Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2019, Vol. 39 Issue (3): 87-96    DOI: 10.13523/j.cb.20190311
综述     
光遗传学技术研究进展 *
郭轩彤1,张春波2,**()
1 南昌大学玛丽女王学院 南昌 330031
2 南昌大学药学院 南昌 330031
Research Progress of Optogenetic Techniques
Xuan-tong GUO1,Chun-bo ZHANG2,**()
1 Nanchang Joint Programme, Queen Mary University of London, Nanchang 330031, China
2 School of Pharmacy, Nanchang University, Nanchang 330031, China
 全文: PDF(706 KB)   HTML
摘要:

光遗传学技术是结合遗传学和光学对生物体特定细胞实现精确光控的新兴生物技术。自基于微生物视蛋白的光遗传学策略应用以来,光遗传学在视蛋白的开发与优化,基于病毒和重组酶的遗传学定位表达以及光学传输技术等方面都取得了显著进展。光遗传学在现代神经生物学领域应用广泛,在神经环路、行为、中枢神经系统疾病、精神疾病的机理研究中发挥着重要作用。主要介绍光遗传学技术的发展历程,重点介绍光遗传学工具的优化以及定位表达,旨在为光遗传学及相关领域的研究发展提供参考。

关键词: 光遗传学技术光学控制视蛋白神经生物学    
Abstract:

Optogenetics is an emerging biological technique that combines optics and genetics to precisely control specific cells within organisms. Since the application of microbial opsins, optogenetics has gained substantial progresses in discovering opsins, optic-control methods and genetic strategies that are based on viruses and recombinases. Optogenetics apply widely in modern neuroscience, playing important roles in the study of neural circuits and behavior, the pathological mechanism of various central nervous system diseases and psychiatric disorders. This review summarizes the development of optogenetic techniques, meanwhile emphasizes the latest advances in the opsin exploration and localized expression, aiming to provide references for research in optogenetics and related fields.

Key words: Optogenetic    techniques    Light    control    Opsin    Neurobiology
收稿日期: 2018-08-01 出版日期: 2019-04-12
ZTFLH:  Q819  
基金资助: * 国家自然科学基金(81501129);江西省自然科学基金资助项目(20161BAB215200);江西省自然科学基金资助项目(20171ACB21001)
通讯作者: 张春波     E-mail: cbzhang@ncu.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
郭轩彤
张春波

引用本文:

郭轩彤,张春波. 光遗传学技术研究进展 *[J]. 中国生物工程杂志, 2019, 39(3): 87-96.

Xuan-tong GUO,Chun-bo ZHANG. Research Progress of Optogenetic Techniques. China Biotechnology, 2019, 39(3): 87-96.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20190311        https://manu60.magtech.com.cn/biotech/CN/Y2019/V39/I3/87

年份 光控元件 离子选择性 激活/抑制 激活光谱(nm) 参考目录
2005 ChR2 阳离子通道 激活 400~500 [4]
2012 ChETA 阳离子通道 激活 400~500 [19]
2014 SSFO1) 阳离子通道 激活 470/590 [21]
2014 Chrimson2) 阳离子通道 激活 585/720 [26]
2011 C1V1 阳离子通道 激活 550~570 [23]
2008 NpHR2 氯离子泵 抑制 590~620 [28]
2014 iC1C2 氯离子通道 抑制 475 [55]
2016 SwichR3) 氯离子通道 抑制 475/632 [35]
表1  常见视蛋白特性参数
图1  视蛋白定位表达技术[21]
图2  视蛋白在小鼠脑区的表达激活[21]
[1] Editorial. Method of the year 2010 optogenetics. Nature Methods, 2011,8(1):1.
doi: 10.1038/nmeth.f.321
[2] Deisseroth K, Feng G, Majewska A K , et al. Next-generation optical technologies for illuminating genetically targeted brain circuits. Journal of Neuroscience, 2006,26(41):10380-10386.
doi: 10.1523/JNEUROSCI.3863-06.2006
[3] Oesterhelt D, Stoeckenius W . Rhodopsin-like protein from the purple membrane of Halobaterium halobium. Nature New Biology, 1971,233:149-152.
