Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2018, Vol. 38 Issue (5): 1-9    DOI: 10.13523/j.cb.20180501
研究报告     
结核分枝杆菌H37Rv刺激巨噬细胞后差异表达lncRNA分析及鉴定 *
谭杨,刘胜,罗凤玲,章晓联()
武汉大学基础医学院 病毒学国家重点实验室 湖北省过敏及免疫相关疾病重点实验室和医学研究院 武汉 430071
Analysis of Differential lncRNA Expression Profile in the Macrophages after Mycobacterium tuberculosis Stimulation
Yang TAN,Sheng LIU,Feng-ling LUO,Xiao-lian ZHANG()
Department of Immunology, State Key Laboratory of Virology, Hubei Province Key Laboratory of Allergy and Immunology and Institute of Medical Research, Wuhan University School of Medicine,Wuhan 430071, China
 全文: PDF(1022 KB)   HTML
摘要:

分析毒性结核分枝杆菌(Mycobacterium tuberculosis, M.tb)H37Rv刺激RAW264.7巨噬细胞的表达谱芯片以及筛选和鉴定M.tb H37Rv感染巨噬细胞RAW264.7后差异表达的lncRNA。首先,分析热灭活的H37Rv刺激RAW264.7细胞24h后lncRNA表达谱芯片,并对差异表达的lncRNA和mRNA进行生物信息分析,然后采用实时定量聚合酶链反应对16条在芯片中差异表达的lncRNA进行细胞水平验证;进一步在H37Rv感染小鼠的脾脏和肺脏中检测差异表达的lncRNA。结果显示,表达谱芯片中4 730条lncRNA 的表达水平上调, 9 558条lncRNA 的表达水平下调。生物信息分析筛选的16条lncRNA,其染色体定位于附近蛋白质编码基因的基因间区或者与外显子区域有重叠,mRNA 功能注释显示差异表达的mRNA 主要集中于转录调节、磷酸化、凋亡等生化过程以及丝裂原活化蛋白激酶(MAPK)等抗结核的信号通路中。在H37Rv作用下的细胞水平和动物感染模型的组织中RT-qPCR验证出与芯片结果相同的4条lncRNA,其中上调的有3条,下调的有1条。研究中异常表达的lncRNA可为巨噬细胞在结核分枝杆菌感染中的功能紊乱提供线索,为后续的研究奠定基础,进一步的研究将集中于发掘lncRNA在宿主调控中发挥的功能。

关键词: 结核分枝杆菌(M.tb)巨噬细胞长链非编码RNAmRNA芯片分析    
Abstract:

To screen for differentially lncRNAs expression profile and predict their functional roles in the macrophage after Mycobacterium tuberculosis (M.tb) stimulation. Firstly, microarray and bioinformatics analysis of lncRNA and mRNA expression profiles in RAW264.7 macrophage after stimulation with M.tb for 24h.Then, 16 differentially expressed lncRNAs from microarray analysis were further verified by RT-qPCR using H37Rv infected macrophages and mouse model. The results shown that the expression levels of 4 730 lncRNAs was up-regulated, and the expression levels of 9 558 lncRNAs was down-regulated. 16 differentially expressed lncRNAs from microarray screening were associated with protein coding genes in adjacent locations. The mRNA function annotation analysis revealed that the mRNAs of differential expression were mainly concentrated in the biochemical process of transcriptional regulation, phosphorylation, apoptosis and MAPK signaling pathway which participating in the biochemical process of anti-tuberculosis. The expression trend of 4 lncRNAs in the iH37Rv stimulated RAW264.7 and mouse infection model was vertified as the same in both microarray and RT-qPCR analysis. Three of these 4 lncRNAs was up-regulated and one of them was down-regulated.The abnormal expression of lncRNAs may provide clues to the dysfunction of macrophages with M.tb infection, and further research will focus on the investigation of the function and regulation mechanism of lncRNA in M.tb infected macrophage.

