Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2018, Vol. 38 Issue (2): 38-45    DOI: 10.13523/j.cb.20180206
研究报告     
热带假丝酵母高效利用甘油研究 *
彭健,苏静,杨晓慧,王腾飞,汪俊卿(),王瑞明
齐鲁工业大学山东省微生物工程重点实验室 生物工程学院 济南 250353
Studies on Efficient Utilization of Glycerol of Candida tropicalis 1798
Jian PENG,Jing SU,Xiao-hui YANG,Teng-fei WANG,Jun-qing WANG(),Rui-ming WANG
QiLu University of Technology , Biological Engineering, JiNan 250353, China
 全文: PDF(948 KB)   HTML
摘要:

目的 热带假丝酵母以油脂为底物发酵时会产生副产物甘油,研究对热带假丝酵母gk基因进行过表达,将副产物甘油转化为能量,提高油脂转化利用效率。方法: 以热带假丝酵母Candida tropicalis 1798中的甘油激酶(gk)为研究对象,利用PCR技术获得同源臂基因gkpR,通过一步法无缝克隆将同源臂和G418抗性基因(kan r)连接至pPICzαA载体,同时将解脂假丝酵母Candida lipolytica 1457中的启动子基因pGAP无缝连接至载体中的gkpR,构成质粒pPICzαA-gkp,并电转化至C.tropicalis 1798感受态细胞中,通过一次同源单交换,将启动子pGK替换为pGAP结果: 经过G418抗性筛选和PCR鉴定,成功获得pGAP基因替换菌株C. tropicalis 1798-gkPr;发酵验证结果显示,启动子基因替换C. tropicalis 1798在以甘油为底物培养时重组菌OD600值比野生型菌株高46.4%,重组菌培养基中甘油剩余量比野生菌降低56.1%,表明启动子替换能促进C. tropicalis 1798对甘油的吸收利用。此外,以油脂为底物进行发酵实验时还发现重组菌产长链二元酸的量比野生菌提高32.7%。结论 通过启动子替换手段构建的重组菌C. tropicalis 1798-gkPr,提高了热带假丝酵母对油脂组分中甘油成分的利用效率。

关键词: gk基因热带假丝酵母一步法无缝克隆pGAP基因    
Abstract:

Candida tropicalis1798 can produce glycerol when ferment grease. C.tropicalis1798 efficient use of glycerol and it will provides energy for fermentation and improve the utilization of grease by genetically modified. A related glycerol metabolism gene gk in C. tropicalis 1798 was intended to replace the promoter gene about 500bp DNA fragment gkpR in gk gene was cloned by using PCR, gkpR and a G418 resistance gene (kan r) was connected to vector of pPICzαA by One Step Cloning Kit,the promoter gene of pGAP from C. lipolytica 1457 will be connected to the gkpR in recombinant vector by One Step Cloning Kit. The recombinant plasmid pPICzαA-gkp was transformed into C. tropicalis 1798 competent cells.Through a single homologous exchange, the promoter pGK was replaced by pGAP. After G418 resistance experiments, PCR determination, the pGAP promoter replacement C. tropicalis 1798-gkPr was obtained successfully;The verification results offer mentation shows, The analysis founded that the OD600 of C. tropicalis 1798-gkPr was 46.4% higher than that of C. tropicalis 1798 and the glycerol content of C. tropicalis 1798-gkPr was accounted for just 56.1% when it was cultured for 12 hours with glycerin as substrate. It revealed that the replacement of promoter pGAP gene affected utilization of glycerol in C. tropicalis 1798-gkPr. Another analysis also founded that the long-chain dicarboxylic acid production of C. tropicalis 1798-gkPr was 32.7% higher than that of C. tropicalis 1798 when it was cultured for 6 days with oil as substrate. Conclusion: A C. tropicalis 1798 strain with the replaced promote gene was successfully constructed and it increased the utilization of C. tropicalis 1798 for glycerol constituents in the grease component.