[4] Boyden E S, Zhang F, Deisseroth K , et al. Millisecond-timescale, genetically targeted optical control of neural activity. Nature Neuroscience, 2005,8(9):1263-1268.
doi: 10.1038/nn1525 pmid: 16116447
[5] Chen Y, Xiong M, Zhang S C . Illuminating Parkinson’s therapy with optogenetics. Nature Biotechnology, 2015,33(2):149-150.
doi: 10.1038/nbt.3140 pmid: 4339091
[6] Bentley J N, Chestek C, Patil P G , et al. Optogenetics in epilepsy. Neurosurgical Focus, 2013,34(6):E4.
[7] Crick F . The impact of molecular biology on neuroscience. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 1999,354(1392):2021-2025.
doi: 10.1098/rstb.1999.0541 pmid: 10670022
[8] Matsuno-Yagi A, Mukohata Y . Two possible roles of bacteriorhodopsin; a comparative study of strains of Halobacterium halobium differing in pigmentation. Biochemical and Biophysical Research Communications, 1977,78(1):237-243.
doi: 10.1016/0006-291X(77)91245-1
[9] Nagel G, Ollig D, Fuhrmann M , et al. Channelrhodopsin-1:a light-gated proton channel in green algae. Science, 2002,296(5577):2395-2398.
doi: 10.1126/science.1072068 pmid: 12089443
[10] Guru A, Post R J, Warden M R , et al. Making sense of optogenetics. International Journal of Neuropsychopharmacology, 2015, 18(11): pyv079.
[11] Zemelman B V, Lee G A, Miesenböck G , et al. Selective photostimulation of genetically chARGed neurons. Neuron, 2002,33(1):15-22.
doi: 10.1016/S0896-6273(01)00574-8 pmid: 11779476
[12] Lima S Q , Miesenbö ck G. Remote control of behavior through genetically targeted photostimulation of neurons. Cell, 2005,121(1):141-152.
doi: 10.1016/j.cell.2005.02.004 pmid: 15820685122
[13] Zemelman B V, Nesnas N, Miesenbock G , et al. Photochemical gating of heterologous ion channels: remote control over genetically designated populations of neurons. Proceedings of the National Academy of Sciences, 2003,100(3):1352-1357.
doi: 10.1073/pnas.242738899
[14] Matthew B, Katharine B, Dirk T , et al. Light-activated ion channels for remote control of neuronal firing. Nature Neuroscience, 2004,7(12):1381-1386.
doi: 10.1038/nn1356 pmid: 2788493
[15] Aravanis A M, Wang L-P, Deisseroth K , et al. An optical neural interface: in vivo control of rodent motor cortex with integrated fiberoptic and optogenetic technology. Journal of Neural Engineering, 2007,4(3):S143-S156.
doi: 10.1088/1741-2560/4/3/S02 pmid: 17873414
[16] Adamantidis A R, Zhang F, Deisseroth K , et al. Neural substrates of awakening probed with optogenetic control of hypocretin neurons. Nature, 2007,450(7168):420-424.
doi: 10.1038/nature06310 pmid: 17943086
[17] Oesterhelt D, Stoeckenius W . Functions of a new photoreceptor membrane. Proceedings of the National Academy of Sciences, 1973,70(10):2853-2857.
doi: 10.1073/pnas.70.10.2853 pmid: 4517939
[18] Nagel G, Szellas T, Bamberg E , et al. Channelrhodopsin-2, a directly light-gated cation-selective membrane channel. Proceedings of the National Academy of Sciences, 2003,100(24):13940-13945.
doi: 10.1073/pnas.1936192100 pmid: 14615590
[19] Lin J Y, Lin M Z, Tsien R Y , et al. Characterization of engineered channelrhodopsin variants with improved properties and kinetics. Biophysical Journal, 2009,96(5):1803-1814.
