Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2019, Vol. 39 Issue (11): 31-38    DOI: 10.13523/j.cb.20191104
研究报告     
抗草甘膦、抗螟虫水稻E1C608的鉴定和重要表型特征分析 *
曾强1,2,孟秋成1,邓力华1,李锦江1,于江辉1,翁绿水1,肖国樱1,3()
1 中国科学院亚热带农业生态研究所 亚热带农业生态过程重点实验室 长沙 410125
2 中国科学院大学 北京 100049 3 中国科学院种子创新研究院 北京 100101
Identification and Analysis of Important Phenotypes of E1C608 with Glyphosate Resistance and Lepidopteran Resistance in Rice
ZENG Qiang1,2,MENG Qiu-cheng1,DENG Li-hua1,LI Jin-jiang1,YU Jiang-hui1,WENG Lu-shui1,XIAO Guo-ying1,3()
1 Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture,Chinese Academy of Sciences, Changsha 410125, China
2 University of Chinese Academy of Sciences, Beijing 100049, China
 全文: PDF(1026 KB)   HTML
摘要:

草害和虫害是造成水稻减产的两个重要因素,培育转基因抗除草剂、抗虫水稻是解决这两个问题的有效途径之一。分子鉴定结果表明,以恢复系R608为受体的遗传转化获得了3个独立转基因事件,其中1个为单拷贝转化体,命名为E1C608-3。用ELISA方法检测外源抗草甘膦和抗螟虫蛋白含量的结果表明,E1C608-3的T2代分蘖期的根、茎、叶中EPSPS蛋白含量为120.16~1 223.28μg/g,CRY1C蛋白含量为1.23~8.72μg/g,且两个外源蛋白在不同器官中的表达量均表现为叶>茎>根(P<0.01)。T3代测定结果显示,E1C608-3转化体在秧苗期草甘膦的耐受浓度至少为16g/L,其耐受浓度至少是转化受体R608的16倍。T3代抗虫实验结果显示,E1C608-3对稻纵卷叶螟幼虫平均致死率为95.56%,表现出良好的螟虫抗性。T4代农艺性状测定结果显示,E1C608-3与转化受体存在较大差异,但都处在水稻天然种质资源的变异范围之内。以上结果表明,E1C608-3是一个抗除草剂、抗螟虫的水稻新种质。

关键词: 水稻转基因抗草甘膦抗螟虫农艺性状    
Abstract:

Weeds and insect pests are two important biotic stresses to result in yield loss in rice, and breeding bioengineered rice with herbicide resistance and insect resistance is one of the effective ways to solve these two problems. And for that, the glyphosate resistance and Lepidopteran resistance as well as molecular and some agronomic characteristics of transgenic line E1C608 in rice were identified. Results of molecular identification showed that three independent transformation events were obtained, in which one single copy insertion event was named as E1C608-3. The transformant E1C608-3 of T2 generation was used to detect exogenous protein contents in root, stem and leaf at tillering stage by ELISA. The protein contents of EPSPS and CRY1C in different organs of E1C608-3 were significantly different both in descending order of leaf>stem>oot (P<0.01), ranged from120.16μg/g to 1 223.28μg/g and from 1.23μg/g to 8.72μg/g, respectively. The glyphosate tolerable concentration at seedling stage of E1C608-3 in T3 generation reached at least 16g/L, which was sixteen times higher than that of the transformation receptor R608. The larva mortality of rice leaf roller fed on leaves of E1C608-3 in T3 generation for five days was 95.56%, that showed the E1C608-3 with an excellent resistance to Lepidopteran insects. The data suggested that some agronomic traits were significantly different between E1C608-3 in T4 generation and R608 (P<0.01), but all of the variations were within the variation range of natural germplasm resource in rice. Overall, a novel germplasm with glyphosate resistance and Lepidopteran resistance was verified to be developed in rice.

Key words: Rice    Bioengineering    Glyphosate resistance    Lepidopteran resistance    Agronomic traits
收稿日期: 2019-03-28 出版日期: 2019-12-17
ZTFLH:  Q819  
基金资助: * 国家转基因生物新品种培育科技重大专项(2016ZX08001003-001)
通讯作者: 肖国樱     E-mail: xiaoguoying@isa.ac.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
曾强
孟秋成
邓力华
李锦江
于江辉
翁绿水
肖国樱

引用本文:

曾强,孟秋成,邓力华,李锦江,于江辉,翁绿水,肖国樱. 抗草甘膦、抗螟虫水稻E1C608的鉴定和重要表型特征分析 *[J]. 中国生物工程杂志, 2019, 39(11): 31-38.