Key words: gk gene    Candida tropicalis    1798    One Step Cloning Kit    pGAP gene
收稿日期: 2017-07-15 出版日期: 2018-03-21
ZTFLH:  Q819  
基金资助: 国家自然科学基金(31501413);山东省自主创新及成果转化专项(201422CX02602);泰山学者建设工程专项资助项目(201422CX02602)
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
彭健
苏静
杨晓慧
王腾飞
汪俊卿
王瑞明

引用本文:

彭健,苏静,杨晓慧,王腾飞,汪俊卿,王瑞明. 热带假丝酵母高效利用甘油研究 *[J]. 中国生物工程杂志, 2018, 38(2): 38-45.

Jian PENG,Jing SU,Xiao-hui YANG,Teng-fei WANG,Jun-qing WANG,Rui-ming WANG. Studies on Efficient Utilization of Glycerol of Candida tropicalis 1798. China Biotechnology, 2018, 38(2): 38-45.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20180206        https://manu60.magtech.com.cn/biotech/CN/Y2018/V38/I2/38

Primer name Sequence(5'→3') Size (bp) Restriction site
gk-F GACCACTCTTTTGAGCTCATGCCACGTCGTAGTAGTAA 38 SacI
gk-R GGTACCGATCCGAGAATTTCGGCAGTTCTAGTATCAGTCC 40
pGAP-F TTAGACCACTCTTTTGAGCTCGGTTGAAATGAATCGGCCG 40 SacI
pGAP-R ACTACGACGTGGCATTGTTGATGTGTGTTTAATTCAAGAATG 42
kanr-F GACCTTCGTTTGTGCGGATCCTGAGGGAGCCACGGTTGAT 40 BamHI
kanr-R GAAAAGGGGGACGGAGGATCGGTTGAGGCCGTTGAGCAC 40
表1  实验所用引物
图1  C. tropicalis 1798-gkPr构建流程
图2  PCR产物电泳图
图3  C. tropicalis 1798和C. tropicalis 1798-gkPr生长曲线及碳源利用分析
图4  C. tropicalis 1798和C. tropicalis 1798-gkPr发酵油脂曲线
[1] A dedayo M R, Ajiboye E A, Akintunde J K , et al. Single cell proteins :As nutritional enhancer. Advances in Applied Science Research., 2011,2(5):396-409.
[2] 刘继东, 付灿, 王同阳 . 热带假丝酵母在木薯淀粉酒精废液治理中的应用研究. 中国酿造, 2009,208(7):121-123.
Liu J D, Fu C, Wang T Y . Application of Candida tropicallis in the treatment of cassava-starch-alcohol waste water China Brewing, 2009,208(7):121-123.
[3] Gao Y R, Li D P, Liu Y . Production of single cell protein from soy molasses using Candida tropicalis. Ann Microbiol, 2011,62(3):1165-1172.
[4] 刘祖同 . 长链二元酸发酵的研究. 微生物学通报, 1979,19(1):71-75.
Liu Z T . Study on long-chain dicarboxylic acid fermentation Microbiology Bulletin, 1979,19(1):71-75.
[5] 桂秋芬, 姚嘉旻, 蒋洋松 , 等. 利用热带假丝酵母发酵生产长链二元酸的研究进展. 化学与生物工程, 2014,31(1):17-22.
Gui Q F, Yao J M, Jiang Y S , et al. Advances in production of long-chain dicarboxylic acid by fermentation of tropical candida Chemistry&Bioengineering, 2014,31(1):17-22.
[6] Blandin G, Ozier-Kalogeropoulos O, Wincker P , et al. Genomic exploration of the hemiascomycetous yeasts: 16. Candida tropicalis. FEBS Letters, 2000,487(1):91-94.
doi: 10.1016/S0014-5793(00)02287-0 pmid: 11152891
