Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2022, Vol. 42 Issue (1/2): 112-118    DOI: 10.13523/j.cb.2106050
综述     
类器官芯片在医学研究中的应用进展*
冯晓莹1,2,孟倩1,2,陈巍1,余磊3,**(),黄卫人1,**()
1 深圳市第二人民医院 医学合成生物学临床应用关键技术国家地方联合工程实验室 深圳 518036
2 汕头大学医学院 汕头 515041
3 深圳合成生物学创新研究院 中国科学院深圳先进技术研究院 深圳 518055
Application Progress of Organoids-on-a-chip in Medical Research
FENG Xiao-ying1,2,MENG Qian1,2,CHEN Wei1,YU Lei3,**(),HUANG Wei-ren1,**()
1 State and Local Government Joint Engineering Laboratory of Synthetic Biology Medicine and Clinical Application of Key Technologies, Shenzhen Second Hospital, Shenzhen 518036, China
2 Shantou University Medical College, Shantou 515041, China
3 Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
 全文: PDF(1053 KB)   HTML
摘要:

相比于2D细胞模型和动物模型,类器官更能够重现来源器官的关键结构和功能特征,在生物医学领域得到了广泛的研究和运用。类器官芯片结合了类器官培养腔、微流控等多种功能单元,不仅可以根据研究者对靶器官的认知来设计仿生结构,模拟人体靶器官的复杂性;而且能控制并检测类器官所处微环境的变化,具有高通量和高灵敏度的特点。对类器官芯片的组成元件以及类器官芯片在医学研究中的应用,包括生物发育模型及疾病模型构建、药物研发、免疫评价等方面进行概述,并根据类器官芯片在目前研究应用中的不足进行讨论及展望,旨在为研究疾病或生物发育机理以及临床前研究提供有力的策略。

关键词: 类器官芯片微流控药物筛选模型构建免疫评价    
Abstract:

Compared with 2D cell model and animal model, organoids can better reproduce the key structural and functional characteristics of the source organs, which have been widely studied and applied in the biomedical field. Organoids-on-a-chip combines organoid culture chamber, microfluidics and other functional units, which can not only be designed according to researchers' cognition of target organs, but also simulate the complexity of target organs. With the characteristics of high throughput and high sensitivity, it can control and detect the changes of the microenvironment in which organoids are located. This review summarizes the units and applications of organoids-on-a-chip in medical research, including construction of biological models and disease models, drug research and development, and immune evaluation, and discusses the shortcomings of organoids-on-a-chip in current research and application and proposes directions for future research. The aim is to provide a powerful strategy for the study of disease or biological development mechanism and preclinical research.

Key words: Organoids-on-a-chip    Microfluidics    Drug screening    Construction of models    Evaluation of immune effect
收稿日期: 2021-06-29 出版日期: 2022-03-03
ZTFLH:  Q819  
基金资助: * 国家重点研发计划(2019YFA0906000);广东省自然科学基金(2020A1515010235)
通讯作者: 余磊,黄卫人     E-mail: lei.yu@siat.ac.cn;pony8980@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
冯晓莹
孟倩
陈巍
余磊
黄卫人

引用本文:

冯晓莹,孟倩,陈巍,余磊,黄卫人. 类器官芯片在医学研究中的应用进展*[J]. 中国生物工程杂志, 2022, 42(1/2): 112-118.

FENG Xiao-ying,MENG Qian,CHEN Wei,YU Lei,HUANG Wei-ren. Application Progress of Organoids-on-a-chip in Medical Research. China Biotechnology, 2022, 42(1/2): 112-118.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.2106050        https://manu60.magtech.com.cn/biotech/CN/Y2022/V42/I1/2/112

[1] Lancaster M A, Knoblich J A. Organogenesis in a dish: modeling development and disease using organoid technologies. Science, 2014, 345(6194):1247125.
doi: 10.1126/science.1247125 pmid: 25035496
[2] Lee S H, Hu W H, Matulay J T, et al. Tumor evolution and drug response in patient-derived organoid models of bladder cancer. Cell, 2018, 173(2):515-528.e17.
doi: 10.1016/j.cell.2018.03.017
[3] Lo Y H, Karlsson K, Kuo C J. Applications of organoids for cancer biology and precision medicine. Nature Cancer, 2020, 1(8):761-773.
