Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2019, Vol. 39 Issue (7): 32-38    DOI: 10.13523/j.cb.20190705
研究报告     
热氧老化对麦秸秆/橡胶/PE仿藤条性能的影响
朱士强1,陆祥安1,2,于春涵1,代益帆1,邱悦1,陈集双1,*()
1 南京工业大学生物与制药工程学院 南京 211816
2 扬州大学广陵学院 扬州 225000
Effects of Thermal Oxidative Aging on Wheat Straw / Rubber Biomass Imitation Rattan
Shi-qiang ZHU1,Xiang-an LU1,2,Chun-han YU1,Yi-fan DAI1,Yue QIU1,Ji-shuang CHEN1,*()
1 College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, Chin
2 Guangling College of Yangzhou University, Yangzhou 225000, China
 全文: PDF(1195 KB)   HTML
摘要:

秸塑复合材料(SPC)是一种使用秸秆纤维替代木材纤维的新型木塑复合材料。以麦秸秆和低密度聚乙烯为原料,利用天然橡胶增韧的特性开发出了麦秸秆/橡胶生物质仿藤条。在100℃条件下加速热氧老化60天,观察分析其力学性能和微观结构的变化规律。结果表明,初始条件下,一方面麦秸秆纤维的加入降低了仿藤条的力学性能;另一方面橡胶的加入增强了仿藤条的韧性,起到了弥补作用。老化过程中,材料表面出现裂纹,生物质和PE界面的结合官能团丧失,界面结合能力降低,力学性能下降。结合动力学模型,0~15天为快速降解阶段,材料断裂伸长率降低较快,橡胶的加入降低了老化速率,老化系数降低了70%。含有橡胶的仿藤条在15~60天的老化过程中保持较低的老化速率,起到了抗老化作用。

关键词: 麦秸秆橡胶热氧老化仿藤条复合材料    
Abstract:

Straw plastic composite (SPC) is a novel wood - plastic material in which wood fibers are replaced by straw fibers.Wheat straw / rubber biomass imitation rattan from wheat straw, rubber and low density polyethylene( LDPE) was prepared. The changes of mechanical properties and microstructures were investigated in the period of thermal-oxidative aging at 100℃ for 60d. The results showed that the addition of wheat straw fiber will reduce the mechanical properties while the rubber can enhance the elongation break. During the aging process, cracks appearing on the surface of rattan cut down mechanical properties. And the losing of functional groups between the surface of straw fiber and PE caused the reduction of combining ability. In combination with the kinetic model, the degradation occurred rapidly in the beginning of the 15 days with the aging coefficient up to 70% and kept a low rate in the rest of the experiment. Furthermore, the addition of rubber could slow down the aging rate of rattan.

Key words: Wheat straw    Rubber    Thermal oxidative aging    Imitation rattan    Composites
收稿日期: 2018-11-30 出版日期: 2019-08-05
ZTFLH:  Q819  
通讯作者: 陈集双     E-mail: biochenjs@njtech.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
朱士强
陆祥安
于春涵
代益帆
邱悦
陈集双

引用本文:

朱士强,陆祥安,于春涵,代益帆,邱悦,陈集双. 热氧老化对麦秸秆/橡胶/PE仿藤条性能的影响[J]. 中国生物工程杂志, 2019, 39(7): 32-38.

Shi-qiang ZHU,Xiang-an LU,Chun-han YU,Yi-fan DAI,Yue QIU,Ji-shuang CHEN. Effects of Thermal Oxidative Aging on Wheat Straw / Rubber Biomass Imitation Rattan. China Biotechnology, 2019, 39(7): 32-38.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20190705        https://manu60.magtech.com.cn/biotech/CN/Y2019/V39/I7/32

