the degradation of cephalosporin C or 7-ACA by cephalosporin C acetyl esterase encoded by the aes gene of Escherichia coli. In order to obtain high-quality 7-ACA and reduce downstream refining costs, it is necessary to prevent the formation of D-7-ACA. Therefore, the corresponding gRNA and donor DNA fragments were designed and the gene aes was knocked out from the chromosome of E. coli BL21(DE3) to generate the engineer E. coli BL21(DE3)△aes using the pTargetF/pCas knockout system. Then, the plasmid of pET30-CPCacy was constructed by inserting the gene CPCacy encoding cephalosporin C acylase into the backbone of pET30(a). The cell lysis supernatants of recombinant strains expressing the cephalosporin C acylase plasmids, including E. coli BL21(DE3)/pET30-CPCacy and E. coli BL21(DE3)△aes/pET30-CPCacy, were applied to the production of the 7-ACA. During the process of cephalosporin C bioconversion, the cephalosporin C utilization efficiency, the yield of 7-ACA and impurity D-7-ACA by each engineered strain were compared. The cephalosporin C conversion rate was 98.8% in E. coli BL21(DE3)△aes/pET30-CPCacy and 98.5% in the original strain, respectively. At the same time, the yield of 7-ACA was 80.7% while that of the original strain was 80.2%,and the yield of impurity D-7-ACA was only 0.1% which was a quarter of the original strain. This work would lay a foundation for the further production of high-quality 7-ACA.

Key words: 3-Deacetyl-7-aminocephalosporanic acid (D-7-ACA)    CPC acylase (CPCacy)    Cephalosporin C acetyl esterase    pTargetF/pCas
收稿日期: 2021-07-07 出版日期: 2022-03-03
ZTFLH:  Q814  
通讯作者: 许岗     E-mail: hnflag@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
赵强
刘洋
周晶辉
许岗

引用本文:

赵强,刘洋,周晶辉,许岗. 大肠杆菌头孢菌素C乙酰酯酶的敲除对头孢菌素C酰化酶应用的影响[J]. 中国生物工程杂志, 2022, 42(1/2): 96-103.

ZHAO Qiang,LIU Yang,ZHOU Jing-hui,XU Gang. The Effect of Cephalosporin C Acetyl Esterase Knockout in Escherichia coli on the Application of Cephalosporin C Acylase. China Biotechnology, 2022, 42(1/2): 96-103.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.2107024        https://manu60.magtech.com.cn/biotech/CN/Y2022/V42/I1/2/96

