Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2021, Vol. 41 Issue (9): 1-9    DOI: 10.13523/j.cb.2103013
研究报告     
二甲双胍(Metformin)在少突胶质前体细胞分化中的作用和机制*
谈沛林1,2,张莹2,张竣1,高笑1,王树坤2,侯琳1,袁增强1,2,**()
1 青岛大学基础医学院 青岛 266071
2 军事科学院军事医学研究院军事认知与脑科学研究所 北京 100850
Role and Mechanism of Metformin in Oligodendrocyte Precursor Cell Differentiation
TAN Pei-lin1,2,ZHANG Ying2,ZHANG Jun1,GAO Xiao1,WANG Shu-kun2,HOU Lin1,YUAN Zeng-qiang1,2,**()
1 School of Basic Medicine, Qingdao 266071, China
2 Institute of Military Cognition and Brain Sciences, Academy of Military Medical Sciences, Beijing 100850, China
 全文: PDF(1742 KB)   HTML
摘要:

目的:研究二甲双胍(metformin)在少突胶质前体细胞(oligodendrocyte precursor cell, OPC)分化过程中的作用,并对其分子机制进行初步探讨。方法:使用免疫吸附法直接分离纯化OPC后诱导培养,通过免疫荧光染色对细胞进行鉴定。在不同浓度二甲双胍处理OPC后,使用CCK8检测细胞活性;通过免疫荧光染色、流式细胞分析、实时荧光定量PCR和蛋白质印迹检测二甲双胍对OPC分化中细胞数量、mRNA和蛋白质水平的影响。结果:使用免疫吸附法可分离出高纯度OPC;CCK8检测结果显示在100 μmol/L浓度以内,二甲双胍对细胞无毒性;免疫荧光染色结果显示,二甲双胍处理OPC后,PDGFRα + OLIG2+阳性细胞数明显增加,且MBP+细胞数显著增加;流式细胞分析结果显示,PDGFRα+细胞数显著增加;实时荧光定量PCR结果显示,OPC分化相关基因MagMbp等的mRNA水平显著增加;蛋白质印迹结果显示,分化相关蛋白OLIG2和MBP表达增加。机制上,少突胶质细胞系Oli-neu、OPC分别经二甲双胍处理5 min后,RAS、p-MEK、p-ERK蛋白量显著增加。结论:二甲双胍通过RAS-MEK-ERK信号通路促进少突胶质前体细胞的分化。

关键词: 二甲双胍少突胶质前体细胞脱髓鞘疾病    
Abstract:

Objective:To demonstrate the role of metformin in oligodendrocyte precursor cell (OPC) differentiation and preliminarily discuss the molecular mechanism.Methods:OPC was directly isolated and purified by immune adsorption from the brain and identified using immunofluorescence. Firstly, the concentration of metformin was decided through cell viability assay. Then, the effects of metformin on OPC-differentiation related positive cells, the mRNA or protein level were analyzed by immunofluorescence, flow cytometry, qRT-PCR, and western blot.Results:High purity of primary cells were obtained. CCK8 assay showed that there is no significant toxicity of metformin (<100 μmol/L) on cell viability. Moreover, the significant increasement of PDGFRα+OLIG2+ and MBP+ cells, up-regulation levels of Mag, Olig2, Mbp and Sox10 mRNA and OLIG2, MBP protein were detected in OPC after metformin treatment. Mechanically, compared to the control group, RAS, p-MEK and p-ERK proteins were significantly increased after metformin treatment for 5min in Oli-neu cells and OPC. Conclusion:Metformin promotes the differentiation of oligodendrocyte precursor cells through the RAS-MEK-ERK signaling pathway.

Key words: Metformin    Oligodendrocyte precursor cells(OPCs)    Demyelinating diseases
收稿日期: 2021-03-09 出版日期: 2021-09-30
ZTFLH:  Q819  
基金资助: * 国家自然科学基金(81930029);国家自然科学基金(81971091);国家重点研发计划(2017YFA0106200);山东省重点研发计划(2019GSF107025)
通讯作者: 袁增强     E-mail: zyuan620@yahoo.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
谈沛林
张莹
张竣
高笑
王树坤
侯琳
袁增强

引用本文:

谈沛林,张莹,张竣,高笑,王树坤,侯琳,袁增强. 二甲双胍(Metformin)在少突胶质前体细胞分化中的作用和机制*[J]. 中国生物工程杂志, 2021, 41(9): 1-9.