编号 改性麦秸秆(%) 橡胶(%) LDPE (%)
1 10 3 87
2 12.5 0 87.5
3 15 0 85
4 10 5 85
5 10 7 83
6 10 0 90
表1  复合材料配方实验
图1  复合材料不同老化时间红外光谱图
图2  麦秸秆/橡胶仿藤条的SEM图
秸秆含量(%) 拉伸强度(MPa)
0天 3天 6天 9天 12天 15天 30天 40天 50天 60天
10 10.11 10.51 11.12 11.37 11.66 11.31 11.15 12.73 脆断 脆断
12.5 9.47 11.51 11.37 11.14 11.48 12.21 脆断 脆断 脆断 脆断
15 9.09 11.25 11.4 11.29 11.81 12.41 脆断 脆断 脆断 脆断
表2  不同麦秸秆粉含量仿藤条的拉伸强度随老化时间的变化
图3  不同麦秸秆粉含量仿藤条的拉伸强度随老化时间的变化
橡胶含量(%) 拉伸强度 (MPa)
0天 3天 6天 9天 12天 15天 30天 40天 50天 60天
0 10.1 10.51 11.12 11.37 11.66 11.31 11.15 12.73 脆断 脆断
3 9.68 12.01 11.78 11.55 11.83 12.56 13.28 14.4 13.71 13.3
5 10.5 11.18 11.71 11.3 12.3 13.57 13.77 15.05 14.23 14.04
7 10.5 11.1 11.42 11.31 13.8 13.92 13.97 14.7 13.82 13.79
表3  橡胶含量对仿藤条的拉伸强度影响(WS含量10%)
图4  不同橡胶含量仿藤条的拉伸强度随老化时间的变化(WS含量10%)
秸秆含量(%) 断裂伸长率(%)
0天 3天 6天 9天 12天 15天 30天 40天 50天 60天
10 335 137 50 35 13 6 5 3 脆断 脆断
12.5 345 62 18 21 17 11 脆断 脆断 脆断 脆断
15 242 58 29 19 15 18 脆断 脆断 脆断 脆断
表4  不同麦秸秆粉含量仿藤条的断裂伸长率随老化时间的变化
图5  不同麦秸秆粉含量对仿藤条的断裂伸长率随老化时间的变化
图6  不同橡胶含量仿藤条的断裂伸长率随老化时间的变化(WS含量10%)
橡胶含量(%) 拉伸强度 (MPa)
0天 3天 6天 9天 12天 15天 30天 40天 50天 60天
0 335 137 50 35 13 6 5 3 脆断 脆断
3 316 167 86 39 18 10 6 5 3 3
5 443 254 135 69 39 23 16 15 13 10
7 449 382 324 230 187 146 48 27 24 20
表5  橡胶含量对仿藤条拉伸强度的影响(WS含量10%)
图7  不同改性麦秸秆含量条件下(天)-lne与时间的关系
图8  不同橡胶含量条件下-lne与时间的关系
[1] 王慷林 . 中国棕榈藤资源及其分布特征研究. 植物科学学报, 2015,33(3):320-325.
doi: 10.11913/PSJ.2095-0837.2015.30320
Wang K L . Study on the resources and distribution characteristics of Chinese palm rattan. Journal of Plant Science, 2015,33(3):320-325.
doi: 10.11913/PSJ.2095-0837.2015.30320
[2] 许煌灿, 尹光天, 孙清鹏 , 等. 棕榈藤的研究和发展. 林业科学, 2002,38(2):135-143.
doi: 10.11707/j.1001-7488.20020223
Xu H C, Yin G T, Sun Q P , et al. Research and development of palm rattan. Forestry Science, 2002,38(2):135-143.
doi: 10.11707/j.1001-7488.20020223
[3] Mohd Ali A R, Mlhmod A L, Khoo K C . Physical properties,fibre dimensions and proximate chemical analysis of Malaysian rattans.[ 2018-09-30]. http://agris.fao.org/agris-search/search.do?recordID=TH2001001425.
[4] Siebert S F. The nature and culture of rattan:reflections on vanishing life in the forests of southeast asia. Hawaii: University of Hawaii Press, 2012.
[5] Lu X, Liu Y, Ni Y , et al. Study on the folding of imitation rattan with wheat straw fibers. Journal of Biobased Materials & Bioenergy, 2017,11(4):303-307.