doi: 10.1038/s43018-020-0102-y
[4] Drost J, Karthaus W R, Gao D, et al. Organoid culture systems for prostate epithelial and cancer tissue. Nature Protocols, 2016, 11(2):347-358.
doi: 10.1038/nprot.2016.006
[5] Cattaneo C M, Dijkstra K K, Fanchi L F, et al. Tumor organoid-T-cell coculture systems. Nature Protocols, 2020, 15(1):15-39.
doi: 10.1038/s41596-019-0232-9 pmid: 31853056
[6] Low L A, Tagle D A. Tissue chips to aid drug development and modeling for rare diseases. Expert Opinion on Orphan Drugs, 2016, 4(11):1113-1121.
doi: 10.1080/21678707.2016.1244479
[7] Park S E, Georgescu A, Huh D. Organoids-on-a-chip. Science, 2019, 364(6444):960-965.
doi: 10.1126/science.aaw7894
[8] Breslin S, O’Driscoll L. Three-dimensional cell culture: the missing link in drug discovery. Drug Discovery Today, 2013, 18(5-6):240-249.
doi: 10.1016/j.drudis.2012.10.003 pmid: 23073387
[9] Xu X, Farach-Carson M C, Jia X Q. Three-dimensional in vitro tumor models for cancer research and drug evaluation. Biotechnology Advances, 2014, 32(7):1256-1268.
doi: 10.1016/j.biotechadv.2014.07.009
[10] Liu H T, Wang Y Q, Cui K L, et al. Advances in hydrogels in organoids and organs-on-a-chip. Advanced Materials (Deerfield Beach, Fla), 2019, 31(50):e1902042.
[11] Kankala R K, Zhu K, Li J, et al. Fabrication of arbitrary 3D components in cardiac surgery: from macro-, micro- to nanoscale. Biofabrication, 2017, 9(3):032002.
doi: 10.1088/1758-5090/aa8113
[12] Khan I, Prabhakar A, Delepine C, et al. A low-cost 3D printed microfluidic bioreactor and imaging chamber for live-organoid imaging. Biomicrofluidics, 2021, 15(2):024105.
doi: 10.1063/5.0041027
[13] Huh D, Hamilton G A, Ingber D E. From 3D cell culture to organs-on-chips. Trends in Cell Biology, 2011, 21(12):745-754.
doi: 10.1016/j.tcb.2011.09.005
[14] Lin B C, Qin J H. Laboratory on a microfluidic chip. Se Pu, 2005, 23(5):456-463.
[15] Yin X L, Mead B E, Safaee H, et al. Engineering stem cell organoids. Cell Stem Cell, 2016, 18(1):25-38.
doi: 10.1016/j.stem.2015.12.005
[16] Wang Y L, Gunasekara D B, Reed M I, et al. A microengineered collagen scaffold for generating a polarized crypt-villus architecture of human small intestinal epithelium. Biomaterials, 2017, 128:44-55.
doi: 10.1016/j.biomaterials.2017.03.005
[17] Zervantonakis I, Chung S, Sudo R, et al. Concentration gradients in microfluidic 3D matrix cell culture systems. International Journal of Micro- Nano Scale Transport, 2010, 1(1):27-36.
doi: 10.1260/1759-3093.1.1.27
[18] Lee K K, McCauley H A, Broda T R, et al. Human stomach-on-a-chip with luminal flow and peristaltic-like motility. Lab on a Chip, 2018, 18(20):3079-3085.
doi: 10.1039/C8LC00910D
[19] Michielin F, Giobbe G G, Luni C, et al. The microfluidic environment reveals a hidden role of self-organizing extracellular matrix in hepatic commitment and organoid formation of hiPSCs. Cell Reports, 2020, 33(9):108453.
doi: 10.1016/j.celrep.2020.108453 pmid: 33264615
[20] Gheibi P, Zeng S X, Son K J, et al. Microchamber cultures of bladder cancer: a platform for characterizing drug responsiveness and resistance in PDX and primary cancer cells. Scientific Reports, 2017, 7:12277.
doi: 10.1038/s41598-017-12543-9
[21] Hassell B A, Goyal G, Lee E, et al. Human organ chip models recapitulate orthotopic lung cancer growth, therapeutic responses, and tumor dormancy in vitro. Cell Reports, 2017, 21(2):508-516.
doi: S2211-1247(17)31331-1 pmid: 29020635
[22] Schuster B, Junkin M, Kashaf S S, et al. Automated microfluidic platform for dynamic and combinatorial drug screening of tumor organoids. Nature Communications, 2020, 11:5271.
