Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2019, Vol. 39 Issue (3): 105-110    DOI: 10.13523/j.cb.20190313
综述     
哺乳动物细胞灌流培养工艺研究进展
苏爽1,金永杰2,黄瑞晶2,李剑2,**(),徐寒梅1,**()
1 中国药科大学 南京 211100
2 天士力生物医药股份有限公司 上海 201203
The Research Progress of Perfusion Mammalian Cell Culture
Shuang SU1,Yong-jie JIN2,Rui-jing HUANG2,Jian LI2,**(),Han-mei XU1,**()
1 China Pharmaceutical University, Nanjing 211100, China
2 Tasly Biomedical Co., Ltd., Shanghai 201203, China
 全文: PDF(415 KB)   HTML
摘要:

当前生物制药领域,由于成本压力、市场需求急剧波动以及生物仿制药的竞争日益激烈,现有的生物制造技术受到诸多挑战,生物技术公司越来越倾向于开发灵活、高效的创新型生产制造工艺。灌流培养作为当前哺乳动物细胞培养的重要工艺之一,不仅可以通过不断移出副产物和添加营养物来提供有利于细胞的稳定环境,以解决蛋白质量不稳定或者表达量偏低等问题,还可以通过提高单位体积产率来优化产能利用率并提高生产效率。通过系统介绍灌流培养用于哺乳动物细胞培养的研究进展,为其进一步开发与应用提供参考。

关键词: 灌流培养哺乳动物细胞培养工艺连续性工艺    
Abstract:

In the current environment of biopharmaceuticals, cost pressures, rapidly fluctuating market demands and growing competition among biosimilars, existing bio-manufacturing technologies are challenged, and so that biotechnology companies are increasingly driven to develop innovative solutions for highly flexible and cost-effective manufacturing. As one of the important processes in mammalian cell culture, perfusion culture has two advantages. Firstly, it can provide a stable environment favorable to cells by continuously removing by-products and adding nutrients, so that it can solve the problems of unstable protein amount or low expression level. Also, it can optimize capacity utilization and increase production efficiency by increasing volumetric productivity. This paper systematically reviewed the progress of perfusion culture for mammalian cell culture,and it provides reference for further development and application.

Key words: Perfusion    culture    Mammalian    cells    Culture    process    Continuous    process
收稿日期: 2018-09-03 出版日期: 2019-04-12
ZTFLH:  R392  
通讯作者: 李剑,徐寒梅     E-mail: lijian16@tasly.com;1037714870@qq.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
苏爽
金永杰
黄瑞晶
李剑
徐寒梅

引用本文:

苏爽,金永杰,黄瑞晶,李剑,徐寒梅. 哺乳动物细胞灌流培养工艺研究进展[J]. 中国生物工程杂志, 2019, 39(3): 105-110.

Shuang SU,Yong-jie JIN,Rui-jing HUANG,Jian LI,Han-mei XU. The Research Progress of Perfusion Mammalian Cell Culture. China Biotechnology, 2019, 39(3): 105-110.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20190313        https://manu60.magtech.com.cn/biotech/CN/Y2019/V39/I3/105