ZENG Qiang,MENG Qiu-cheng,DENG Li-hua,LI Jin-jiang,YU Jiang-hui,WENG Lu-shui,XIAO Guo-ying. Identification and Analysis of Important Phenotypes of E1C608 with Glyphosate Resistance and Lepidopteran Resistance in Rice. China Biotechnology, 2019, 39(11): 31-38.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20191104        https://manu60.magtech.com.cn/biotech/CN/Y2019/V39/I11/31

图1  转化载体pC3300-Epsps-35SCry1Ca的T-DNA结构
引物 序列 退火温度(℃ ) 产物大小(bp) 检测用途
Epsps -F 5'- CGCCAAGTCTTTGTGGGTG -3' 58 561 PCR Southern
Epsps -R 5'- GTCCACGGTGACAGGGTTC -3'
Cry1C-F 5'- CGTCGCTCAACTGCCTAC -3' 55 287 PCR
Cry1C-R 5'- CCTGAACACGGGTCCATT -3'
表1  转基因植株分子检测引物
图2  T1代转基因株植株的分子鉴定
图3  EPSPS和CRY1C蛋白的含量测定
图4  转化体E1C608-3的T3代植株喷施不同浓度的草甘膦实验
图5  转化体对稻纵卷叶螟抗性的鉴定
品名 R608 E1C608-3
株高(cm) 95.78±1.05Aa(5) 80.72±0.92Bb(3)
穗长(cm) 28.83±0.55Aa(5) 26.12±0.64Bb(5)
有效穗数 14.34±1.22Aa(7) 19.03±1.52Bb(7)
每穗总粒数 149.88±10.32Aa(5) 120.28±9.59Bb(5)
结实率(%) 83.17±1.81Aa(5) 75.09±2.24Bb(7)
千粒重(g) 28.85±0.33Aa(5) 28.05±1.02Aa(5)
理论产量(kg/ha) 11 539.8±1 435.2Aa 10 670.4±1 133.7Ab
表2  转基因水稻E1C608农艺性状表现及评价级别
[1] Muthayya S, Sugimoto J D, Montgomery S , et al. An overview of global rice production, supply, trade, and consumption. Annals of the New York Academy of Sciences, 2014,1324(1):7-14.
doi: 10.1111/nyas.12539 pmid: 25224318
[2] Oerke E C . Crop losses to pests. Journal of Agricultural Science, 2006,144(144):31-43.
doi: 10.1007/s11274-019-2781-z pmid: 31832786
[3] Edwards W J . Weed control in roundup ready TM rice . Proceedings of the California Weed Science, 2001,53(3):133-135.
[4] 翁绿水, 蒋利平, 肖国樱 . 抗虫抗除草剂转基因水稻恢复系B2A68的培育. 杂交水稻, 2013,28(1):63-67.
Weng L S, Jiang L P, Xiao G Y . Development of an insect-resistant and herbicide-resistant transgenic restorer line B2A68 in rice. Hybrid Rice, 2013,28(1):63-67.
[5] 胡利华, 吴慧敏, 周泽民 , 等. 利用农杆菌介导法将柠檬酸合成酶基因(CS)导入籼稻品种明恢86. 分子植物育种, 2006,4(2):160-166.
Hu L H, Wu H M, Zhou Z M , et al. Introduction of citrate synthase gene (CS) into an elite indica rice restorer line minghui 86 by Agrobacterium-mediated method. Molecular Plant Breeding, 2006,4(2):160-166.
[6] Deng L H, Weng L S, Xiao G Y . Optimization of Epsps gene and development of double herbicide tolerant transgenic PGMS rice. Journal of Agricultural Science & Technology, 2014,16(1):217-228.
[7] Padgette S R, Kolacz K H, Delannay X , et al. Development, identification, and characterization of a glyphosate-tolerant soybean line. Crop Science, 1995,35(5):1451-1461.
doi: 10.2135/cropsci1995.0011183X003500050032x
[8] 吴慧敏 . 抗除草剂水稻培育及应用研究. 武汉:华中农业大学, 2005.
Wu H M . Study on cultivation and application of herbicide resistant rice. Wuhan: Huazhong Agricultural University, 2005.
[9] 肖国樱 . 作物对除草剂的抗性及其在杂种优势利用中的应用策略的探讨. 杂交水稻, 1997,12(5):1-3.
Xiao G Y . The view of crop herbicide resistance for heterosis utilization. Hybrid Rice, 1997,12(5):1-3.