doi: 10.1038/s41467-020-19058-4 pmid: 33077832
[23] Lohasz C, Frey O, Bonanini F, et al. Tubing-free microfluidic microtissue culture system featuring gradual, in vivo-like substance exposure profiles. Frontiers in Bioengineering and Biotechnology, 2019, 7:72.
doi: 10.3389/fbioe.2019.00072
[24] Sung K E, Su X J, Berthier E, et al. Understanding the impact of 2D and 3D fibroblast cultures on in vitro breast cancer models. PLoS One, 2013, 8(10):e76373.
doi: 10.1371/journal.pone.0076373
[25] Moradi E, Jalili-Firoozinezhad S, Solati-Hashjin M. Microfluidic organ-on-a-chip models of human liver tissue. Acta Biomaterialia, 2020, 116:67-83.
doi: 10.1016/j.actbio.2020.08.041
[26] Schutgens F, Rookmaaker M B, Margaritis T, et al. Tubuloids derived from human adult kidney and urine for personalized disease modeling. Nature Biotechnology, 2019, 37(3):303-313.
doi: 10.1038/s41587-019-0048-8 pmid: 30833775
[27] Osaki T, Uzel S G M, Kamm R D. On-chip 3D neuromuscular model for drug screening and precision medicine in neuromuscular disease. Nature Protocols, 2020, 15(2):421-449.
doi: 10.1038/s41596-019-0248-1
[28] Frega M, Tedesco M, Massobrio P, et al. Network dynamics of 3D engineered neuronal cultures: a new experimental model for in-vitro electrophysiology. Scientific Reports, 2014, 4:5489.
doi: 10.1038/srep05489
[29] Wu Q, Pan Y X, Wan H, et al. Research progress of organoids-on-chips in biomedical application. Chinese Science Bulletin, 2019, 64(9):902-910.
[30] Zhang Y S, Aleman J, Shin S R, et al. Multisensor-integrated organs-on-chips platform for automated and continual in situ monitoring of organoid behaviors. PNAS, 2017, 114(12):E2293-E2302.
doi: 10.1073/pnas.1612906114
[31] Takebe T, Wells J M. Organoids by design. Science, 2019, 364(6444):956-959.
doi: 10.1126/science.aaw7567
[32] Yu F, Hunziker W, Choudhury D. Engineering microfluidic organoid-on-a-chip platforms. Micromachines, 2019, 10(3):165.
doi: 10.3390/mi10030165
[33] Beckwitt C H, Clark A M, Wheeler S, et al. Liver ‘organ on a chip’. Experimental Cell Research, 2018, 363(1):15-25.
doi: S0014-4827(17)30678-X pmid: 29291400
[34] Guo F, French J B, Li P, et al. Probing cell-cell communication with microfluidic devices. Lab on a Chip, 2013, 13(16):3152-3162.
doi: 10.1039/c3lc90067c
[35] 庄琪琛, 宁芮之, 麻远, 等. 微流控技术应用于细胞分析的研究进展. 分析化学, 2016, 44(4):522-532.
doi: 10.1016/S1872-2040(16)60919-2
Zhuang Q C, Ning R Z, Ma Y, et al. Recent development in microfluidic chips for in vitro cell-based research. Chinese Journal of Analytical Chemistry, 2016, 44(4):522-532.
doi: 10.1016/S1872-2040(16)60919-2
[36] Toh Y C, Zhang C, Zhang J, et al. A novel 3D mammalian cell perfusion-culture system in microfluidic channels. Lab on a Chip, 2007, 7(3):302-309.
doi: 10.1039/b614872g
[37] Jin Y, Kim J, Lee J S, et al. Drug screening: vascularized liver organoids generated using induced hepatic tissue and dynamic liver-specific microenvironment as a drug testing platform (adv. funct. mater. 37/2018). Advanced Functional Materials, 2018, 28(37):1870266.
doi: 10.1002/adfm.v28.37
[38] Wang Y Q, Wang L, Zhu Y J, et al. Human brain organoid-on-a-chip to model prenatal nicotine exposure. Lab on a Chip, 2018, 18(6):851-860.
doi: 10.1039/C7LC01084B
[39] Gao Y D, Majumdar D, Jovanovic B, et al. A versatile valve-enabled microfluidic cell co-culture platform and demonstration of its applications to neurobiology and cancer biology. Biomedical Microdevices, 2011, 13(3):539-548.