[6] 沈明华 . 用PP/App生产塑料仿藤席的工艺探讨. 中国塑料, 1992,6(3):195-197.
Shen M H, . Discussion on the process of producing plastic imitation rattan mats with PP/App. China Plastics, 1992,6(3):195-197.
[7] 黎明 . 一种多用途纸藤:中国,CN202644278U, 2013-01-02. http://cprs.patentstar.com.cn/Search/Detail?ANE=9GHG1ABA9FEB6BDA9IEF7HAA5FAA9BBA7ADA9HHF9FDE9ECB.
Li M. A multi-purpose paper rattan: China, CN202644278U, 2013-01-02. http://cprs.patentstar.com.cn/Search/Detail?ANE=9GHG1ABA9FEB6BDA9IEF7HAA5FAA9BBA7ADA9HHF9FDE9ECB.
[8] 程相峰 . 循环再利用聚丙烯热氧老化性能的研究. 大连:大连工业大学, 2016.
Cheng X F . Study on Recycled Polypropylene Thermal Aging Properties. Dalian:Dalian University of Technology, 2016.
[9] 周勇 . 高分子材料的老化研究. 国外塑料, 2012,30(1):35-41.
Zhou Y . Aging studies of macromolecule. World Plastics, 2012,30(1):35-41.
[10] 王荣华, 李晖, 孙岩 , 等. 橡胶材料加速老化研究现状及发展趋势. 装备环境工程, 2013,10(4):66-70.
Wang R H, LI H, Sun Y , et al. Research status and development trend of accelerated aging of rubber materials, Equipment Environmental Engineering, 2013,10(4):66-70.
[11] 刘景军, 李效玉 . 高分子材料的环境行为与老化机理研究进展. 高分子通报, 2005,3:62-69.
Liu J J, Li X Y . Advances in research on environmental behavior and aging mechanism of polymer materials. Polymer Bulletin, 2005,3:62-69.
[12] 王思静, 熊金平, 左禹 . 橡胶老化机理与研究方法进展. 合成材料老化与应用, 2009,38(2):23-32.
Wang S J, Xiong J P, Zuo Y . Study on aging mechanism of rubbers. Aging and Application Of Synthetic Materials, 2009,38(2):23-32.
[13] 曾建, 王苓 . 热处理对高密度聚乙烯结晶度及力学性能的影响. 塑料制造, 2016,5:48-52.
Zeng J, Wang L . Effect of Heat treatment on crystallinity and mechanical property of HDPE. Plastic Manufacturing, 2016,5:48-52.
[14] 宋海硕, 王蒙, 鲁学峰 , 等. 热氧老化对长玻纤增强尼龙10T复合材料静动态力学性能的影响. 复合材料学报, 2016,33(10):2158-2165.
Song H S, WANG M, LU X F , et al. Effects of thermal oxidative aging on sialic and dynamic mechanical properties of long glass fiber reinforced nylon 10T compositcs. Ada Matcriac Compositac Sinica, 2016,33(10):2158-2165.
[15] 刘振宇, 熊玉竹, 梅文杰 . 高分子材料银纹研究. 中国塑料, 2013,27(6):19-22.
Liu Z Y, Xiong Y Z, Mei W J . Studies on crazes inside polymeric materials. Chinese Plastic, 2013,27(6):19-22.
[1] 邹智 杨礼富 王真辉 袁坤. 巴西橡胶树转基因研究现状与展望[J]. 中国生物工程杂志, 2010, 30(01): 85-92.
[2] 闫洁,陈守才,夏志辉. 橡胶树死皮病胶乳C-乳清差异表达蛋白质的筛选与鉴定[J]. 中国生物工程杂志, 2008, 28(6): 28-36.