doi: 10.1016/j.bpj.2008.11.034
[20] Gunaydin L A, Yizhar O, Hegemann P , et al. Ultrafast optogenetic control. Nature Neuroscience, 2010,13(3):387-392.
doi: 10.1038/nn.2495
[21] Kim C K, Adhikari A, Deisseroth K . Integration of optogenetics with complementary methodologies in systems neuroscience. Nature Reviews Neuroscience, 2017,18(4):222-235.
doi: 10.1038/nrn.2017.15 pmid: 28303019
[22] Berndt A, Yizhar O, Deisseroth K , et al. Bi-stable neural state switches. Nature Neuroscience, 2009,12(2):229-234.
doi: 10.1038/nn.2247 pmid: 19079251
[23] Bamann C, Gueta R, Bamberg E , et al. Structural guidance of the photocycle of channelrhodopsin-2 by an interhelical hydrogen bond. Biochemistry, 2010,49(2):267-278.
doi: 10.1021/bi901634p
[24] Fenno L, Yizhar O, Deisseroth K . The development and application of optogenetics. Annual Review of Neuroscience, 2011,34(1):389-412.
doi: 10.1146/annurev-neuro-061010-113817
[25] Zhang F, Prigge M, Deisseroth K , et al. Red-shifted optogenetic excitation: a tool for fast neural control derived from Volvox carteri. Nature Neuroscience, 2008,11(6):631-633.
doi: 10.1038/nn.2120 pmid: 2692303
[26] Lin J Y, Knutsen P M, Tsien R Y , et al. ReaChR: a red-shifted variant of channelrhodopsin enables deep transcranial optogenetic excitation. Nature Neuroscience, 2013,16(10):1499-1508.
doi: 10.1038/nn.3502 pmid: 23995068
[27] Klapoetke N C, Murata Y, Boyden E S , et al. Independent optical excitation of distinct neural populations. Nature Methods, 2014,11(3):338-346.
doi: 10.1038/nmeth.2836 pmid: 25317449
[28] Han X, Boyden E S . Multiple-color optical activation, silencing, and desynchronization of neural activity, with single-spike temporal resolution. PLoS ONE, 2007,2(3):e299.
doi: 10.1371/journal.pone.0000299 pmid: 17375185
[29] Gradinaru V, Thompson K R , Deisseroth K. eNpHR: a natronomonas halorhodopsin enhanced for optogenetic applications. Brain Cell Biology, 2008,36(1-4):129-139.
doi: 10.1007/s11068-008-9027-6 pmid: 18677566
[30] Ferenczi E, Deisseroth K . When the electricity (and the lights) go out: Transient changes in excitability. Nature Neuroscience, 2012,15(8):1058-1060.
doi: 10.1038/nn.3172
[31] Chow B Y, Han X, Boyden E S , et al. High-performance genetically targetable optical neural silencing by light-driven proton pumps. Nature, 2010,463(7277):98-102.
doi: 10.1038/nature08652
[32] Gradinaru V, Zhang F, Deisseroth K , et al. Molecular and cellular approaches for diversifying and extending optogenetics. Cell, 2010,141(1):154-165.
doi: 10.1016/j.cell.2010.02.037
[33] Han X, Chow B Y, Boyden E S , et al. A high-light sensitivity optical neural silencer: development and application to optogenetic control of non-human primate cortex. Frontiers in Systems Neuroscience, 2011,5:18.
[34] Chuong A S, Miri M L, Boyden E S , et al. Noninvasive optical inhibition with a red-shifted microbial rhodopsin. Nature Neuroscience, 2014,17(8):1123-1129.
doi: 10.1038/nn.3752
[35] Kato H E , Zhang , Nureki O , et al. Crystal structure of the channel rhodopsin light-gated cation channel. Nature, 2012,482(7385):369-374.
doi: 10.1038/nature10870
[36] Berndt A, Lee S Y, Deisseroth K , et al. Structural foundations of optogenetics: Determinants of channel rhodopsin ion selectivity. Proceedings of the National Academy of Sciences, 2016,113(4):822-829.