doi: 10.1007/s10544-011-9523-9
[40] Jalili-Firoozinezhad S, Gazzaniga F S, Calamari E L, et al. A complex human gut microbiome cultured in an anaerobic intestine-on-a-chip. Nature Biomedical Engineering, 2019, 3(7):520-531.
doi: 10.1038/s41551-019-0397-0 pmid: 31086325
[41] Nikolaev M, Mitrofanova O, Broguiere N, et al. Homeostatic mini-intestines through scaffold-guided organoid morphogenesis. Nature, 2020, 585(7826):574-578.
doi: 10.1038/s41586-020-2724-8
[42] Ramadan Q, Alberti M, Dufva M, et al. Editorial: medical and industrial applications of microfluidic-based cell/tissue culture and organs-on-a-chip. Frontiers in Bioengineering and Biotechnology, 2019, 7:151.
doi: 10.3389/fbioe.2019.00151 pmid: 31294020
[43] Skardal A, Murphy S V, Devarasetty M, et al. Multi-tissue interactions in an integrated three-tissue organ-on-a-chip platform. Scientific Reports, 2017, 7:8837.
doi: 10.1038/s41598-017-08879-x
[44] Skardal A, Aleman J, Forsythe S, et al. Drug compound screening in single and integrated multi-organoid body-on-a-chip systems. Biofabrication, 2020, 12(2):025017.
doi: 10.1088/1758-5090/ab6d36
[45] Kashaninejad N, Nikmaneshi M, Moghadas H, et al. Organ-tumor-on-a-chip for chemosensitivity assay: a critical review. Micromachines, 2016, 7(8):130.
doi: 10.3390/mi7080130
[46] Zhang Z, Nagrath S. Microfluidics and cancer: are we there yet? Biomedical Microdevices, 2013, 15(4):595-609.
doi: 10.1007/s10544-012-9734-8 pmid: 23358873
[47] Hu Y W, Sui X Z, Song F, et al. Lung cancer organoids analyzed on microwell arrays predict drug responses of patients within a week. Nature Communications, 2021, 12:2581.
doi: 10.1038/s41467-021-22676-1
[48] Au S H, Chamberlain M D, Mahesh S, et al. Hepatic organoids for microfluidic drug screening. Lab on a Chip, 2014, 14(17):3290-3299.
doi: 10.1039/C4LC00531G
[49] Zink D, Chuah J K C, Ying J Y. Assessing toxicity with human cell-based in vitro methods. Trends in Molecular Medicine, 2020, 26(6):570-582.
doi: 10.1016/j.molmed.2020.01.008
[50] Aboulkheyr Es H, Montazeri L, Aref A R, et al. Personalized cancer medicine: an organoid approach. Trends in Biotechnology, 2018, 36(4):358-371.
doi: S0167-7799(17)30326-8 pmid: 29366522
[51] Chen Q, Zhang X H F, Massagué J. Macrophage binding to receptor VCAM-1 transmits survival signals in breast cancer cells that invade the lungs. Cancer Cell, 2011, 20(4):538-549.
doi: 10.1016/j.ccr.2011.08.025
[52] Aung A, Kumar V, Theprungsirikul J, et al. An engineered tumor-on-a-chip device with breast cancer-immune cell interactions for assessing T-cell recruitment. Cancer Research, 2020, 80(2):263-275.
doi: 10.1158/0008-5472.CAN-19-0342
[53] Huang C P, Lu J, Seon H, et al. Engineering microscale cellular niches for three-dimensional multicellular co-cultures. Lab on a Chip, 2009, 9(12):1740-1748.
doi: 10.1039/b818401a
[54] Liu P F, Cao Y W, Zhang S D, et al. A bladder cancer microenvironment simulation system based on a microfluidic co-culture model. Oncotarget, 2015, 6(35):37695-37705.
doi: 10.18632/oncotarget.v6i35
[55] Gijzen L, Marescotti D, Raineri E, et al. An intestine-on-a-chip model of plug-and-play modularity to study inflammatory processes. SLAS Technology, 2020, 25(6):585-597.
doi: 10.1177/2472630320924999
[56] Feder-Mengus C, Ghosh S, Reschner A, et al. New dimensions in tumor immunology: what does 3D culture reveal? Trends in Molecular Medicine, 2008, 14(8):333-340.