图1  头孢菌素C酰化酶和头孢菌素C乙酰酯酶转化头孢菌素C的反应示意图
引物 序列(5'-3')
pTargetF-Aes-gRNA-F GTTCCCGTTGCGGGCCAGGGGTTTTAGAGCTAGAAATAGCAAG
pTargetF-Aes-gRNA-R CCCTGGCCCGCAACGGGAACACTAGTATTATACCTAGGACTGAGC
Aes-gRNA-GT-F ATTCCAGAATCGGCGCTCAAGCGTGTAATACTGTCGTTGCTCAGCAATCTAAATCCGGC
Aes-gRNA-GT-R TATTTCTGCTGGAATGAAGACCGTTGTGAATACTCTTCAGCCGGATTTAGATTGCTGAG
Aes-Dec-F GCGTGTAATACTGTCGTTGCTCAGC
Aes-Dec-R TCTGGACCTTATTTCTGCTGGAATG
表1  本实验的引物序列
图2  Aes-gRNA的PCR产物鉴定
图3  aes同源修复供体DNA鉴定
图4  BL21(DE3)基因敲除菌的PCR鉴定
图5  重组工程菌表达质粒的酶切鉴定
图6  重组工程菌的基因敲除鉴定
图7  头孢菌素C酰化酶转化头孢菌素C生产D-7-ACA的分析图
菌株名称 头孢菌素C
转化率/%
7-ACA
产率/%
D-7-ACA
产率/%
BL21(DE3)aes/pET30-CPCacy 98.5±0.2 80.2±0.1 0.4±0.02
BL21(DE3)△aes/pET30-CPCacy 98.8±0.1 80.7±0.2 0.1±0.01
表2  头孢菌素C酰化酶的转化应用结果
[1] Monti D, Carrea G, Riva S, et al. Characterization of an industrial biocatalyst: immobilized glutaryl-7-ACA acylase. Biotechnology and Bioengineering, 2000, 70(2):239-244.
pmid: 10972935
[2] Pollegioni L, Lorenzi S, Rosini E, et al. Evolution of an acylase active on cephalosporin C. Protein Science, 2005, 14(12):3064-3076.
pmid: 16260759
[3] Jiang W Y, Bikard D, Cox D, et al. RNA-guided editing of bacterial genomes using CRISPR-Cas systems. Nature Biotechnology, 2013, 31(3):233-239.
doi: 10.1038/nbt.2508
[4] Jiang Y, Chen B, Duan C L, et al. Multigene editing in the Escherichia coli genome via the CRISPR-Cas9 system. Applied and Environmental Microbiology, 2015, 81(7):2506-2514.
doi: 10.1128/AEM.04023-14 pmid: 25636838
[5] Abdelaal A S, Jawed K, Yazdani S S. CRISPR/Cas9-mediated engineering of Escherichia coli for n-butanol production from xylose in defined medium. Journal of Industrial Microbiology & Biotechnology, 2019, 46(7):965-975.
[6] Sun D C, Wang L, Mao X D, et al. Chemical transformation mediated CRISPR/Cas9 genome editing in Escherichia coli. Biotechnology Letters, 2019, 41(2):293-303.
doi: 10.1007/s10529-018-02639-1
[7] 刘新花, 杨广宇, 邓子新, 等. 基于结构B因子分析指导的头孢菌素C酰化酶动力学稳定性改造. 微生物学通报, 2017, 44(6):1405-1415.
Liu X H, Yang G Y, Deng Z X, et al. Enhancing enzyme activity and thermostability of cephalosporin C acylase based on B factor analysis. Microbiology China, 2017, 44(6):1405-1415.
[8] 徐雪丽, 张伟, 刘艳, 等. 头孢菌素C酰化酶突变位点的研究. 中国生物工程杂志, 2015, 35(2):59-65.
Xu X L, Zhang W, Liu Y, et al. Study on mutations of cephalosporin C acylase. China Biotechnology, 2015, 35(2):59-65.
[9] Ma X Q, Deng S W, Su E Z, et al. One-pot enzymatic production of deacetyl-7-aminocephalosporanic acid from cephalosporin C via immobilized cephalosporin C acylase and deacetylase. Biochemical Engineering Journal, 2015, 95:1-8.
doi: 10.1016/j.bej.2014.11.015
[10] Wang Y, Yu H M, Zhang J, et al. Double knockout of β-lactamase and cephalosporin acetyl esterase genes from Escherichia coli reduces cephalosporin C decomposition. Journal of Bioscience and Bioengineering, 2012, 113(6):737-741.
doi: 10.1016/j.jbiosc.2012.02.003
[11] Datsenko K A, Wanner B L. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. PNAS, 2000, 97(12):6640-6645.
pmid: 10829079
[12] Xu G, Zhao Q, Huang B, et al. Directed evolution of a penicillin V acylase from Bacillus sphaericus to improve its catalytic efficiency for 6-APA production. Enzyme and Microbial Technology, 2018, 119:65-70.
doi: 10.1016/j.enzmictec.2018.08.006
[13] 张洁, 潘艳峰, 邢运哲. 超高效液相色谱法测定D-7-ACA的含量. 煤炭与化工, 2014, 37(5):55-58.