doi: 10.1073/pnas.1523341113 pmid: 26699459
[37] Rost B R, Schneider F, Rosenmund C , et al. Optogenetic acidification of synaptic vesicles and lysosomes. Nature Neuroscience, 2015,18(12):1845-1852.
doi: 10.1038/nn.4161 pmid: 4869830
[38] Valluru L, Xu J, Swanson G T , et al, . Ligand binding is a critical requirement for plasma membrane expression of heteromeric kainate receptors. The Journal of Biological Chemistry, 2005,280(7):6085-6093.
doi: 10.1074/jbc.M411549200 pmid: 15583001
[39] Suzuki A, de la Pompa J L, Mak T W , et al. High cancer susceptibility and embryonic lethality associated with mutation of the PTEN tumor suppressor gene in mice. Current Biology, 1998,8(21):1169-1178.
doi: 10.1016/S0960-9822(07)00488-5 pmid: 9799734
[40] Zhu P, Narita Y, Friedrich R W , et al. Optogenetic dissection of neuronal circuits in zebrafish using viral gene transfer and the Tet system. Frontiers in Neural Circuits, 2009,3(1):21-22.
doi: 10.3389/neuro.04.021.2009
[41] Jiang W, Hua R, Zhang C , et al. An optimized method for high-titer lentivirus preparations without ultracentrifugation. Scientific Reports, 2015,5(1):13875.
doi: 10.1038/srep13875
[42] Wold W S M, Toth K . Adenovirus vectors for gene therapy, vaccination and cancer gene therapy. Current Gene Therapy, 2013,13(6):421-33.
doi: 10.2174/1566523213666131125095046 pmid: 24279313
[43] Neve R L, Lim F . Generation of high-titer defective HSV-1 vectors. Current Protocols in Neuroscience, 2013, doi: 10.1002/0471142301.ns0413s62.
doi: 10.1002/0471142301.ns0413s62
[44] Mattis J, Brill J, Huguenard J R , et al. Frequency-dependent, cell type-divergent signaling in the hippocamposeptal projection. Journal of Neuroscience, 2014,34(35):11769-11780.
doi: 10.1523/JNEUROSCI.5188-13.2014 pmid: 25164672
[45] Lammel S, Steinberg E, Malenka R C , et al. Diversity of transgenic mouse models for selective targeting of midbrain dopamine neurons. Neuron, 2015,85(2):429-438.
doi: 10.1016/j.neuron.2014.12.036 pmid: 25611513
[46] Fenno L E, Mattis J, Deisseroth K , et al. Targeting cells with single vectors using multiple-feature Boolean logic. Nature Methods, 2014,11(7):763-772.
doi: 10.1038/nmeth.2996 pmid: 24908100
[47] Jefferis G, Livet J . Sparse and combinatorial neuron labelling. Current Opinion in Neurobiology, 2012,22(1):101-110.
doi: 10.1016/j.conb.2011.09.010 pmid: 22030345
[48] Soudais C, Laplace C, Kissa K , et al. Preferential transduction of neurons by canine adeno virus vectors and their efficient retrograde transport in vivo. Faseb Journal Official Publication of the Federation of American Societies for Experimental Biology, 2001,15(12):2283.
doi: 10.1096/fj.01-0321fje pmid: 11511531
[49] Schwarz L A, Miyamichi K, Luo L , et al. Viral-genetic tracing of the input-output organization of a central noradrenaline circuit. Nature, 2015,524(7563):88-92.
doi: 10.1038/nature14600 pmid: 26131933
[50] Reardon T R, Murray A J, Losonczy A , et al. Rabies virus CVS-N2cδG strain enhances retrograde synaptic transfer and neuronal viability. Neuron, 2016,89(4):711-724.
doi: 10.1016/j.neuron.2016.01.004 pmid: 26804990
[51] Enquist L W . Exploiting circuit-specific spread of pseudorabies virus in the central nervous system: insights to pathogenesis and circuit tracers. The Journal of Infectious Diseases, 2002, 186,Suppl(s2):S209-S214.