[10] Chen H, Lin Y J, Zhang Q F . Review and prospect of transgenic rice research. Science Bulletin, 2009,54(22):4049-4068.
doi: 10.16288/j.yczz.18-213 pmid: 30369468
[11] Fujimoto H, Itoh K, Yamamoto M , et al. Insect-resistant rice generated by introduction of a modified δ-endotoxin gene of Bacillus thuringiensis. Biocontrol Science & Technology, 1993,11(10):1151-1155.
doi: 10.3390/md17120695 pmid: 31835449
[12] Datta K, Vasquez A, Jumin T , et al. Constitutive and tissue-specific differential expression of the cry1A(b) gene in transgenic rice plants conferring resistance to rice insect pest. Theoretical and Applied Genetics, 1998,97(1-2):20-30.
doi: 10.1007/s001220050862
[13] Zheng X S, Yang Y J, Xu H X , et al. Resistance performances of transgenic Bt rice lines T2A-1 and T1c-19 against Cnaphalocrocis medinalis (Lepidoptera: Pyralidae). Journal of Economic Entomology, 2011,104(5):1730-1735.
doi: 10.1603/EC10389
[14] Zaidi M A, Ye G Y, Yao H W , et al. Transgenic rice plants expressing a modified cry1Ca1 gene are resistant to Spodoptera litura and Chilo suppressalis. Molecular Biotechnology, 2009,43(3):232-242.
doi: 10.1007/s12033-009-9201-9
[15] 邓力华, 邓晓湘, 魏岁军 , 等. 抗虫抗除草剂转基因水稻B1C893的获得与鉴定. 杂交水稻, 2014,29(1):67-75.
Deng L H, Deng X X, Wei S J , et al. Development and identification of herbicide and insect resistant transgenic plant B1C893 in rice. Hybrid Rice, 2014,29(1):67-66.
[16] Hu W B, Deng X Y, Deng X X , et al. Characteristic analysis of tetra-resistant genetically modified rice. Journal of Integrative Agriculture, 2018,17(3):493-506.
doi: 10.1016/S2095-3119(17)61722-2
[17] 钟其全, 廖翠猛, 盘毅 , 等. 广适性高产两系杂交中稻新组合C两优608. 杂交水稻, 2011,26(4):79-81.
Zhong Q Q, Liao C M, Pan Y , et al. C liangyou 608, a new two-line medium hybrid rice combination with high yield and wide adaptability. Hybrid Rice, 2011,26(4):79-81.
[18] Toki S, Hara N, Ono K , et al. Early infection of scutellum tissue with Agrobacterium allows high-speed transformation of rice. The Plant Journal, 2006,47(6):969-976.
doi: 10.1111/j.1365-313X.2006.02836.x pmid: 16961734
[19] Lin Y J, Zhang Q F . Optimizing the tissue culture conditions for high efficiency transformation of indica rice. Plant Cell Reports, 2005,23(8):540-547.
doi: 10.1007/s00299-004-0843-6
[20] Murray M G, Thompson W F . Rapid isolation of high molecular weight plant DNA. Nucleic Acids Research, 1980,8(19):4321-4325.
doi: 10.1093/nar/8.19.4321 pmid: 7433111
[21] Yang Z, Chen H, Tang W , et al. Development and characterization of transgenic rice expressing two Bacillus thuringiensis genes. Pest Management Science, 2011,67(4):414-422.
doi: 10.1002/ps.2079
[22] 韩龙植, 魏兴华, 曹桂兰 , 等. 水稻种质资源描述规范和数据标准. 北京: 中国农业出版社, 2006: 66-69.
Han L Z, Wei X H, Cao G L , et al. Descriptors and data standard for rice. Beijing: China Agricultural Press, 2006: 66-69.
[23] 黄大年, 李敬阳, 章善庆 . 用抗除草剂基因快速检测和提高杂交稻纯度的新技术. 科学通报, 1998,43(1):67-70.