[1] Gaughan C L . The present state of the art in expression, production and characterization of monoclonal antibodies. Molecular Diversity, 2016,20(1):255-270.
doi: 10.1007/s11030-015-9625-z pmid: 26299798
[2] Sommeregger W, Mayrhofer P, Steinfellner W , et al. Proteomic differences in recombinant CHO cells producing two similar antibody fragments. Biotechnology & Bioengineering, 2016,113(9):1902-1912.
doi: 10.1002/bit.25957 pmid: 26913574
[3] Karst D J, Scibona E, Serra E , et al. Modulation and modeling of monoclonal antibody N-linked glycosylation in mammalian cell perfusion reactors. Biotechnology & Bioengineering, 2017,114(9):1978-1990.
doi: 10.1002/bit.26315 pmid: 28409838
[4] Karst D J, Steinebach F, Morbidelli M . Continuous integrated manufacturing of therapeutic proteins. Current Opinion in Biotechnology, 2017,53:76-84.
doi: 10.1016/j.copbio.2017.12.015
[5] Kleinebudde P, Khinast J, Rantanen J . Regulatory and quality considerations for continuous manufacturing//Continuous manufacturing of pharmaceuticals. Hoboken: John Wiley & Sons, Ltd, 2017: 107-125.
[6] Tapia F, Vázquez-Ramírez D, Genzel Y , et al. Bioreactors for high cell density and continuous multi-stage cultivations: Options for process intensification in cell culture-based viral vaccine production. Applied Microbiology & Biotechnology, 2016,100(5):2121-2132.
[7] Ahn W S, Jeon J J, Jeong Y R , et al. Effect of culture temperature on erythropoietin production and glycosylation in a perfusion culture of recombinant CHO cells. Biotechnology & Bioengineering, 2010,101(6):1234-1244.
doi: 10.1002/bit.22006 pmid: 18980186
[8] Pollock J, Ho S V, Farid S S . Fed-batch and perfusion culture processes: Economic, environmental, and operational feasibility under uncertainty. Biotechnology & Bioengineering, 2013,110(1):206-219.
doi: 10.1002/bit.24608 pmid: 22806692
[9] 肖成祖, 陈昭烈, 黄子才 , 等. 动物细胞微载体灌流培养技术的研究和应用. 医学研究杂志, 2000,29(11):16-17.
Xiao C Z, Chen Z L, Huang Z C , et al. Research and application of animal cell microcarrier perfusion culture technology. Journal of Medical Research, 2000,29(11):16-17.
[10] 米力, 李玲, 冯强 , 等. 连续灌流培养杂交瘤细胞生产单克隆抗体. 生物工程学报, 2002,18(3):360-364.
doi: 10.3321/j.issn:1000-3061.2002.03.023
Mi L, Li L, Feng Q , et al. Production of monoclonal antibodies by continuous perfusion culture of hybridoma cells. Chinese Journal of Biotechnology, 2002,18(3):360-364.
doi: 10.3321/j.issn:1000-3061.2002.03.023
[11] 米力, 陈志南 . 动物细胞大规模培养生产蛋白的工艺选择. 中国生物工程杂志, 2003,23(7):1-6.
Mi L, Chen Z N . Process selection for large-scale culture of animal cells to produce protein. China Biotechnology, 2003,23(7):1-6.
[12] 赵子淇, 褚淑贞, 吴洁 . 基于DCF模型的创新药品估值研究——以普佑克为例. 现代商贸工业, 2018(13):71-72.
doi: 10.19311/j.cnki.1672-3198.2018.13.030
Zhao Z Q, Zhu S Z, Wu J . Research on the evaluation of innovative drugs based on DCF model——Taking puyouke as an example. Modern Business Trade Industry, 2018,13:71-72.
doi: 10.19311/j.cnki.1672-3198.2018.13.030
[13] Warikoo V, Godawat R, Brower K , et al. Integrated continuous production of recombinant therapeutic proteins. Biotechnology & Bioengineering, 2012,109(12):3018-3029.