TAN Pei-lin,ZHANG Ying,ZHANG Jun,GAO Xiao,WANG Shu-kun,HOU Lin,YUAN Zeng-qiang. Role and Mechanism of Metformin in Oligodendrocyte Precursor Cell Differentiation. China Biotechnology, 2021, 41(9): 1-9.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.2103013        https://manu60.magtech.com.cn/biotech/CN/Y2021/V41/I9/1

Name Sequence (5'-3')
Mag-Fp CTGCCGCTGTTTTGGATAATGA
Mag-Rp CATCGGGGAAGTCGAAACGG
Mbp-Fp GACCATCCAAGAAGACCCCAC
Mbp-Rp GCCATAATGGGTAGTTCTCGTGT
Olig2-Fp GGGAGGTCATGCCTTACGC
Olig2-Rp CTCCAGCGAGTTGGTGAGC
Sox10-Fp ACACCTTGGGACACGGTTTTC
Sox10-Rp TAGGTCTTGTTCCTCGGCCAT
Gfap-Fp CGGAGACGCATCACCTCTG
Gfap-Rp AGGGAGTGGAGGAGTCATTCG
β-actin-Fp GGCTGTATTCCCCTCCATCG
β-actin-Rp CCAGTTGGTAACAATGCCATGT
表1  qRT-PCR引物序列
图1  少突胶质前体细胞体外分离培养
图2  二甲双胍对细胞活力和蛋白表达的影响
图3  二甲双胍促进OPC分化
图4  二甲双胍促进OPC分化的机制
图5  二甲双胍调控少突胶质细胞分化
[1] Donkels C, Peters M, Fariña Núñez M T, et al. Oligodendrocyte lineage and myelination are compromised in the gray matter of focal cortical dysplasia type IIa. Epilepsia, 2020, 61(1):171-184.
doi: 10.1111/epi.v61.1
[2] Benamer N, Vidal M, Balia M, et al. Myelination of parvalbumin interneurons shapes the function of cortical sensory inhibitory circuits. Nature Communications, 2020, 11:5151.
doi: 10.1038/s41467-020-18984-7
[3] Bradl M, Lassmann H. Oligodendrocytes: biology and pathology. Acta Neuropathologica, 2010, 119(1):37-53.
doi: 10.1007/s00401-009-0601-5
[4] Groves A K, Barnett S C, Franklin R J M, et al. Repair of demyelinated lesions by transplantation of purified 0-2A progenitor cells. Nature, 1993, 362(6419):453-455.
doi: 10.1038/362453a0
[5] Fünfschilling U, Supplie L M, Mahad D, et al. Glycolytic oligodendrocytes maintain myelin and long-term axonal integrity. Nature, 2012, 485(7399):517-521.
doi: 10.1038/nature11007
[6] Harris J J, Attwell D. The energetics of CNS white matter. The Journal of Neuroscience: the Official Journal of the Society for Neuroscience, 2012, 32(1):356-371.
doi: 10.1523/JNEUROSCI.3430-11.2012
[7] Lee Y, Morrison B M, Li Y, et al. Oligodendroglia metabolically support axons and contribute to neurodegeneration. Nature, 2012, 487(7408):443-448.
doi: 10.1038/nature11314
[8] Rinholm J E, Hamilton N B, Kessaris N, et al. Regulation of oligodendrocyte development and myelination by glucose and lactate. The Journal of Neuroscience: the Official Journal of the Society for Neuroscience, 2011, 31(2):538-548.
doi: 10.1523/JNEUROSCI.3516-10.2011
[9] Oluich L J, Stratton J A S, Xing Y L, et al. Targeted ablation of oligodendrocytes induces axonal pathology independent of overt demyelination. The Journal of Neuroscience, 2012, 32(24):8317-8330.
doi: 10.1523/JNEUROSCI.1053-12.2012
[10] Dubois-Dalcq M, Armstrong R. The cellular and molecular events of central nervous system remyelination. BioEssays, 1990, 12(12):569-576.
pmid: 2080911
[11] Snaidero N, Möbius W, Czopka T, et al. Myelin membrane wrapping of CNS axons by PI(3, 4, 5)P3-dependent polarized growth at the inner tongue. Cell, 2014, 156(1-2):277-290.
doi: 10.1016/j.cell.2013.11.044 pmid: 24439382
[12] Almeida R G, Lyons D A. On myelinated axon plasticity and neuronal circuit formation and function. The Journal of Neuroscience, 2017, 37(42):10023-10034.
doi: 10.1523/JNEUROSCI.3185-16.2017
[13] Fields R D. A new mechanism of nervous system plasticity: activity-dependent myelination. Nature Reviews Neuroscience, 2015, 16(12):756-767.