doi: 10.1086/344278 pmid: 12424699
[52] Lo L, Anderson D J . A cre-dependent, anterograde transsynaptic viral tracer for mapping output pathways of genetically marked neurons. Neuron, 2011,72(6):938-950.
doi: 10.1016/j.neuron.2011.12.002 pmid: 22196330
[53] McGovern A E, Davis N, Mazzone S B , et al. Transneuronal tracing of airways-related sensory circuitry using herpes simplex virus 1, strain H129. Neuroscience, 2012,207:148-166.
doi: 10.1016/j.neuroscience.2012.01.029 pmid: 22306285
[54] Zingg B, Chou X, Zhang L , et al. AAV-mediated anterograde transsynaptic tagging: mapping corticocollicular input-defined neural pathways for defense behaviors. Neuron, 2017,93(1):33-47.
doi: 10.1016/j.neuron.2016.11.045 pmid: 27989459
[55] Lammel S, Tye K M, Warden M R . Progress in understanding mood disorders: optogenetic dissection of neural circuits. Genes, Brain and Behavior, 2014,13(1):38-51.
[56] Yaroslavsky A N, Schulze P C, Schwarzmaier H J , et al. Optical properties of selected native and coagulated human brain tissues in vitro in the visible and near infrared spectral range. Physics in Medicine and Biology. 2002,47(12):2059-2073.
[57] Zorzos A N, Scholvin J, Fonstad C G , et al. Three-dimensional multi-wave guide probe array for light delivery to distributed brain circuits. Optics Letters, 2012,37(23):4841.
doi: 10.1364/OL.37.004841 pmid: 23202064
[58] Abaya T V F, Blair S, Solzbacher F , et al. A 3D glass optrode array for optical neural stimulation. Biomedical Optics Express, 2012,3(12):3087.
doi: 10.1364/BOE.3.003087 pmid: 23243561
[59] Leonardo S, Marco P, Andrea D P , et al. Optical fiber technologies for in-vivo light delivery and optogenetics. International Conference on Transparent Optical Networks IEEE, 2015,DOI: 10.1109/ICTON.2015.7193312.
doi: 10.1109/ICTON.2015.7193312
[60] Royer S , Zemelman B V. Magee J C , et al. Multi-array silicon probes with integrated optical fibers: light-assisted perturbation and recording of local neural circuits in the behaving animal. European Journal of Neuroscience, 2010,31(12):2279-2291.
doi: 10.1111/j.1460-9568.2010.07250.x pmid: 20529127
[61] Lee J H, Durand R, Deisseroth K , et al. Global and local fMRI signals driven by neurons defined optogenetically by type and wiring. Nature, 2010,465(7299):788-792.
doi: 10.1038/nature09108
[62] Shemesh O A, Tanese D, Zampini V , et al. Temporally precise single-cell-resolution optogenetics. Nature Neuroscience, 2017,20(12):1796-1806.
doi: 10.1038/s41593-017-0018-8 pmid: 29184208
[63] Cho K A, Sohal V S . Optogenetic approaches for investigating neural pathways implicated in schizophrenia and related disorders. Human Molecular Genetics, 2014,23(R1):R64-R68.
doi: 10.1093/hmg/ddu225
[64] Nyns E C A, Kip A, Pijnappels D A , et al. Optogenetic termination of ventricular arrhythmias in the whole heart: towards biological cardiac rhythm management. European Heart Journal, 2017,38(27):2132-2136.
doi: 10.1093/eurheartj/ehw574 pmid: 28011703
[65] Bruegmann T, Van T, Sasse P , et al. Optogenetic control of contractile function in skeletal muscle. Nature Communications, 2015,6(1):7153.
doi: 10.1038/ncomms8153
[66] Häusser M . Optogenetics: The age of light. Nature Methods, 2014. 11(10):1012-1014.
doi: 10.1038/nmeth.3111
[67] Kravitz A V, Bonci A . Optogenetics, physiology, and emotions. Frontiers in Behavioral Neuroscience, 2013,7(4):169.
[1] 王钦南. 我国参与全球人类基因组计划[J]. 中国生物工程杂志, 1995, 15(1): 16-17.