Key words: Mycobacterium tuberculosis (M.tb)    Macrophage    Long non-coding RNA (lncRNA)    mRNA    Microarray analysis
收稿日期: 2018-01-19 出版日期: 2018-06-05
ZTFLH:  Q819  
基金资助: * “十二五”国家重大传染病专项(2012ZX10003002-015);“十三五”国家重大传染病专项资助项目(2017ZX10201301-006)
通讯作者: 章晓联     E-mail: zhangxiaolian@whu.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
谭杨
刘胜
罗凤玲
章晓联

引用本文:

谭杨,刘胜,罗凤玲,章晓联. 结核分枝杆菌H37Rv刺激巨噬细胞后差异表达lncRNA分析及鉴定 *[J]. 中国生物工程杂志, 2018, 38(5): 1-9.

Yang TAN,Sheng LIU,Feng-ling LUO,Xiao-lian ZHANG. Analysis of Differential lncRNA Expression Profile in the Macrophages after Mycobacterium tuberculosis Stimulation. China Biotechnology, 2018, 38(5): 1-9.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20180501        https://manu60.magtech.com.cn/biotech/CN/Y2018/V38/I5/1

Number ACC.No.1) Sense-primer(5'-3') Anti-sense-primer(5'-3')
1 FR394054 TGTTTATCTGTTTGGGTTTG CCTGGCATCAAATAACCT
2 FR327109 CACTAAAGCATAAAATGAAAGG ACATGCAGGCAAAACAGC
3 FR155939 GATGGGAACGCCGAGTAAA CCTGGAAGGACATTGGGT
4 FR009074 TATCAGGTGGTAGCAGGAA TGTGAAGTTGGGATGGTG
5 FR321982 GGAGGCAGCAGAACACCA AACAGGGACAGCCAGAGT
6 FR245513 TCCTAGTAAAAATCCCCTAA TTTGCTTGGATAAAGGCAT
7 FR009059 AAGCAAAGACAGGTGGAT GGAGAAAGTTCAAGAGGC
8 n291603 GACTGCTGCGTGTCACCTAA CCCTGCTGTCAAAGACCTCC
9 chr4:3437474-3438228 GGACTTTCCAATGTGACTAT ATATGTAGGGGTATTGAACC
10 chr19:5834117-5835940 ACACTATCCTTTGAATCTCG GTCAGGTTAGGTTAAGCCAC
11 chr19:5795690-5797464 CTCTGGCCCCTTGAATAGAT GCTGTGCTGCCTTAGGTAAA
12 chr19:5798135-5800557 TTTCGTTTGCCTCAGACAGG AGCACATAATGATCCCTTTC
13 chr8:19692532-19694101 GTTCAATTCCCAGCAACCAC CATAGCCCAGCACTTCTTCC
14 chr1:134883350-134883624 TGAACACTAAGGAATTTGAG CTCCATCTTCAAGGCAGTCA
15 n270524 AGAACCCAAGTCAACCAG TCCCTACAGCAGTATCCC
16 chr16:4592919-4594230 CGCCAGAGCCACATCAAGAC TCAAACCGAAGCACCCATCA
表1  RT-qPCR验证16 条差异表达lnRNA 的引物
图1  iH37Rv刺激巨噬细胞RAW264.7细胞 24h后200条 lncRNA 差异表达谱
Number Acc. No.1) Chr
strand
FC.2) Relationship Nearby coding
gene
Chr
strand
FC.2)
1 FR394054 15(+) +72.9 Exon-sense overlapping Mtdh 15((+) +8.6
2 FR327109 19(-) +40.2 Exon-sense overlapping LF201763 19(-) n.a.
3 FR155939 2(+) +28.1 Exon-sense overlapping AK037119 2(+) n.a.
4 FR009074 12(-) +46.2 Intergenic Rps6ka5 12(-) -3.3
5 FR321982 2(+) +31.0 Exon-sense overlapping KF703539 2(+) n.a.
6 FR245513 10(-) +26.2 Exon-sense overlapping Cpsf6 10(-) n.a.
7 FR009059 X(+) +23.6 Exon-sense overlapping Zrsr2 X(-) +10.2
8 n291603 7(+) +96.4 Unknow n.a.
9 chr4:3437474-3438228 4(-) +58.1 Unknow n.a.