doi: 10.1038/nrn4023
[14] Yuen T J, Silbereis J C, Griveau A, et al. Oligodendrocyte-encoded HIF function couples postnatal myelination and white matter angiogenesis. Cell, 2014, 158(2):383-396.
doi: 10.1016/j.cell.2014.04.052
[15] Tanaka Y, Konishi A, Obinata H, et al. Metformin activates KDM2A to reduce rRNA transcription and cell proliferation by dual regulation of AMPK activity and intracellular succinate level. Scientific Reports, 2019, 9:18694.
doi: 10.1038/s41598-019-55075-0 pmid: 31822720
[16] Largani S H H, Borhani-Haghighi M, Pasbakhsh P, et al. Oligoprotective effect of metformin through the AMPK-dependent on restoration of mitochondrial hemostasis in the cuprizone-induced multiple sclerosis model. Journal of Molecular Histology, 2019, 50(3):263-271.
doi: 10.1007/s10735-019-09824-0
[17] Pernicova I, Korbonits M. Metformin:mode of action and clinical implications for diabetes and cancer. Nature Reviews Endocrinology, 2014, 10(3):143-156.
doi: 10.1038/nrendo.2013.256 pmid: 24393785
[18] Zakikhani M, Dowling R, Fantus I G, et al. Metformin is an AMP kinase-dependent growth inhibitor for breast cancer cells. Cancer Research, 2006, 66(21):10269-10273.
pmid: 17062558
[19] Barzilai N, Crandall J P, Kritchevsky S B, et al. Metformin as a tool to target aging. Cell Metabolism, 2016, 23(6):1060-1065.
doi: S1550-4131(16)30229-7 pmid: 27304507
[20] Zhang H H, Guo X L. Combinational strategies of metformin and chemotherapy in cancers. Cancer Chemotherapy and Pharmacology, 2016, 78(1):13-26.
doi: 10.1007/s00280-016-3037-3
[21] Qi B X, Hu L B, Zhu L, et al. Metformin attenuates cognitive impairments in hypoxia-ischemia neonatal rats via improving remyelination. Cellular and Molecular Neurobiology, 2017, 37(7):1269-1278.
doi: 10.1007/s10571-016-0459-8
[22] Abd-Elsameea A A, Moustaf A A, Mohamed A M. Modulation of the oxidative stress by metformin in the Cerebrum of rats exposed to global cerebral ischemia and ischemia/reperfusion. European Review for Medical and Pharmacological Sciences, 2014, 18(16):2387-2392.
doi: 7714 pmid: 25219842
[23] Venna V R, Li J, Hammond M D, et al. Chronic metformin treatment improves post-stroke angiogenesis and recovery after experimental stroke. The European Journal of Neuroscience, 2014, 39(12):2129-2138.
doi: 10.1111/ejn.2014.39.issue-12
[24] Liu Y Q, Tang G H, Li Y N, et al. Metformin attenuates blood-brain barrier disruption in mice following middle cerebral artery occlusion. Journal of Neuroinflammation, 2014, 11:177.
doi: 10.1186/s12974-014-0177-4
[25] Tao L, Li D, Liu H X, et al. Neuroprotective effects of metformin on traumatic brain injury in rats associated with NF-κB and MAPK signaling pathway. Brain Research Bulletin, 2018, 140:154-161.
doi: S0361-9230(17)30678-0 pmid: 29698747
[26] Sanadgol N, Barati M, Houshmand F, et al. Metformin accelerates myelin recovery and ameliorates behavioral deficits in the animal model of multiple sclerosis via adjustment of AMPK/Nrf2/mTOR signaling and maintenance of endogenous oligodendrogenesis during brain self-repairing period. Pharmacological Reports, 2020, 72(3):641-658.
doi: 10.1007/s43440-019-00019-8 pmid: 32048246