doi: 10.1002/bit.24584 pmid: 22729761
[14] 李尤, 周航, 李锦才 , 等. 哺乳动物细胞灌流培养技术的开发与应用. 中国医药生物技术, 2015,10(3):267-270.
Li Y, Zhou H, Li J C , et al. Development and application of mammalian cell perfusion culture technology. Chinese Medicinal Biotechnology, 2015,10(3):267-270.
[15] Zhang Y, Stobbe P, Silvander C O , et al. Very high cell density perfusion of CHO cells anchored in a non-woven matrix-based bioreactor. Journal of Biotechnology, 2015,213:28-41.
doi: 10.1016/j.jbiotec.2015.07.006 pmid: 26211737
[16] Bosco B, Paillet C, Amadeo I , et al. Alternating flow filtration as an alternative to internal spin filter based perfusion process: Impact on productivity and product quality. Biotechnology Progress, 2017,33(4):1010-1014.
doi: 10.1002/btpr.2487 pmid: 28445603
[17] Clincke M, Mölleryd C, Zhang Y , et al. Study of a recombinant CHO cell line producing a monoclonal antibody by ATF or TFF external filter perfusion in a WAVE Bioreactor TM . Bmc Proceedings, 2011,5(S8):105-107.
doi: 10.1186/1753-6561-5-S8-P105 pmid: 22373105
[18] Kwon T, Prentice H, Oliveira J D , et al. Microfluidic cell retention device for perfusion of mammalian suspension culture. Scientific Reports, 2017,7(1):6703-6713.
doi: 10.1038/s41598-017-06949-8 pmid: 5532224
[19] Karst D J, Serra E, Villiger T K , et al. Characterization and comparison of ATF and TFF in stirred bioreactors for continuous mammalian cell culture processes. Biochemical Engineering Journal, 2016,110:17-26.
doi: 10.1016/j.bej.2016.02.003
[20] Steinebach F, Angarita M, Karst D J , et al. Model based adaptive control of a continuous capture process for monoclonal antibodies production. Journal of Chromatography A, 2016,1444:50-56.
doi: 10.1016/j.chroma.2016.03.014 pmid: 27046002
[21] Angelo J, Pagano J, Müller-Späth T , et al. Scale-up of twin-column periodic counter-current chromatography for MAb purification. Bioprocess International, 2018,16(4):1-6.
[22] Steinebach F, Ulmer N, Wolf M , et al. Design and operation of a continuous integrated monoclonal antibody production process. Biotechnology Progress, 2017,33(5):1303-1313.
doi: 10.1002/btpr.2522 pmid: 28691347
[23] Tao Y, Shih J, Sinacore M , et al. Development and implementation of a perfusion-based high cell density cell banking process. Biotechnology Progress, 2011,27(3):824-829.
doi: 10.1002/btpr.v27.3
[24] Wright B, Bruninghaus M, Vrabel M , et al. A novel seed-train process: Using high-density cell banking, a disposable bioreactor, and perfusion technologies. Bioprocess International, 2015,13(3):16-25.
[25] Yang W C, Minkler D F, Kshirsagar R , et al. Concentrated fed-batch cell culture increases manufacturing capacity without additional volumetric capacity. Journal of Biotechnology, 2016,217:1-11.
doi: 10.1016/j.jbiotec.2015.10.009
[26] Hiller G W, Ovalle A M, Gagnon M P , et al. Cell-controlled hybrid perfusion fed-batch CHO cell process provides significant productivity improvement over conventional fed-batch cultures. Biotechnology & Bioengineering, 2017,114(7):1438-1447.