10 chr19:5834117-5835940 19(-) +40.7 Unknow n.a.
11 chr19:5795690-5797464 19(+) +34.7 Exon-sense overlapping AY722410 19(-) +2.0
12 chr19:5798135-5800557 19(-) +31.3 Intergenic Gm20417 19(+) n.a.
13 chr8:19692532-19694101 8(-) +30.1 Intergenic Gm6483 8(+) n.a.
14 chr1:134883350-134883624 1(-) +29.6 Intergenic Ppp1r12b 1(-) +5.1
15 n270524 2(-) -56.2 unknow n.a.
16 chr16:4592919-4594230 16(-) -25.7 Exon-sense overlapping Ak021285 16(-) -46.6
表2  筛选的16条差异表达 lncRNA 的染色体定位以及与附近蛋白质编码基因的关系
图2  差异表达的mRNAs功能注释
图3  RT-qPCR验证iH37Rv刺激RAW264.7细胞24h后16条lncRNA的表达水平
图4  RT-qPCR检测H37Rv感染小鼠7天后肺脏和脾脏组织中16条lncRNA 的表达水平
[1] World Health Organization. Global tuberculosis report 2016.[ 2017-11-23]. Global tuberculosis report 2016. [2017-11-23]. .
[2] Andersson J, Samarina A, Fink J , et al. Impaired expression of perforin and granulysin in CD8 (+) T cells at the site of infection in human chronic pulmonary tuberculosis . Infect Immun, 2007,75(11):5210-5222.
doi: 10.1128/IAI.00624-07 pmid: 17664265
[3] Hmama Z, Peña-Díaz S, Joseph S , et al. Immunoevasion and immunosuppression of the macrophage by Mycobacterium tuberculosis. Immunol Rev, 2015,264(1):220-232.
doi: 10.1111/imr.12268 pmid: 25703562
[4] Rajaram M V, Ni B, Dodd C E , et al. Macrophage immunoregulatory pathways in tuberculosis. Semin Immunol, 2014,26(6):471-485.
doi: 10.1016/j.smim.2014.09.010 pmid: 25453226
[5] Guirado E, Schlesinger L S, Kaplan G . Macrophages in tuberculosis: friend or foe. Semin Immunopathol, 2013,35(5):563-583.
doi: 10.1007/s00281-013-0388-2 pmid: 23864058
[6] Cooper A M . Cell-mediated immune responses in tuberculosis. Annu Rev Immunol, 2009,27(1):393-422.
doi: 10.1146/annurev.immunol.021908.132703
[7] Schaible U E, Winau F, Sieling P A , et al. Apoptosis facilitates antigen presentation to T lymphocytes through MHC-I and CD1 in tuberculosis. Nat Med, 2003,9(8):1039-1046.
doi: 10.1038/nm906 pmid: 12872166
[8] Gan H X, Lee J H, Ren F C , et al. Mycobacterium tuberculosis blocks crosslinking of annexin-1 and apoptotic envelope formation on infected macrophages to maintain virulence. Nat Immunol, 2008,9(10):1189-1197.
doi: 10.1038/ni.1654 pmid: 18794848
[9] Nagano T, Fraser P . No-nonsense functions for long noncoding RNAs. Cell, 2011,145(2):178-181.
doi: 10.1016/j.cell.2011.03.014 pmid: 21496640
[10] Tian D, Sun S, Lee J T . The long non coding RNA,Jpx,is a molecular switch for X chromosome in activation. Cell, 2010,143(3):390-403.
doi: 10.1016/j.cell.2010.09.049 pmid: 2994261
[11] Hung T, Wang Y L, Lin M F , et al. Extensive and coordinated transcription of noncoding RNAs within cell-cycle promoters. Nat Genet, 2011,43(7):621-629.
doi: 10.1038/ng.848 pmid: 21642992
[12] Szymanski M, Barciszewska M Z, Erdmann V A , et al. A new frontier for molecular medicine: noncoding RNAs. Biochim Biophys Acta, 2005,1756(1):65-75.