[27] Houshmand F, Barati M, Golab F, et al. Metformin-induced AMPK activation stimulates remyelination through induction of neurotrophic factors, downregulation of NogoA and recruitment of Olig2+ precursor cells in the cuprizone murine model of multiple sclerosis. DARU Journal of Pharmaceutical Sciences, 2019, 27(2):583-592.
doi: 10.1007/s40199-019-00286-z
[28] Neumann B, Baror R, Zhao C, et al. Metformin restores CNS remyelination capacity by rejuvenating aged stem cells. Cell Stem Cell, 2019, 25(4): 473-485.e8.
doi: S1934-5909(19)30350-9 pmid: 31585093
[29] Cosgrove B D, Gilbert P M, Porpiglia E, et al. Rejuvenation of the muscle stem cell population restores strength to injured aged muscles. Nature Medicine, 2014, 20(3):255-264.
doi: 10.1038/nm.3464
[30] Cantuti-Castelvetri L, Fitzner D, Bosch-Queralt M, et al. Defective cholesterol clearance limits remyelination in the aged central nervous system. Science, 2018, 359(6376):684-688.
doi: 10.1126/science.aan4183 pmid: 29301957
[31] 张莹, 孔祥熙, 侯琳, 等. Ozanimod(RPC1063)在少突胶质前体细胞分化中的作用和机制. 中国生物工程杂志, 2020, 40(6):10-19.
Zhang Y, Kong X X, Hou L, et al. Role and mechanism of ozanimod(RPC1063) in oligodendrocyte precursor cell differentiation. China Biotechnology, 2020, 40(6):10-19.
[32] Wang J, He X L, Meng H Y, et al. Robust myelination of regenerated axons induced by combined manipulations of GPR17 and microglia. Neuron, 2020, 108(5): 876-886.e4.
doi: 10.1016/j.neuron.2020.09.016
[33] Mathys H, Davila-Velderrain J, Peng Z Y, et al. Single-cell transcriptomic analysis of Alzheimer's disease. Nature, 2019, 570(7761):332-337.
doi: 10.1038/s41586-019-1195-2
[34] Ma T C, Buescher J L, Oatis B, et al. Metformin therapy in a transgenic mouse model of Huntington's disease. Neuroscience Letters, 2007, 411(2):98-103.
doi: 10.1016/j.neulet.2006.10.039
[35] Sridhar G R. Emerging links between type 2 diabetes and Alzheimer's disease. World Journal of Diabetes, 2015, 6(5):744.
doi: 10.4239/wjd.v6.i5.744
[36] Khallaghi B, Safarian F, Nasoohi S, et al. Metformin-induced protection against oxidative stress is associated with AKT/mTOR restoration in PC12 cells. Life Sciences, 2016, 148:286-292.
doi: 10.1016/j.lfs.2016.02.024 pmid: 26874027
[37] Nath N, Khan M, Paintlia M K, et al. Metformin attenuated the autoimmune disease of the central nervous system in animal models of multiple sclerosis. Journal of Immunology, 2009, 182(12):8005-8014.
doi: 10.4049/jimmunol.0803563
[38] S Paintlia A. Combinatorial effect of metformin and lovastatin impedes T-cell autoimmunity and neurodegeneration in experimental autoimmune encephalomyelitis. Journal of Clinical & Cellular Immunology, 2013, 4(3). DOI: 10.4172/2155-9899.1000149.
doi: 10.4172/2155-9899.1000149
[39] Yun H E, Park S, Kim M J, et al. AMP-activated protein kinase mediates the antioxidant effects of resveratrol through regulation of the transcription factor FoxO1. The FEBS Journal, 2014, 281(19):4421-4438.
doi: 10.1111/febs.2014.281.issue-19
[40] Sun Y F, Tian T, Gao J, et al. Metformin ameliorates the development of experimental autoimmune encephalomyelitis by regulating T helper 17 and regulatory T cells in mice. Journal of Neuroimmunology, 2016, 292:58-67.
doi: 10.1016/j.jneuroim.2016.01.014
[1] 张莹,孔祥熙,侯琳,王树坤,袁增强. Ozanimod(RPC1063)在少突胶质前体细胞分化中的作用和机制 *[J]. 中国生物工程杂志, 2020, 40(6): 10-19.
[2] 李真, 刘兆雨, 徐丹, 陈婷, 孟赞, 唐勇, 彭彦. 星形胶质细胞通过CX47促进少突胶质前体细胞增殖[J]. 中国生物工程杂志, 2015, 35(12): 21-29.