[7] 诸葛健, 王正祥 . 产甘油假丝酵母甘油代谢关键酶的研究. 微生物学报, 1999,39(1):91-93.
doi: 10.3321/j.issn:0001-6209.2000.02.012
Zhu G J, Wang Z X . Study on key enzymes of glycerol metabolism of candida glycerol Acta Microbiological Sinica, 1999,39(1):91-93.
doi: 10.3321/j.issn:0001-6209.2000.02.012
[8] Gerhard M. Biochemical Pathways. 3nd ed. Germany: Boehringer Mannheim Press, 1996.
[9] 郭雪娜, 诸葛斌, 诸葛健 . 甘油代谢中甘油激酶的研究进展. 微生物学报, 2002,42(4):510-513.
doi: 10.3321/j.issn:0001-6209.2002.04.021
Guo X N, Zhu Ge B, Zhu Ge J . Research progress on the glycerol kinase Acta Microbiological Sinica, 2002,42(4):510-513.
doi: 10.3321/j.issn:0001-6209.2002.04.021
[10] 谢涛, 方慧英, 诸葛健 , 等. 渗透压对产甘油假丝酵母甘油合成与胞内磷积累的影响. 中国生物工程杂志, 2009,29(4):61-66.
Xie T, Fang H Y, Zhu G J , et al. Effect of osmotic pressure on glycerol production and intracellular phosphorus accumulation in Candida China Biotechnology, 2009,29(4):61-66.
[11] 王正祥, 诸葛健, 方慧英 . 耐高渗压高产甘油的假丝酵母新种一产甘油假丝酵母. 微生物学报, 1999,39(l):68-74.
Wang Z X, Zhuge J, Fang H Y , et al. A new breviscapus of candida glycerin with high osmotic pressure and high yield glycerol Acta Microbiological Sinica. 1999,39(l):68-74.
[12] Shen W, Wang Z X, Rao Z M , et al. A genetic transformationsystem based on trp1 complementation in Candida glycerinogenes. World Journal of Microbiology and Biotechnology, 2011,27(4):1005-1008.
doi: 10.1007/s11274-010-0524-2
[13] 奥斯博 F M, 金士顿 R E. 精编分子生物学实验指南. 北京: 科学出版社, 1998.
Osbo F M, Kingston R E. A Guide to Molecular Biology Experiment. Beijing: Science Press, 1998.
[14] 邢竹青, 王彦宁, 刘兆贤 , 等. Lactobacillus kefiranofaciens乳糖酶基因克隆及在毕赤酵母中表达. 中国酿造, 2016,35(1):10-13.
Xing Z Q, Wang Y N , Liu Z X, et a. Cloning of Lactobacillus kefiranofaciens β-galactosidase and expression in Pichia pastoris China Brewing, 2016,35(1):10-13.
[15] Wolff A M, Arnaul J . Cloning of glyceraldehyde-3-phosphate dehydrogenase-encoding genes in Mucor circinelloides (Syn.racemosus) and use of the gpdl promoter for pecombinant protein production. Fungal Genetics and Biology, 2002,35(1):21-29.
doi: 10.1006/fgbi.2001.1313 pmid: 11860262
[16] Schmitt E K, Kempken R, Kuck U . Functional analysis of promoter sequences of cephalosporin C biosynthesis genes from Acremonium chrysogenum: specific DNA-protein interactions and characterization of the transcription factor PACC. Mol Genet Genomics, 2001,265(3):508-510.
doi: 10.1007/s004380000439