doi: 10.1016/j.bbcan.2005.07.005 pmid: 16125325
[13] Li C H, Chen Y . Targeting long non-coding RNAs in cancers: progress and prospects. Int J Biochem Cell Biol, 2013,45(8):1895-1910.
doi: 10.1016/j.biocel.2013.05.030 pmid: 23748105
[14] Ouyang J, Zhu X M, Chen Y H , et al. NRAV, a long noncoding RNA, modulates antiviral responses through suppression of interferon-stimulated gene transcription. Cell Host Microbe, 2014,16(5):616-626.
doi: 10.1016/j.chom.2014.10.001 pmid: 25525793
[15] Liu Z, Li X, Sun N , et al. Microarray profiling and co-expression network analysis of circulating lncRNAs and mRNAs associated with major depressive disorder. PLoS One, 2014,9(3):93388.
doi: 10.1371/journal.pone.0093388 pmid: 3968145
[16] Fu Y, Xu X, Xue J , et al. Deregulated lncRNAs in B cells from patients with active tuberculosis. PLoS One, 2017,12(1):0170712.
doi: 10.1371/journal.pone.0170712 pmid: 28125665
[17] Yi Z, Li J, Gao K , et al. Identifcation of differentially expressed long non-coding RNAs in CD4 + T cells response to latent tuberculosis infection . J Infect, 2014,69(6):558-568.
doi: 10.1016/j.jinf.2014.06.016 pmid: 24975173
[18] Fu Y R, Gao K S, Tao E X , et al. Aberrantly expressed long non-coding RNAs in CD8 (+) T cells response to active tuberculosis . J Cell Biochem, 2017,118(12):4275-4284.
doi: 10.1002/jcb.v118.12
[19] Zhao Z Z, Zhang M, Ying J , et al. Significance of genetic polymorphisms in long non-coding RNA AC079767.4 in tuberculosis susceptibility and clinical phenotype in Western Chinese Han population. Sci Rep, 2017,7(1):965.
doi: 10.1038/s41598-017-01163-y pmid: 5430418
[20] Pawar K, Hanisch C , Palma Vera S E, et al. Down regulated lncRNA MEG3 eliminates mycobacteria in macrophages via autophagy. Sci Rep, 2016,6:19416.
doi: 10.1038/srep19416 pmid: 4725832
[21] Wang Y, Zhong H, Xie X , et al. Long noncoding RNA derived from CD244 signaling epigenetically controls CD8 + T-cell immune responses in tuberculosis infection . Proc Natl Acad Sci USA, 2015,112(29):3883-3892.
doi: 10.1073/pnas.1501662112 pmid: 26150504
[22] Martinez A N, Mehra S, Kaushal D . Role of interleukin 6 in innate immunity to Mycobacterium tuberculosis infection. J Infect Dis, 2013,207(8):1253-1261.
doi: 10.1093/infdis/jit037 pmid: 3693587
[23] Cho S S L, Han J, James S J , et al. Dual-specificity phosphatase 12 targets p38 MAP kinase to regulate macrophage response to intracellular bacterial infection. Front Immunol, 2017,8:1259.
doi: 10.3389/fimmu.2017.01259
[24] Palomino J C . Nonconventional and new methods in the diagnosis of tuberculosis: feasibility and applicability in the field. Eur Respir J, 2005,26(2):339-350.
doi: 10.1183/09031936.05.00050305 pmid: 16055883
[25] Elhassan M M, Elmekki M A, Osman A L , et al. Challenges in diagnosing tuberculosis in children: a comparative study from Sudan. Int J Infect Dis, 2016,43:25-29.
doi: 10.1016/j.ijid.2015.12.006 pmid: 26701818
[26] Mangtani P, Abubakar I, Ariti C , et al. Protection by BCG vaccine against tuberculosis: a systematic review of randomized controlled trials. Clin Infect Dis, 2014,58(4):470-480.
doi: 10.1093/cid/cit790 pmid: 24336911
[27] Yang X, Yang J, Wang J , et al. Microarray analysis of long noncoding RNA and mRNA expression profiles in human macrophages infected with Mycobacterium tuberculosis. Sci Rep, 2016,6:38963.