[27] Yang W C, Jiuyi L, Chris K , et al. Perfusion seed cultures improve biopharmaceutical fed-batch production capacity and product quality. Biotechnology Progress, 2014,30(3):616-625.
doi: 10.1002/btpr.1884
[28] Rodriguez J, Spearman M, Tharmalingam T , et al. High productivity of human recombinant beta-interferon from a low-temperature perfusion culture. Journal of Biotechnology, 2010,150(4):509-518.
doi: 10.1016/j.jbiotec.2010.09.959 pmid: 20933553
[29] Yao T, Asayama Y . Animal-cell culture media: History, characteristics, and current issues. Reproductive Medicine & Biology, 2017,16(2):99-117.
doi: 10.1002/rmb2.12024
[30] Lin H, Leighty R W, Godfrey S , et al. Principles and approach to developing mammalian cell culture media for high cell density perfusion process leveraging established fed-batch media. Biotechnol Progress, 2017,33(4):891-902.
doi: 10.1002/btpr.2472 pmid: 28371394
[31] Bareither R, Bargh N, Oakeshott R , et al. Automated disposable small scale reactor for high throughput bioprocess development: A proof of concept study. Biotechnology & Bioengineering, 2013,110(12):3126-3138.
doi: 10.1002/bit.24978 pmid: 23775295
[32] Gomez N, Ambhaikar M, Zhang L , et al. Analysis of tubespins as a suitable scale-down model of bioreactors for high cell density CHO cell culture. Biotechnology Progress, 2016,33(2):490-523.
doi: 10.1002/btpr.2418 pmid: 27977914
[33] Bielser J M, Wolf M, Souquet J , et al. Perfusion mammalian cell culture for recombinant protein manufacturing-A critical review. Biotechnology Advances, 2018,36(4):1328-1340.
doi: 10.1016/j.biotechadv.2018.04.011 pmid: 29738813
[34] Allison G, Cain Y T, Cooney C L , et al. Regulatory and quality considerations for continuous manufacturing. Journal of Pharmaceutical Sciences, 2015,104(3):803-812.
doi: 10.1002/jps.24324 pmid: 25830179
[35] Xu S, Jiang R, Chen Y , et al. Impact of Pluronic ® F68 on hollow fiber filter-based perfusion culture performance . Bioprocess & Biosystems Engineering, 2017,40(9):1-10.
[1] 王惠临,周凯强,朱红雨,王力景,杨仲璠,徐明波,曹荣月. 凝血因子VII及其重组表达新进展[J]. 中国生物工程杂志, 2021, 41(2/3): 129-137.
[2] 靳露,周航,曹云,王振守,曹荣月. 高通量灌流培养模型在生物工艺开发中的应用研究[J]. 中国生物工程杂志, 2020, 40(8): 63-73.
[3] 江一帆,贾宇,王龙,王志明. 细胞培养过程对单克隆抗体糖基化修饰的影响和调控[J]. 中国生物工程杂志, 2019, 39(8): 95-103.
[4] 郭玉蕾,唐亮,孙瑞强,李尤,陈依军. 高通量微型生物反应器的研究进展[J]. 中国生物工程杂志, 2018, 38(8): 69-75.
[5] 张晶晶, 刘克东, 钱凯, 缪亚娜, 蔡燕飞, 李成媛, 陈蕴, 金坚. 稳定表达GLP-1类似物的CHO细胞株的构建及培养工艺研究[J]. 中国生物工程杂志, 2017, 37(5): 52-58.
[6] 徐洪记, 张兵兵. 提高哺乳动物工程细胞抗凋亡能力的基因策略[J]. 中国生物工程杂志, 2012, 32(6): 104-108.
[7] 惠开元, 高向东, 徐晨. 单克隆抗体制备的细胞工程学研究进展[J]. 中国生物工程杂志, 2012, 32(02): 90-95.
[8] 刁勇. 仅基于RNA元件构建可诱导哺乳动物细胞基因表达的调控系统[J]. 中国生物工程杂志, 2011, 31(12): 120-125.
[9] 彭伍平 仇华吉 . 重组杆状病毒:一种新型哺乳动物细胞基因转移载体[J]. 中国生物工程杂志, 2007, 27(1): 126-130.
[10] 杨海,李世崇,陈昭烈. 外源基因高表达细胞株的高通量分选方法[J]. 中国生物工程杂志, 2006, 26(0): 186-190.
[11] 徐宏武. 现代生物高技术的企业特点与质量管理[J]. 中国生物工程杂志, 1995, 15(5): 8-12.
[12] 康毅滨, 吴晓晖, 魏勇, 柴建华. 哺乳动物人工染色体MAC-基因治疗的新载体[J]. 中国生物工程杂志, 1995, 15(4): 18-21.
[13] 张旭. 蛋白质糖基化工程[J]. 中国生物工程杂志, 1995, 15(2): 30-35.
[14] 王佃亮, 肖成祖. 微载体系统动物细胞大规模培养技术[J]. 中国生物工程杂志, 1994, 14(3): 45-49.
[15] 江北. 《大规模哺乳动物细胞培养技术》[J]. 中国生物工程杂志, 1992, 12(4): 64-64.