[17] 刘桂明, 赵智, 张英姿 , 等. 谷氨酸棒杆菌10147基因组中启动子活性片段的克隆与分析. 微生物学报, 2009,49(7):972-977.
doi: 10.3321/j.issn:0001-6209.2009.07.021
Liu G M, Zhao Z, Zhang Y Z , et al. Cloning and analysis of promoter fragment of Corynebacterium glutamicum 10147 genome Acta Microbiological Sinica, 2009,49(7):972-977.
doi: 10.3321/j.issn:0001-6209.2009.07.021
[18] 耿宏伟, 侯红燕, 王丕武 , 等. pGAP-毕赤酵母表达系统的研究进展. 食品工程技术, 2011,29(1):159-161.
Gong H W, Hou H Y, Wang P W , et al. Research progress of pGAP-pichia pastoris expression system Food Engineering Technology, 2011,29(1):159-161.
[19] Xu Y, Tu Z . Application and progress of filamentous fungi gene targeting. J Food Sci Biotechnol, 2007,26(1):120-126.
doi: 10.1016/S1872-2075(07)60055-7
[20] Xiang Z, Chen X Z, Zhang L H , et al. Development of a genetic transformation system for Candida tropicalis based on a reusable selection marker of URA3 gene. Hereditas, 2014,36(10):1053-1061.
doi: 10.3724/SP.J.1005.2014.1053 pmid: 25406254
[21] Xue K J, Liu B, Chang S H , et al. A high efficient method to knockout target gene by two-step homologous recombination in Pichia pastoris. Lett Biotechnol, 2010,21(5):650-654.
[1] 林敏. 玉米生物育种基础研究与关键技术[J]. 中国生物工程杂志, 2021, 41(12): 1-3.
[2] 吴函蓉,王莹,黄英明,李冬雪,李治非,方子寒,范玲. 以基地平台为抓手,促进生物技术创新与转化[J]. 中国生物工程杂志, 2021, 41(12): 141-147.
[3] 尹泽超,王晓芳,龙艳,董振营,万向元. 玉米穗腐病抗性鉴定、遗传分析与分子机制*[J]. 中国生物工程杂志, 2021, 41(12): 103-115.
[4] 冷燕,孙康泰,刘倩倩,蒲阿庆,李翔,万向元,魏珣. 全球基因编辑作物监管趋势研究[J]. 中国生物工程杂志, 2021, 41(12): 24-29.
[5] 何伟,祝蕾,刘欣泽,安学丽,万向元. 玉米遗传转化与商业化转基因玉米开发*[J]. 中国生物工程杂志, 2021, 41(12): 13-23.
[6] 杨梦冰,江易林,祝蕾,安学丽,万向元. CRISPR/Cas植物基因组编辑技术及其在玉米中的应用*[J]. 中国生物工程杂志, 2021, 41(12): 4-12.
[7] 殷芳冰,王成,龙艳,董振营,万向元. 玉米雌穗性状遗传分析与形成机制*[J]. 中国生物工程杂志, 2021, 41(12): 30-46.
[8] 秦文萱,刘鑫,龙艳,董振营,万向元. 玉米叶夹角形成的遗传基础与分子机制解析*[J]. 中国生物工程杂志, 2021, 41(12): 74-87.
[9] 王锐璞,董振营,高悦欣,龙艳,万向元. 玉米籽粒淀粉含量遗传基础与调控机制*[J]. 中国生物工程杂志, 2021, 41(12): 47-60.
[10] 马雅杰,高悦欣,李依萍,龙艳,董振营,万向元. 玉米株高和穗位高的遗传基础与分子机制*[J]. 中国生物工程杂志, 2021, 41(12): 61-73.
[11] 王彦博,魏佳,龙艳,董振营,万向元. 玉米雄穗性状遗传结构与形成分子机制*[J]. 中国生物工程杂志, 2021, 41(12): 88-102.
[12] 毛开云,李荣,李丹丹,赵若春,范月蕾,江洪波. 全球双特异性抗体药物研发格局分析*[J]. 中国生物工程杂志, 2021, 41(11): 110-118.
[13] 吴函蓉,王莹,杨力,葛瑶,范玲. 我国生物技术基地平台现状与发展建议[J]. 中国生物工程杂志, 2021, 41(11): 119-123.
[14] 刘天义,冯卉,SALSABEELYousuf,解领丽,苗向阳. lncRNA在动物脂肪沉积中的研究进展*[J]. 中国生物工程杂志, 2021, 41(11): 82-88.
[15] 薛志勇,代红生,张显元,孙艳颖,黄志伟. 表达透明颤菌血红蛋白基因对酿酒酵母生长及细胞内氧化状态的影响*[J]. 中国生物工程杂志, 2021, 41(11): 32-39.