doi: 10.1038/srep38963 pmid: 27966580
[28] Yabaji S M, Mishra A K, Chatterjee A , et al. Peroxiredoxin-1 of macrophage is critical for mycobacterial infection and is controlled by early secretory antigenic target protein through the activation of p38 MAPK. Biochem Biophys Res Commun, 2017,494(3-4):433-439.
doi: 10.1016/j.bbrc.2017.10.055 pmid: 29032183
[1] 刘少金,冯雪娇,王俊姝,肖正强,程平生. 我国核酸药物市场分析及对策建议[J]. 中国生物工程杂志, 2021, 41(7): 99-109.
[2] 杨若南,许丽,徐萍,苏燕. RNA疗法产业发展态势分析及建议 *[J]. 中国生物工程杂志, 2021, 41(2/3): 162-171.
[3] 刘美琴,高博,焦月盈,李玮,虞结梅,彭向雷,郑妍鹏,付远辉,何金生. 人呼吸道合胞病毒感染的A549细胞中长链非编码RNA表达谱研究[J]. 中国生物工程杂志, 2021, 41(2/3): 7-13.
[4] 刘天义,冯卉,SALSABEELYousuf,解领丽,苗向阳. lncRNA在动物脂肪沉积中的研究进展*[J]. 中国生物工程杂志, 2021, 41(11): 82-88.
[5] 林璐,户丽君,黄逸云,陈露,黄茂,彭棋,胡琴,周兰. S100A6通过招募和活化巨噬细胞促进血管形成*[J]. 中国生物工程杂志, 2020, 40(5): 7-14.
[6] 井汇源,段二珍,董望. 体外转录的自我复制型mRNA疫苗研究进展*[J]. 中国生物工程杂志, 2020, 40(12): 25-30.
[7] 陈露,黄茂,彭棋,赵佳丽,谢佳卿,林璐,户丽君,黄逸云,胡琴,周兰. S100A6通过巨噬细胞促结直肠癌细胞增殖的作用及机制 *[J]. 中国生物工程杂志, 2019, 39(4): 1-7.
[8] 胡瞬,易有金,胡涛,李福胜. mRNA疫苗的开发及临床研究进展[J]. 中国生物工程杂志, 2019, 39(11): 105-112.
[9] 万群,刘梦瑶,夏菁,苟理尧,唐敏,孙恃雷,张彦. 长链非编码RNA SNHG3对人乳腺癌细胞MCF-7增殖、迁移与侵袭的影响 *[J]. 中国生物工程杂志, 2019, 39(1): 13-20.
[10] 秦娇荣, 赵兆, 罗心梅, 李春阳. 基于mRNA 5'端TIR区二级结构优化提高重组sTNFα RI在大肠杆菌中的表达水平[J]. 中国生物工程杂志, 2018, 38(3): 62-69.
[11] 范源,罗嘉,甘麦邻,谭娅,张顺华,朱砺. 长链非编码RNA TERRA的研究进展 *[J]. 中国生物工程杂志, 2018, 38(10): 64-73.
[12] 付辉, 李菲菲, 马琼, 付怀秀, 崔玉芳, 毛建平. 逆转录法筛选mRNA靶点设计核酶对GPA的表达干预实验研究[J]. 中国生物工程杂志, 2014, 34(3): 84-90.
[13] 麻攀, 刘洪涛, 许青松, 白雪芳, 杜昱光. 壳寡糖缓解甲萘醌诱导巨噬细胞损伤机制初探[J]. 中国生物工程杂志, 2011, 31(06): 18-21.
[14] 李俏俏 王清路 张玉军 张锐 徐寿增. 人粒细胞-巨噬细胞集落刺激因子的克隆及在毕赤酵母中的表达[J]. 中国生物工程杂志, 2010, 30(01): 35-40.
[15] 杨慧宇 边云飞 杨志明 张娜娜 肖传实. LOX-1特异性小发夹RNA 表达载体的构建及其对巨噬细胞源性泡沫细胞形成的影响[J]. 中国生物工程杂志, 2009, 29(10): 6-11.