Huang D N, Li J Y, Zhang S Q . A new technology for rapid detection of herbicide resistance genes and improving purity of hybrid rice. Chinese Science Bulletin, 1998,43(1):67-70.
[24] 熊绪让, 唐俐, 邓晓湘 , 等. 抗除草剂两系杂交水稻香125S/Bar68-1栽培试验初报. 杂交水稻, 2004,19(5) : 41-43.
Xiong X R, Tang L, Deng X X , et al. A Preliminary report on the experiments of herbicide-resistant two-line hybrid rice xiang 125S/Bar68-1. Hybrid Rice, 2004,19(5) : 41-43.
[25] Zhao T, Lin C Y, Shen Z C . Development of transgenic glyphosate-resistant rice with G6 gene encoding 5 enolpyruvylshikimate-3-phosphate synthase. Agricultural Sciences in China, 2011,10(9):1307-1312.
doi: 10.1016/S1671-2927(11)60123-5
[26] 赵艳, 邓春泉, 邓丽蝶 . 洁净DNA转化获得2mG2-epsps基因单拷贝整合的抗草甘膦水稻. 中国水稻科学, 2014,28(1):15-22.
doi: 10.3969/j.issn.10017216.2014.01.003
Zhao Y, Deng C Q, Deng L D . Generation of glyphosate-resistant transgenic rice harboring single copy of 2mG2-epsps gene by clean DNA transformation. Chinese Journal of Rice Science, 2014,28(1):15-22.
doi: 10.3969/j.issn.10017216.2014.01.003
[27] Chhapekar S, Raghavendrarao S, Pavan G , et al. Transgenic rice expressing a codon-modified synthetic CP4-EPSPS, confers tolerance to broad-spectrum herbicide, glyphosate. Plant Cell Reports, 2015,34(5):721-731.
doi: 10.1007/s00299-014-1732-2 pmid: 25537885
[28] Oono K . Putative homologous mutations in regenerated plants of rice. Molecular and General Genetics, 1985,198(3):377-384.
doi: 10.1007/BF00332926
[29] Bregitzer P, Dahleen L S, Neate S , et al. A single backcross effectively eliminates agronomic and quality alterations caused by somaclonal variation in transgenic barley. Crop Science, 2008,48(2):471-479.
doi: 10.2135/cropsci2007.06.0370
[1] 梁晋刚,张旭冬,毕研哲,王颢潜,张秀杰. 转基因抗虫玉米发展现状与展望*[J]. 中国生物工程杂志, 2021, 41(6): 98-104.
[2] 何伟,祝蕾,刘欣泽,安学丽,万向元. 玉米遗传转化与商业化转基因玉米开发*[J]. 中国生物工程杂志, 2021, 41(12): 13-23.
[3] 梁振鑫,刘芳,张玮,刘庆友,李力. 抗p185 erb B2人鼠嵌合抗体ChAb26转基因小鼠乳腺生物反应器的制备与验证 *[J]. 中国生物工程杂志, 2019, 39(8): 40-51.
[4] 王友华,邹婉侬,柳小庆,王兆华,孙国庆. 全球转基因玉米专利信息分析与技术展望 *[J]. 中国生物工程杂志, 2019, 39(12): 83-94.
[5] 杨飞芸,杨天瑞,刘坤,崔爽,王瑞刚,李国婧. 异源表达CiRS基因拟南芥的黄酮代谢及抑菌能力研究 *[J]. 中国生物工程杂志, 2019, 39(11): 22-30.
[6] 陈秀秀,吴成林,周丽君. 人源抗体制备及临床应用研究进展 *[J]. 中国生物工程杂志, 2019, 39(10): 90-96.
[7] 徐琳杰,刘培磊,李文龙,孙卓婧,宋贵文. 国际转基因标识制度变动趋势分析及对我国的启示 *[J]. 中国生物工程杂志, 2018, 38(9): 94-98.
[8] 韩明明,罗玉萍. 内源CD133 +细胞示踪小鼠模型的制备和鉴定 *[J]. 中国生物工程杂志, 2018, 38(6): 58-62.
[9] 周天盟,刘旭霞. 论预防原则在欧盟转基因生物监管中的困境与出路 *——基于意大利Fidenato案的分析[J]. 中国生物工程杂志, 2018, 38(6): 95-102.
[10] 姚民,朱淑华,李佛生,张士彦,唐琳. 异源表达AtCYSa基因烟草的耐盐和抗虫特性分析[J]. 中国生物工程杂志, 2018, 38(4): 8-16.
[11] 王嘉祯,姚伦广,王峰,阚云超,罗金萍,黄倩倩,段建平. 家蚕中肠特异启动子P56的克隆及活性分析 *[J]. 中国生物工程杂志, 2018, 38(2): 13-17.
[12] 王友华,蔡晶晶,杨明,张恬,任红梅,邹婉浓,孙国庆. 全球转基因大豆专利信息分析与技术展望[J]. 中国生物工程杂志, 2018, 38(2): 116-125.
[13] 崔帅,王作平,于江辉,肖国樱. 转基因水稻BPL9K-2事件特异性检测方法的建立 *[J]. 中国生物工程杂志, 2018, 38(11): 32-41.
[14] 吴锁伟,万向元. 利用生物技术创建主要作物雄性不育杂交育种和制种的技术体系[J]. 中国生物工程杂志, 2018, 38(1): 78-87.
[15] 刘旭霞, 张楠. 中美转基因作物种植管理制度比较[J]. 中国生物工程杂志, 2017, 37(8): 119-127.