Zhang J, Pan Y F, Xing Y Z. Determination on content of D-7-ACA by UPLC method. Coal and Chemical Industry, 2014, 37(5):55-58.
[14] Cobb R E, Wang Y J, Zhao H M. High-efficiency multiplex genome editing of Streptomyces species using an engineered CRISPR/Cas system. ACS Synthetic Biology, 2015, 4(6):723-728.
doi: 10.1021/sb500351f
[15] Ronda C, Pedersen L E, Sommer M O A, et al. CRMAGE: CRISPR optimized MAGE recombineering. Scientific Reports, 2016, 6(5):19452.
doi: 10.1038/srep19452
[16] Li Y F, Lin Z Q, Huang C, et al. Metabolic engineering of Escherichia coli using CRISPR-Cas9 meditated genome editing. Metabolic Engineering, 2015, 31:13-21.
doi: 10.1016/j.ymben.2015.06.006
[17] 陈海龙, 于沛. 头孢类抗生素的新型中间体D-7-ACA. 中国当代医药, 2009, 16(7):46-48.
Chen H L, Yu P. A novel intermediate of cephalosporins D-7-ACA. China Modern Medicine, 2009, 16(7):46-48.
[18] Tan Q, Qiu J, Luo X, et al. Progress in one-pot bioconversion of cephalosporin C to 7-aminocephalosporanic acid. Current Pharmaceutical Biotechnology, 2018, 19(1):30-42.
doi: 10.2174/1389201019666180509093956
[19] Oh B, Kim M, Yoon J, et al. Deacylation activity of cephalosporin acylase to cephalosporin C is improved by changing the side-chain conformations of active-site residues. Biochemical and Biophysical Research Communications, 2003, 310(1):19-27.
doi: 10.1016/j.bbrc.2003.08.110
[20] Li Y, Chen J F, Jiang W H, et al. In vivo post-translational processing and subunit reconstitution of cephalosporin acylase from Pseudomonas sp. 130. European Journal of Biochemistry, 1999, 262(3):713-719.
pmid: 10411632
[21] Ishii Y, Saito Y, Fujimura T, et al. High-level production, chemical modification and site-directed mutagenesis of a cephalosporin C acylase from Pseudomonas strain N176. European Journal of Biochemistry, 1995, 230(2):773-778.
pmid: 7607251
[22] Shin Y C, Jeon J Y, Jung K H, et al. Cephalosporin C acylase mutant and method for preparing 7-ACA using same: US, 0207519. 2007-09-06[2022-01-28].https://www.freepatentsonline.com/y2007/0207519.html.
[1] 李江波,郭鸿斌,王诗昆,金蕊,程龙. 利用拆分绿色荧光蛋白检测端粒酶TERT亚基与端粒末端蛋白TPP1的相互作用*[J]. 中国生物工程杂志, 2022, 42(1/2): 80-87.
[2] 陈开通,郑文隆,杨立荣,徐刚,吴坚平. 氨基树脂固定化L-苏氨酸醛缩酶及其应用*[J]. 中国生物工程杂志, 2021, 41(9): 55-63.
[3] 郭芳,张良,冯旭东,李春. 植物源UDP-糖基转移酶及其分子改造*[J]. 中国生物工程杂志, 2021, 41(9): 78-91.
[4] 郭曼曼,田开仁,乔建军,李艳妮. 噬菌体重组酶系统在合成生物学中的应用*[J]. 中国生物工程杂志, 2021, 41(8): 90-102.
[5] 陶守松,任广明,尹荣华,杨晓明,马文兵,葛志强. 敲低去泛素化酶USP13抑制K562细胞的增殖*[J]. 中国生物工程杂志, 2021, 41(5): 1-7.
[6] 董雪迎,梁凯,叶克应,周策凡,唐景峰. 受体酪氨酸激酶对自噬的调控及其研究进展*[J]. 中国生物工程杂志, 2021, 41(5): 72-78.
[7] 陈中伟,郑璞,陈鹏程,吴丹. 耐热植酸酶突变体的筛选及性质研究 *[J]. 中国生物工程杂志, 2021, 41(2/3): 30-37.
[8] 魏子翔,张柳群,雷磊,韩正刚,杨江科. 疏棉状嗜热丝孢菌(Thermomyces lanuginosus)脂肪酶的理性设计提高其活性和温度稳定性[J]. 中国生物工程杂志, 2021, 41(2/3): 63-69.
[9] 玄美娟,张晓云,高莹,高丽影,吴佳婧,马梅,王艳梅,寇航,路福平,黎明. 大肠杆菌糖酵解途径和三羧酸循环启动子的表征及其应用 *[J]. 中国生物工程杂志, 2020, 40(6): 20-30.
[10] 朱衡,张继福,张云,胡云峰. 环氧交联剂和氨基载体固定化海洋假丝酵母脂肪酶*[J]. 中国生物工程杂志, 2020, 40(5): 57-68.
[11] 赵晓艳,陈允妲,章雅倩,吴晓玉,王飞,陈金印. Myxococcus sp.V11海藻糖合酶TreS II分子改造 *[J]. 中国生物工程杂志, 2020, 40(3): 79-87.
[12] 苏永君,胡蝶,胡博淳,李闯,文正,章晨,邬敏辰. 定点突变提高环氧化物水解酶AuEH2催化对甲基苯基缩水甘油醚的对映选择性*[J]. 中国生物工程杂志, 2020, 40(3): 88-95.
[13] 朱衡,张继福,张云,孙爱君,胡云峰. 聚乙二醇二缩水甘油醚交联氨基载体LX-1000EA固定化脂肪酶 *[J]. 中国生物工程杂志, 2020, 40(1-2): 124-132.
[14] 朱梦露,王雪雨,刘鑫,路福平,孙登岳,秦慧民. 一种新型亮氨酸5-羟化酶NmLEH的异源表达、纯化及酶学性质分析 *[J]. 中国生物工程杂志, 2019, 39(12): 24-34.
[15] 段李梅,杨锦潇,刘佳渝,郑永波,吴小候,罗春丽. shPLCε通过YAP抑制前列腺癌细胞的丝氨酸/甘氨酸代谢和增殖 *[J]. 中国生物工程杂志, 2019, 39(11): 1-12.