doi: 10.1016/j.molmed.2008.06.001 pmid: 18614399
[57] Boussommier-Calleja A, Li R, Chen M B, et al. Microfluidics: a new tool for modeling cancer-immune interactions. Trends in Cancer, 2016, 2(1):6-19.
pmid: 26858990
[58] Berthier E, Young E W K, Beebe D. Engineers are from PDMS-land, Biologists are from Polystyrenia. Lab on a Chip, 2012, 12(7):1224.
doi: 10.1039/c2lc20982a pmid: 22318426
[59] Ren K N, Zhao Y H, Su J, et al. Convenient method for modifying poly(dimethylsiloxane) to be airtight and resistive against absorption of small molecules. Analytical Chemistry, 2010, 82(14):5965-5971.
doi: 10.1021/ac100830t
[60] Liu Q, Zhao T, Wang X N, et al. In situ vitrification of lung cancer organoids on a microwell array. Micromachines, 2021, 12(6):624.
doi: 10.3390/mi12060624
[1] 时忠林,崔俊生,杨柯,胡安中,李亚楠,刘勇,邓国庆,朱灿灿,朱灵. 基于微流控芯片的核酸等温扩增技术研究进展 *[J]. 中国生物工程杂志, 2021, 41(2/3): 116-128.
[2] 靳露,周航,曹云,王振守,曹荣月. 高通量灌流培养模型在生物工艺开发中的应用研究[J]. 中国生物工程杂志, 2020, 40(8): 63-73.
[3] 陈亮,高姗,毛海央,王云翔,冀斌,金志颖,康琳,杨浩,王景林. 超大表面积自驱动微流控芯片的设计与制备 *[J]. 中国生物工程杂志, 2019, 39(6): 17-24.
[4] 王景丽,丁真真,刘辉,唐延婷. 以番茄斑萎病毒核蛋白为靶点的荧光偏振药物筛选体系的建立及应用 *[J]. 中国生物工程杂志, 2018, 38(11): 18-24.
[5] 蒋丽莉,郑峻松,李艳,邓均,方立超,黄辉. 基于微流控芯片的体外血脑屏障模型构建 *[J]. 中国生物工程杂志, 2017, 37(12): 1-7.
[6] 朱云鹏, 王鹏, 夏博然, 唐延婷, 王权. SARS冠状病毒主蛋白酶抑制剂的筛选及抑制动力学研究[J]. 中国生物工程杂志, 2016, 36(4): 35-42.
[7] 桑维维, 常亚男, 李娟. 微流控芯片对乳腺癌细胞MDA-MB-231的捕获及再培养研究[J]. 中国生物工程杂志, 2015, 35(6): 46-53.
[8] 李志刚, 李鑫, 史仲平. 乙、丁酸添加条件下丁醇发酵图论模型的构建[J]. 中国生物工程杂志, 2014, 34(4): 46-52.
[9] 郭莉莉, 欧霞, 米锴, 孙茂盛, 李鸿钧. EV71类病毒颗粒的表达和免疫原性的初步评价[J]. 中国生物工程杂志, 2013, 33(1): 8-13.
[10] 史文芳, 冯悦, 魏大巧, 夏雪山. 丙型肝炎病毒靶向药物及抗病毒药物筛选[J]. 中国生物工程杂志, 2011, 31(11): 95-101.
[11] 赵振礼, 蔡绍皙, 戴小珍. 微流控芯片在干细胞研究中的应用[J]. 中国生物工程杂志, 2011, 31(03): 81-86.
[12] 周丽宏, 陈自强, 黄国友, 翟晓, 陈咏梅, 徐峰, 卢天健. 细胞打印技术及应用[J]. 中国生物工程杂志, 2010, 30(12): 95-104.
[13] 蔡怀涵 王璐 谢元翼 刘旭东 宋青. 细胞核受体LXRβ的体外酶标测活方法的建立与应用[J]. 中国生物工程杂志, 2010, 30(07): 0-0.
[14] 谢桂煌 赵声兰 陈朝银. 假病毒技术用于抗HIV-1药物筛选及抗药性分析[J]. 中国生物工程杂志, 2010, 30(03): 95-99.
[15] 史继静 刘朝奇 邹坤 杨祖伟 高明星 杨凡. 人IL-6 /sIL-6R 结合分子模型的建立及在药物筛选中的应用[J]. 中国生物工程杂志, 2009, 29(11): 60-65.